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Abstract

Atraditional approach to extracting geometric information
from a large scene is to compute multiple 3-D depth maps
from stereo pairsor direct rangefinders, and thento merge
the 3-D data. However, the resulting merged depth maps
may be subject to merging errors if the relative poses be-
tween depth maps are not known exactly. In addition, the
3-D data may also have to be resampled before merging,
\grglo?’g adds additional complexity and potential sources of

This paper provides a means of directly extracting 3-D
data covering a very widefield of view, thus by-passing the
need for numerous depth map merging. In our work, cylin-
drical images are first composited from sequences of im-
agestaken whilethecamera isrotated 360° about avertical
axis. By taking such image panoramas at different camera
locations, we can recover 3-D data of the scene using a set
of simpletechniques: featuretracking, an 8-point structure
from motion algorithm, and multibaseline stereo. We also
investigatethe effect of medianfiltering on therecovered 3-
D point distributions, and show the results of our approach
applied to both synthetic and real scenes.

1 Introduction

A traditional approach to extracting geometric information
from alarge scene isto compute multiple (possibly numer-
ous) 3-D depth maps from stereo pairs, and then to merge
the 3-D data[3, 5, 16, 19]. Thisis not only computation-
ally intensive, but the resulting merged depth maps may be
subject tomerging errors, especially if therelative poses be-
tween depth mapsare not known exactly. The 3-D datamay
also have to be resampled before merging, which adds ad-
ditional complexity and potential sources of errors.

This paper provides a means of directly extracting 3-
D data covering a 360° horizontal field of view, thus by-
passing the need for numerous depth map merging. Cylin-
drical images are first composed from sequences of images
taken whilethe cameraisrotated 360° about avertical axis.
By taking such image panoramas at different camera lo-
cations, we can recover 3-D data of the scene using a set
of simple techniques: feature tracking, an 8-point structure
from motion agorithm, and multibaseline stereo.

There are several advantages to this approach. First,
the cylindrical image mosaics can be built quite accurately,
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since the camera motionisvery restricted. Second, therel-
ative pose of the various camera locations can be deter-
mined with much greater accuracy than with regular struc-
ture from motion applied to images with narrower fields of

view. Third, there is no need to build or purchase a spe-
cialized stereo camera whose calibration may be sensitive
to drift over time—any conventional video camera on atri-
pod will suffice. Our approach can be used to construct
models of building interiors, both for virtual reality appli-

cations (games, home sales, architectural remodeling), and
for robotics applications (navigation).

2 Relevant work

There is a significant body of work on range image recov-
ery using stereo (the most recent comprehensive survey is
givenin[2]). Most work on stereo usesimageswithlimited
fields of view. One of the earliest work to use panoramic
images isthe omnidirectional stereo system of Ishigura[6],
which uses two panoramic views. One of the disadvan-
tages of this method is the slow data accumulation, which
takes about 10 mins.

Murray [14] generalizesIshiguraet al.’ sapproach by us-
ing all the vertical dlits of the image (except in the paper,
he uses a singleimage raster). Thiswould be equivalent to
structure from known motion or motion stereo. The anal-
ysis involved in thiswork is similar to Bolles et al.’s [1]
spatio-temporal epipolar anaysis.

Another related work isthat of plenoptic modeling [13].
The ideais to compose rotated camera views into panora-
mas, and based on two cylindrical panoramas, project dis-
parity values between these locations to a given viewing
position. However, thereis no explicit 3-D reconstruction.

Our approach is similar to that of [13] in that we com-
poserotated camera viewsto panoramas aswell. However,
we are going a step further in reconstructing 3-D feature
points and modeling the scene based upon the recovered
points. We use multiple panoramas for more accurate 3-
D reconstruction.
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Figure 1. Generating scene model from multiple 360°
panoramic views.
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Figure2: Compositingmultiplerotated cameraviewsintoa
panorama. The ' x’ mark indicate the locations of the cam-
era optical and rotation center.

3 Badgcidea

Our ultimate goal isto generate a photorealisticmodel to be
used in avariety of scenarios. We are interested in provid-
ing asimple means of generating suchmodels. Inour case,
we use a workstation with framegrabber (real-time image
digitizer) and a commercially available 8-mm camcorder.
Our approach is straightforward: at each camera loca-
tion in the scene, capture sequences of images while rotat-
ing the camera about the vertical axis passing through the
camera optical center. Compose each set of images to pro-
duce panoramas at each location. Use stereo to extract 3-D
data from the scene. Finally, model the scene using these
3-D data and render it with the texture provided by thein-
put 2-D images. This approach is summarized in Figure 1.

