
A Graphical Tool for Ad Hoc Query Generation*

Kilian Stoffel‡, John D. Davis†‡, Gerald Rottman†‡, Joel Saltz†‡, James Dick, William Merz‡, and Robert Miller‡

†Computer Science Department
University of Maryland

College Park, MD 20742

‡Johns Hopkins Hospital
Department of Pathology

Baltimore, MD 20885

Medical data are characterized by complex
taxonomies and evolving terminology. Questions that
clinicians, medical administrators, and researchers
may wish to answer using medical databases are not
easily formulated as SQL queries. In this paper we
describe a graphical tool that facilitates formulation of
ad hoc questions as SQL queries. This tool manages
multiple attribute hierarchies and creates SQL query
strings by navigating through the hierarchies. This
interactive tool has been optimized using indexing to
improve the overall speed of the query building and the
data retrieval process. Indexed queries performed 5 to
100 times faster than query strings. However, query
string generation time depends on the size of the
taxonomies describing the hierarchies, while the index
generation time depends on the size of the data
warehouse.

INTRODUCTION

Database support of medical practice, hospital
administration, and clinical research is complicated by
partially standardized and evolving terminology and by
complex medical taxonomies. Relational databases
require the consistent use of a set of attributes
describing the domain of interest. Typical medical
databases have attributes with enormous name space,
i.e., range of possible values. This makes it difficult to
formulate many queries. In addition, attributes may
have semantic dependencies. The meaning of one
attribute value depends on the value of a different
attribute.

To overcome this sort of difficulty, we are exploring
the use of semantic knowledge, stored in the form of
ontologies.1 These ontologies are hierarchies of
attributes that support efficient querying and indexing
of large databases. An illustration may be given from
the domain of clinical microbiology.

*This research was supported by the National Science
Foundation under the Grants #ASC 9318183 and #ACI-
9619020 (UC Subcontract #10152408), and DARPA under
Grants #N66001-97-C-8534 and #DABT 63-94-C-0049
(Caltech Subcontract #9503).

Microbiological identification is a process of
iterative refinement. There is no single battery of tests
that can be applied to all specimens to obtain a precise
identification. This process of identification is carried
to varying degrees of refinement depending on the body
source of the specimen, the current state of
microbiological knowledge, and clinical considerations.
Reported microbial identities run the gamut from broad,
descriptive groupings to family and species
designations. Gram stain, metabolic, and morphologic
characteristics may also appear in the microbiology
report.

For example, the organism Neisseria gonorrhoeae
may be identified in the laboratory as an oxidase-
positive, gram-negative diplococcus growing on
Thayer-Martin medium or, directly, by gene probe
analysis. Depending on techniques utilized and
progress in identification, the same organism may be
reported variously as “Neisseria gonorrhoeae”, “gram
negative diplococcus”, “Neisseria species”, etc. Thus,
the traditional taxonomy structure does not support this
iterative identification process because there may exist
multiple paths to a single organism identification.
Rather, the data form a more complex structure in
which attribute values may have multiple practical
definitions.

We demonstrate in the domain of clinical
microbiology how efficient indexing, complex data
access, and high-level querying can be supported for
users untrained in the details of the underlying database
forms. Our approach is general and can be applied to
all types of database attributes with complex
hierarchies. We present an algorithm used to formulate
complex queries and an indexing scheme that improved
the performance of query generation and execution in
an interactive system.

Related Work
Over the last few years, much research has focused

on optimization of aggregate queries.2,3 This
development was largely driven by applications for
online analytic processing (OLAP) and decision support
systems (DSS).4 Data cubes are a key technology that
emerged from this research.5,6 Materialized views are
another optimization approach related to our work.7,8

We found that even a very large number of
preprocessed views is not sufficient to support the
queries encountered in a medical context. The high
degree of variation in the types of queries, as well as the
combinatorial complexity of the hierarchical attributes,
make the use of materialized views impractical.

This paper proposes a scheme in which metadata
describing an attribute hierarchy is used, in effect, to
support the dynamic creation of new derived attributes.
The ability to support metadata-based hierarchies is
important in our applications because large hierarchies
are not well supported by previously proposed
methods.9 We describe a tool which allows on-the-fly
creation of queries for multiple attributes, as well as an
indexing mechanism that is quite different from those
proposed for standard data cubes.10,11

APPLICATION OVERVIEW

We are analyzing information in a medical data
warehouse that we are maintaining at Johns Hopkins
Hospital. The warehouse includes in-patient and out-
patient data from the clinical laboratories. In addition,
we have access to a hospital-pharmacy database and a
hospital-administration database containing
demographic, treatment, and billing information. We
use Microsoft SQL Server 6.5, running on an NT 4.0
platform. Laboratory data is downloaded in HL7
format nightly from an MSM laboratory information
system.