Using multiple camera locations in stereo analysis sig-
nificantly reduces the number of ambiguous matches and
also has the effect of reducing errors by averaging [15, 9].
This is especialy important for images with very wide
fields of view, because depth recovery isunreliable near the
epipoles, where the looming effect takes place, resultingin
very poor depth cues.

4 Extraction of panoramicimages

A panoramic image is created by composing a series of ro-
tated camera image images, as shown in Figure 2. In order
to create this panoramic image, we first have to ensure that
the camera isrotating about an axis passing through its op-
tical center, i.e., we must eliminate motion parallax when
panning the camera around. To achieve this, we manually
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Figure 3: Image sequence of an office.

adjust the position of camera relative to an X-Y precision
stage (mounted on the tripod) such that the motion parallax
effect disappears when the cameraisrotated back and forth
about the vertical axis [20].

Prior to image capture of the scene, we calibrate the
camera to compute its intrinsic camera parameters (specif-
ically itsfocal length f, aspect ratio r, and radial distortion
coefficient ). The camera is calibrated by taking multi-
ple snapshots of aplanar dot pattern grid with known depth
separation between successive snapshots. We use an it-
erative least-squares algorithm (Levenberg-Marquardt) to
estimate camera intrinsic and extrinsic parameters (except
for x) [23]. « is determined using 1-D search (Brent's
parabolic interpolation in 1-D [17]) with the |east-squares
algorithm as the black box.

The steps involved in extracting a panoramic scene are
as follow:

¢ At each cameralocation, capture sequence while pan-
ning camera around 360°.

¢ Usingtheintrinsic camera parameters, correct theim-
age sequence for r, the aspect ratio, and «, the radia
distortion coefficient.

e Convert the (r, x)-corrected 2-D flat image sequence
tocylindrical coordinates, withthefocal length f asits
cross-sectional radius[24]. Anexample of asequence
of corrected images (of an office) isshownin Figure 3.

o Compose the images to yield the desired panorama
[21]. The relative displacement of one frame to the
next is coarsely determined by using phase correlation
[11]. Subsequently, the image trandation is refined
using local image registration by directly comparing
the overlapped regions between the two images [21].

o Correct for slight errorsin the resulting length (which
in theory equals 27 f) by propagating residua dis-
placement error equally across all images and recom-
posing. The error inlengthis usually within a percent
of the expected length.

An example of a panoramic image created from the office
scene in Figure 3isshown in Figure 4.

5 Recovery of epipolar geometry

In order to extract 3-D data from a given set of panoramic
images, we have to first know the relative positions of the



Figure 4: Panorama of office scene after composing.

camera corresponding to the panoramic images. For acal-
ibrated camera, thisis equival ent to determining the epipo-
lar geometry between areference panoramic image and ev-
ery other panoramic image.

5.1 Usingthe8-point algorithm

We use the 8-point algorithm [12, 4] to extract what is
called the essential matrix, which yields both the relative
camera placement and epipolar geometry. This is done
pairwise, namely between areference panoramicimageand
another panoramic image. There are, however, four possi-
ble solutions[4]. The solution that yieldsthe most positive
projections (i.e., projections away from the camera optical
centers) is chosen.

After recovering the essential matrix, we can then deter-
mine both the orientation and trandlation (up to ascale). In
our work, the scale is determined from the measured dis-
tance between camera positions, though thisis not critical
[8].

If the number of input pointsissmall and not well dis-
tributed in theimage, the output of algorithmis sensitiveto
noise. On the other hand, it turns out that normalizing the
3-D point location vector on the cylindrical image reduces
sensitivity of the 8-point algorithm to noise. Thisis simi-
lar in spirit to Hartley’s application of isotropic scaling [4]
prior to using the 8-point algorithm. The 3-D cylindrical
points are normalized according to the relation

u=(fsind,y, fcosf) > u=u/lu| QD
5.2 Tracking featuresfor 8-point algorithm

The 8-point algorithm assumes that feature point corre-
spondences are available. Feature trackingisdifficult since
purely local tracking fails because the displacement can
be large (of the order of about 100 pixels, in the direction
of camera motion). The approach that we have adopted
comprises spline-based tracking [22, 25], which attempts
to globally minimize the image intensity differences. This
yields estimates of optic flow, which in turn are used by a
local tracker [18] to refine the amount of feature displace-
ment.