Motivating Example
One study using this tool evaluated two treatment

regiments for immunosuppressed cancer patients. This
study compared the use of different prophylactic
antibiotics to prevent infection in these patients. The
first task was to formulate a query defining the patient
population. This query would identify all oncology
patients with cultures growing gram-negative, aerobic
rods. Using this patient population, the next set of
queries would provide all the patients resistant to the
two treatment regiments.

A query such as "Find all patients with cultures
growing gram negative rods" seeks not only patients for
whom Organism = "gram-negative rod" but also
patients where Organism = "subcategory of gram-
negative rod". Our intended meaning is the set of all
microbial identifications (nodes) that can be reached by
following category-subcategory relations starting from
gram negative rods. Our patient population query
requires a disjunctive expression as in "Select all
patients where Organism = gram-negative rod OR
Organism = Pseudomonas aeruginosa OR ..."
Moreover, for most queries, aggregate functions
(especially the count function) are applied to these

select statements (e.g., "How many patients were
infected with gram negative bacteria?").

Queries of medical databases entail two fundamental
problems. First, it is very time consuming to generate
the large disjunctive expressions, and second, questions
change regularly; it is not possible to predefine all
queries. Therefore, we created a tool that allows us to
manage multiple, large hierarchical attribute spaces to
generate queries.

Data Structures
In general, the list of possible microbial

identifications can be ordered, i.e., "xxx" is a
subcategory of "yyy", which is a subcategory of "zzz".
Note, that the attribute classification is not a traditional
taxonomy, but rather what is termed a directed acyclic
graph (DAG).12 In the example given above, “xxx”
could also be a subcategory of “www” and “www” is
not a subcategory of “yyy” or “zzz”.

A DAG representing the ordered relationships
between attributes must be constructed in order to
generate queries or indices for hierarchical attributes.
We have used an object-oriented approach to construct
these hierarchies, which simplifies the manipulation of
attributes when constructing complex queries.

The DAG is comprised of four types of nodes, root
nodes, intermediate nodes, alias nodes, and duplicate-
name nodes. Root nodes are the starting points of the
DAG and the starting points of the scan operations.
Usually, these nodes are present only to provide a more
user-friendly structure to the DAG and have no
corresponding values in the database. Intermediate
nodes are guaranteed to have a predecessor. In most
cases, these nodes have associated values in the
database.

Alias nodes were introduced to make management
of the name space simpler. Nomenclature in
microbiology is dynamic. Alias nodes provide a means
to link old terminology with new terminology.
Furthermore, aliases can also be used when a single
value in the database is recorded under multiple
attribute names. This provides an embedded thesaurus
for the taxonomy. Duplicate-name nodes are distinct
nodes in the DAG that share the same name. The DAG,
in general, is built under the unique name assumption,
which means that every node has a unique name.
However, the entire name space is not unique and it is
necessary to provide a mechanism to differentiate nodes
with the same name. This can be accomplished by
specifying the direct predecessors of the nodes in
question.

The data structure has the following declaration:
class Node : public Persistent_Object {
 public:
 String name; // Node name
 Int node_type; // Node type: alias, root, etc.

 Node **successors; // List of child nodes
 Node **constraints; // List of constraining nodes
 Void insert_successor(Int ID); //build DAG
 String generate_query();
 Int *generate_index();}
class Node_with_Value : public Node {
 public:
 String attribute; // Name of attribute
 String value; // Value in database
 Int value_type; // Data type
 Iptr Index_Pointer;} // Indices of all other like

// records in the database

The information stored in the Node class defines the
hierarchical structure of the domain for an attribute. The
Node_with_Value class extends the Node class. This
class extension applies to attributes that occur in the
database and specifies the format of the node in the
database. This extension was made because there are
nodes in the hierarchy, which are needed to build a
meaningful hierarchy of attributes, but do not have
associated values in the database. An example is the
family of Enterobacteriaceae. Many isolates are
Enterobacteiaceae but none are reported simply as
"Enterobacteriaceae".

Operations
The following operations are defined for the Node

data structure:
Instance retrieves all the direct instances of an attribute
from the database.
Successor retrieves the successor-list.
Transitive_Successor returns all sub-categories
directly or indirectly connected to an attribute by the
directed links.
Constraint retrieves the constraint-list of an attribute.
Transitive_Instance is a combination of the transitive
successor operation and the instance operation. In the
first step, the set of all successor nodes is ascertained. In
the next step, all instances of these attributes are
gathered.

Programming Methods
There are two main methods that were the focus of

our performance study. Generate_query generates
queries from the user interface. Generate_index creates
an index in order to increase performance.

Generate_query. The Generate_query method uses
a simple language that we have previously described13

to generate SQL queries from high-level expressions
formulated by the user. The user selects attributes
from a graphical representation of the hierarchy by
selecting individual nodes or alternatively, by selecting
a node and all its transitive successors (see Figure 1).
These operations generate SQL queries typified by

(single node selection) SELECT * FROM PatientData
WHERE Organism = ’Escherichia species’ or
(Transitive node selection) SELECT * FROM
PatientData WHERE Organism IN (’Escherichia
species’,’ Escherichia coli’,’Escherichia coli
O157:H7’). Arbitrarily complex queries may be
generated by disjunction and conjunction of basic
queries such as these.

Several optimizations have been implemented. The
most important of these eliminates redundant
information. If multiple branches of the DAG are
selected in a conjunctive statement, then only the
intersection of the branches has to be considered. The
number of times a node is selected in a complex query
is recorded. In the conjunctive case, if B branches of
the DAG are selected, all nodes that were selected B or
more times are appended to the query string. In
disjunctive queries a node is included in the query
string if it has been selected at least once. Aggregate
functions have also been implemented in a manner
similar to that used in refined Data Cube operations.9

Generate_index. Because of the structure of the
attribute hierarchies, indexing schemes described in the
literature5,9,11,14 were unacceptable, Thus, we developed
a novel indexing method for speeding data retrieval
from large databases. We use two data structures to
generate an initial index. First we extended the
Node_with_Value class, as shown in the Data Structure
section, by adding the variable Index_Pointer.

Index_Pointer is actually an array of pointers into
the database. Each pointer in this array points to a
unique occurrence of a specified attribute value in the
database. The arrays for each unique attribute are
initialized statically to improve the program
initialization time. The attribute index arrays are of size
(1 + the number of records). The index arrays for each
attribute are stored as metadata that list the attribute
name, the number of records for that attribute, and the
list of indices. This format enables easy updates of the
metadata.

We also added to the application a database-index
array of size (1 + the total number of records in the
database). Entries in this array point to one record in
the database and store the number of times a record has
been included in various parts of a query. A
conjunction-constraint variable is used to track the
number of conjunctions and the number of unique
constraints. This number is used to decide on the
inclusion of a given attribute in a conjunctive query.
For inclusion, the value stored in the array must be
equal to the number of conjunctions and constraints
encountered. For a disjunction, we build the union and
then remove all duplicates. The solution is the set of all
non-zero indices in the database-index array.

Figure 1. Java implementation of query tool.

Constraints
Queries involving antibiotic susceptibility of

microorganisms impose an additional complication on
the query formulation process. In the laboratory,
antibiotic susceptibility is measured in terms of the
minimal concentration of an antibiotic necessary to
inhibit bacterial growth (MIC). However, clinicians
simply want to know the bottom line. Is the organism
susceptible or resistant to the antibiotic in question?
MIC values must therefore be translated into terms of
susceptibility and resistance by setting threshold values
of MIC at which an antibiotic can be considered
useful. In practice the procedure is complicated by a
need to use different thresholds for different groups of
bacteria.

Because MIC thresholds depend on the
microorganism in question, antibiotic nodes will be
multivalued. In order to restrict the name space of
queries produced by these multivalued attributes
constraints have to be imposed. We store the MIC
values for antibiotics and use constraints to narrow the
search to the particular groups of organisms for that
particular antibiotic. This enables us to give each
attribute multiple dimensions and hide some of the
complex query generation details from the user. The
constraints can be specified as being conjunctive or
disjunctive. The constraints can also be specified for
individual attributes or groups of attributes. Each node
can have a list of constraints associated with that
attribute, which allows for n additional dimensions that
could be used to characterize that attribute.

Implementation
Java was selected as the implementation language
because of portability and functionality. An object-
oriented language was needed to manage and store the
metadata used to build the DAGs. We also wanted the
flexibility to implement this project both as an
application and an applet to be used on the Internet.
The Java application interfaces to a database using
Microsoft (MS) data access objects (DAO 3.5), giving
the application the ability to open databases and
manipulate records.

The ontologies are stored in a database in the form
of tables, which describe the hierarchy. The Java
application reads in this information and produces a
preorder DAG data structure for each table. This
object contains the name of the database attribute
along with multiple modifiers including, the long
name, list of children nodes, list of constraining nodes,
some status flags, etc. This structure is used to
construct the graphical hierarchy displayed using
Java's AWT class (Figure 1).

The user is able to formulate queries by clicking on
appropriate nodes in the graphical representation of the
hierarchy and by entering additional conditions in the
dialogue boxes provided. The SQL query generated is
displayed in a window for any further editing.