The approach we have devel oped for object tracking can
be thought of as a “fine-to-finer” tracking approach. In ad-
ditionto feature displacements, themeasure of reliability of
tracksisavailable (according to match errors and local tex-
turedness, the latter indicated by the minimum eigenvalue
of the local Hessian [18, 25]). Aswe'll see later in Sec-
tion 8.1, thisisused to cull possibly bad tracks and improve
3-D estimates.

Once we have extracted point featuretracks, we can then
proceed to recover 3-D positions corresponding to these
featuretracks. 3-D datarecovery isbased onthe simple no-
tion of stereo.

6 Omnidirectional
stereo

The idea of extracting 3-D data simultaneously from more
than the theoretically sufficient number of two camera
views is based on two simple tenets: statistical robustness
from redundancy and disambiguation of matches due to
overconstraints[15, 9]. The notion of using multiple cam-
eraviewsis even more critical when using panoramic im-
ages taken at the same vertical height, which resultsin the
epipoles falling within the images. If only two panoramic
images are used, points that are close to the epipoles will
not bereliable. Itisalsoimportant to note that this problem
will persist if all the multiple panoramic images are taken
at camera positionsthat are colinear. Intheexperimentsde-
scribed in Section 8, the camera positions are deliberately
arranged such that all the positions are not colinear. In ad-
dition, all the images are taken at the same vertical height
to maximize view overlap between panoramic images.

We use threerelated approachesto reconstruct 3-D from
multiple panoramic images. 3-D datarecovery is done ei-
ther by (1) usingjust the 8-point algorithm on thetracks and
directly recovering the 3-D points, or (2) proceeding with
aniterativeleast-sguares method to refine both camera pose
and 3-D feature location, or (3) going a step further to im-
pose epipolar constraints in performing a full multiframe
stereo reconstruction. The first approach is termed as un-
constrained tracking and 3-D data merging while the sec-
ond approach is iterative structure from motion. The third
approach isnamed constrained depth recovery using epipo-
lar geometry.

multibasaline

6.1 Reconstruction Method 1 Un-
constrained featuretracking and 8-point

data merging

Inthisapproach, weuse thetracked feature pointsacrossall
panoramic images and apply the 8-point algorithm. From
theextracted essential matrix and camerarelative poses, we
can then estimate directly the 3-D positions.

The sets of 2-D image data are used to determine (pair-
wise) the essential matrix. The recovery of the essential
matrix turns out to be reasonably stable, and thisis due to
thelarge (360°) field of view. We have found that extract-
ing the essential matrix using the 8-point algorithmisstable



when the points are well distributed over the field of view.

In this approach, we use the same set of data to recover
Euclidean shape. Intheory, therecovered positionsareonly
true up to ascale. Since the distance between camera loca-
tions are known and measured, we are able to get the true
scale of the recovered shape. Note, however, that the cam-
era distances need not be known [8].

Let u;; bethe ith point of image k, v;;, be the unit vec-
tor from the optical center to the panoramic image point in
3-D space, A, be the corresponding line passing through
both the optical center and panoramic image point in space,
and t; be the camera trandation associated with the kth
panoramic image (note that t; = 0). The equation of line
A isthenry;;, = A vy +t5. Thus, foreach pointi (thatis
constrained tolieon line A1), we minimize the error func-
tion

N
E =Y |lri —ral” @)
k=2
where N isthe number of panoramicimages. By takingthe
partial derivatives of &£ with respect to A;;, j =1, ..., N,
equating them to zero, and solving, we get
Yoneo bh (Vs = (VEVik) vin)
N AT A 2
2 k=2 (1 - (ViTlvik) )
from which the reconstructed 3-D point is calculated using
the relation p;1 opr = Ai1optVi1- Note that a more opti-

mal manner of estimating the 3-D point is to minimize the
expression

S ©)

Ail,opt =

N
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However, due to the practica consideration of texture-
mapping therecovered 3-D mesh of the estimated point dis-
tribution, the projection of the estimated 3-D point has to
coincide with the 2-D image location in the reference im-
age. This can be justified by saying that since the feature
tracks originate from the reference image, it is reasonable
to assume that there is no uncertainty in feature location in
the reference image.

6.2 Reconstruction Method 2: Iterative
panoramic structure from motion

The 8-point algorithm recovers the camera motion param-
eters directly from the panoramic tracks, from which the
corresponding 3-D points can be computed. However, the
camera motion parameters may not be optimally recovered,
even though experiments by Hartley using narrow view im-
ages indicate that the motion parameters are close to op-
timal [4]. Using the output of the 8-point algorithm and
the recovered 3-D data, we can apply an iterative least-
sguares minimization to refine both camera motion and 3-
D positions simultaneously. This is similar to work done

by Szeliski and Kang on structure from motion using mul-
tiple narrow camera views [23]. It turns out that applying
iterative least-squares minimization does not significantly
improve the accuracy of therecovered 3-D stereo data. In-
terested readers are referred to [8] for details.

6.3 Reconstruction Method 3: Constrained

depth recovery using epipolar geometry
Asaresult of the first reconstruction method's reliance on
tracking, it suffers from the aperture problem and hence
limited number of reliable points. The approach of using
the epipolar geometry to limit the search is designed to re-
duce the severity of this problem. Given the epipolar ge-
ometry, for each image point in the reference panoramic
image, a constrained search is performed along the line of
sight through the image point. Subsequently, the position
along this line which results in minimum match error at
projected image coordinates corresponding to other view-
points is chosen. Using this approach results in a denser
depth map, due to the epipolar constraint. The principle
isthe same as that described in[9].

While this approach mitigates the problem of the aper-
ture problem, it incurs a much higher computational de-
mand. In addition, the recovered epipolar geometry is still
dependent on the output quality of the 8-point algorithm
(whichinturn dependsonthe quality of tracking). The user
has to a so specify minimum and maximum depths as well
as the resolution of depth search.

7 Stereo data segmentation and
modeling

Once the 3-D stereo data has been extracted, we can then
model them with a 3-D mesh and texture-map each face
with the associated part of the 2-D image panorama. We
have done work to reduce the complexity of theresulting 3-
D mesh by planar patch fitting and boundary simplification.
The displayed models shown in this paper are rendered us-
ing our modeling system. A more detailed description of
model extraction from range datais givenin[7].

8 Experimental results

In this section, we present the results of applying our ap-
proach to recover 3-D data from multiple panoramic im-
ages. We have used both synthetic and real images to test
our approach. Asmentioned earlier, inthe experiments de-
scribed in thissection, the camera positionsare deliberately
arranged so that all of the positionsare not colinear. In ad-
dition, all the images are taken at the same vertical height
to maximize the overlap between panoramic images.

8.1 Synthetic scene

The synthetic sceneisaroom comprising objectssuch asta-
bles, tori, cylinders, and vases. One half of theroom istex-



(d) Median filtered (€) Median filtered (f) Top view of 3-D
8-pt constrained mesh of (d)

Figure 6: Comparison of 3-D pointsrecovered of synthetic
room. The resultsfor the iterative method are very similar
to those for unconstrained 8-point.

tured with amandrill image whilethe other istextured with
aregular Brodatz pattern. The synthetic objectsand images
are created using Rayshade, which is a program for creat-
ingray-traced color images[10]. The omnidirectional syn-
thetic depth map of the entire room is created by merging
the depth maps associated with the multipleviewstaken in-
side the room.

The composite panoramic view of the synthetic room
from its center isshownin Figure5. Theresults of apply-
ing both reconstruction methods (i.e., unconstrained search
with 8-point and constrained search using epipolar geome-
try) can be seen in Figure 6. We get many more points us-
ing constrained search (about 3 times more), but the quality
of the 3-D reconstruction appears more degraded (compare
Figure 6(b) with (c)).  The dimensions of the synthetic
room are 10(length) x 8(width) x 6(height), and the reso-
[ution for the depth search in the multibaseline stereo algo-
rithmis 0.01. What isinteresting is that the quality of the
recovered 3-D data looks better after applying a 3-D me-
dianfilter. However, the median filter also has the effect
of rounding off corners.

ThemeshinFigure6(f) andthetwoviewsinFigure7 are
generated by our rendering system describedin [7]. Ascan
be seen from thesefigures, the 3-D recovered pointsand the
subsequent model based on these pointsbasically preserved
the shape of the synthetic room.

In addition, we performed a series of experimentsto ex-
aminetheeffect of both*bad” track removal and medianfil-
tering on the quality of recovered depth information of the
synthetic room. The feature tracks are sorted in increasing
order according to the error in matching. We continually

(8 View 1 (b) View 2

Figure 7: Two views of modeled synthetic room.
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Figure 8: 3-D RMS error vs. number of points. The origi-
nal number of points (corresponding to 100%) is 3057. The
dimensions of the synthetic room are 10(lengtt§(width)

x 6(height).

remove tracks that have the worst amount of match error,
recovering the 3-D point distribution at each instant.