DISCUSSION
The evaluation of this tool was based on ease of use

compared to designing the query by hand,
completeness of the query, and speed. The user would

have to include over 300 values to design the patient
population query discussed in the Motivating Example
section. Selecting one value from two attribute
hierarchies (Location and Microorganisms) is much
easier. There are no organisms or locations in the
database that do not appear in the associated hierarchy.
This guarantees that the query is complete.

Figure 2. Patient population query performance
comparison.

Finally, experiments showed that the indexing
scheme offered increasing gains in the retrieval speed
as the database size increased as compared with the
SQL query strings. As shown in Figure 2, retrieval
from a database of 1.1 million records with 35 fields
was 100 times faster with indexing than just using SQL
strings.

CONCLUSION AND FUTURE WORK
This paper proposes a scheme in which an attribute

hierarchy defined by metadata is used to, in effect,
support the dynamic creation of new derived attributes.
We demonstrated the usefulness of these ideas by
implementing a tool that supports the formulation of
complex queries that involve attributes with internal
structure described by complex hierarchies. In our
approach, these hierarchies are maintained as metadata
in an object-oriented fashion using a DAG. The
information stored in the object hierarchy can then be
used to create complex queries. The system produced
correct SQL query strings for a variety of medical
studies.

This system is currently used by microbiologists
and infectious disease specialists at Johns Hopkins
Hospital to assess changes in patterns of antibiotic
susceptibility and to formulate strategies for empiric
antibiotic coverage of neutropenic oncology patients.
We are also targeting several other medical application
domains whose data elements are characterized by
complex taxonomies with dynamically changing
terminology and multiple ways of organizing the name
space.

References
1. UMLS. "Unified Medical Language System".
National Library of Medicine, 1994

2. S. Chaudhri and Kyuseok Shin. Including Group-By
in query Optimization. In Proceedings of the 20th

International Conference on Very Large Databases
(VLDB), pp. 354-366, Santiago, Chile, 1994.
3. A. Gupta, V. Harinarayan, and D. Quass. Aggregate-
Query Processing in Data Warehousing Environments.
In Proceedings of the 21st Conference on Very Large
Databases (VLDB), pp. 358-369, 1995.
4. Karl Heiny Hess. Very Large Databases in a
Commercial Application Environment. . In
Proceedings of the 22nd Conference on Very Large
Databases (VLDB), 1996.
5. Jim Gray, Adam Bosworth, Andrew Layman,
Hamid Pirahesh: Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-
Total. In Proceedings of the 12th International
Conference on Data Engineering (ICDE), pp. 152-159,
1996.
6. Sameet Agarwal, Rakesh Agrawal, Prasad
Deshpande, Ashish Gupta, Jeffrey F. Naughton, Raghu
Ramakrishnan, Sunita Sarawagi: On the Computation
of Multidimensional Aggregates. In Proceedings of the
22nd Conference on Very Large Databases (VLDB),:
pp. 506-521,1996.
7. Elena Baralis, Stefano Paraboschi, Ernest Teniente.
Materialized Views Selection in a Multidimensional
Database. In Proceedings of the 23rd Conference on
Very Large Databases (VLDB), pp. 156-165, 1997.
8. Latha S. Colby, Akira Kawaguchi, Daniel F.
Liewen, Inderpal Singh Mumick, Kenneth A. Ross.
Supporting Multiple View Maintenance Policies, In
Proceedings of SIGMOD ’97, pp. 405-416, 1997.
9. Venky Harinarayan, Anand Rajaraman, Jeffrey D.
Ullman, Implementing Data Cubes Efficiently, In
proceedings of SIGMOD ’96, pp. 205-216, 1996.
10. Nick Roussopoulos, Yannis Kotidis, and Mema
Roussopoulos. Cubetree: Organization of and Bulk
Incremental Updates on the Data Cube, In Proceedings
of SIGMOD ’97, 1997.
11. T. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+ tree: a dynamic index for multi-dimensional
objects. In Proceedings of the 13th Conference on Very
Large Databases (VLDB), 1987.
12. Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. McGraw
Hill, pp. 86-91, 1990
13. Kilian Stoffel, Joel Saltz, Jim Hendler, Jim Dick,
William Merz and Robert Miller. Semantic Indexing
for Complex Patient Grouping. In Proceedings of the
Annual Conference of the American Medical
Informatics Association, 1997.
14. Timos K. Sellis, Nick Roussopoulos, Christos
Faloutsos. Multidimensional Access Methods: Trees
Have Grown Everywhere. In Proceedings of the 23rd

Conference on Very Large Databases (VLDB), pp. 13-
14, 1997.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

36K 73K 147K 368K 515K 736K 1104K

Query Size

Query String

Query Index