From the graph in Figure 8, we see an interesting result:
as more tracks are taken out, retaining the better ones, the
quality of 3-D pointrecovery improves—upto a point. The
improvement in the accuracy is not surprising, since the
worse tracks, which are more likely to result in worse 3-D
estimates, are removed. However, as more and more tracks
are removed, the gap between the amount of accuracy de-
manded of the tracks, given an increasingly smaller number
of available tracks, and the track accuracy available, grows.
This results in generally worse estimates of the epipolar ge-
ometry, and hence 3-D data. Reducing the number of points
degrades the quality of both epipolar geometry (in the form
of the essential matrix) and 3-D data. This is evidenced by
the fluctuation of the curves at the lower end of the graph.
Another interesting result that can be observed is that the
3-D point distribution that has been median filtered have
lower errors, especially for higher numbers of recovered 3-
D points.

As indicated by the graph in Figure 8, the accuracy of
the point distribution derived from just the 8-point algo-
rithm is almost equivalent that that of using an iterative



Figure 5: Panorama of synthetic room after composing.

least-squares (Levenberg-Marquardt) minimization, which AT

is statistically optimal near the true solution. This result is % 3

in agreement with Hartley’s application of the 8-point al- o ;

gorithm to narrow-angle images [4]. Itis also worth noting i 5

that the accuracy of the iterative algorithmis best at smaller e B e S
numbers of input points, suggesting that it is more stable

given a smaller number of input data.

82 A real scene (a) Unconstrained 8-point (b) Median filtered version of (a)

The setup that we used to record our image sequences con-
sists of a DEC Alpha workstation with a J300 framegrab-
ber, and a camcorder mounted on an X-Y position stage af-
fixed on a tripod stand.

We recorded image sequences of a lab scene. A
panoramic image of the lab scene is shown in Figure 9. A
total of eight panoramas at eight different locations (about 3 '
inches apart, ordered roughlyina zig-zag fashion) inthelab (c) Constramed search (d) Median flltered version of (c)
are extracted. The longest dimensions of the L-shaped lab
is about 15 feet by 22.5 feet. The 3-D point distribution is
shown in Figure 10 while Figure 11 shows two views ofthe
recovered model of the lab. As can be seen, the shape of the
lab has been reasonably well recovered; the “noise” points W
at the bottom of Figure 10(a) corresponds to the positions
outsidethe laboratory, since there are parts of the transpar- (€) 3-D mesh of (b)
ent laboratory window that are not covered. This reveals Figure 10: Extracted 3-D points and mesh of laboratory
one of the weaknesses of any correlation-based algorithmscene. The results for the iterative method are very similar
(namely all stereo algorithms): they do not work well with ~ to those for unconstrained 8-point.
image reflections and transparent material. Again, we ob-
serve that the points recovered using constrained search arg'o Summary

worse. We have described an approach to extracting omnidirec-
9 Discussion tipnal 3-D data_l from mu_ltiple panoramas taken at arbitrary
different locations. This reduces the need for numerous
We have shown that omnidirectional depth data (whose multiple merging of disparate depth maps corresponding to
denseness depends on the amount of local texture) can bdifferent camera views of the same scene. Results indicate
extracted using a set of simple techniques: camera calibrathat the application of 3-D median filtering improves both
tion, image composing, feature tracking, the 8-point algo- the accuracy and appearance of stereo-computed 3-D point
rithm, and constrained search using the recovered epipolardistribution.
geometry. The advantage of our work is that we are able  Currently, the omnidirectional data, while obtained
to extract depth data within a wide field of view simultane- through a 360 view, has limited vertical view. We plan
ously, which removes many of the traditional problems as- to extend this work by incorporatinglted (i.e., rotated
sociated with recovering camera pose and narrow-baselineabout a horizontal axis) camera views to increase the verti-
stereo. Despite the practical problems caused by using un-cal panoramic extent. This would enable scene reconstruc-
sophisticated equipment which result in slightly incorrect tion of a building floor involving multiple rooms with good
panoramas, we are still able to extract reasonable 3-D datavertical view. In addition, we are also currently characteriz-
Thus far, the best real data results come from using uncon-ing the effects of misestimated intrinsic camera parameters
strained tracking and 8-point algorithm. (focal length, aspect ratio, and the radial distortion factor)




Figure 9: Panorama of laboratory after composing.

(a) View 1

(b) View 2

Figure 11: Two views of modeled laboratory scene

on the accuracy of the recovered 3-D data.
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