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Abstract

This paper describes a method of dense probabilistic encryption. Previous

probabilistic encryption methods require large numbers of random bits and

produce large amounts of ciphertext for the encryption of each bit of plaintext.

This paper develops a method of probabilistic encryption in which the ratio

of ciphertext text size to plaintext size and the proportion of random bits to

plaintext can both be made arbitrarily close to one. The methods described

here have applications which are not in any apparent way possible with previous

methods. These applications include simple and e�cient protocols for non-

interactive veri�able secret sharing and a method for conducting practical and

veri�able secret-ballot elections.

1 Introduction

In 1984, Goldwasser and Micali ([GoMi84]) introduced the notion of probabilistic

encryption. A probabilistic encryption method allows one to encrypt a �xed value in

many di�erent ways. Thus, even when given the encryption of a value and details

of the encryption mechanism (including any encryption key), it is not necessarily

possible for an adversary to determine whether or not a given ciphertext represents

the encryption of a particular value.

Goldwasser and Micali develop a bit encryption function based on the number

theoretic problem of quadratic residuosity. Their method has many useful properties,

but there is one major drawback: for a given security parameter N , the probabilis-

tic encryption of each bit is N bits long, requires N random bits, and uses several

operations on N bit integers.

This work describes a dense method of probabilistic encryption which, unlike the

method of Goldwasser and Micali, is capable of encrypting more than one bit at

a time. For any given k and security parameter N , this new method allows the

encryption of k bits of information into an N + k bit ciphertext using N + k random



bits and operations on N + k bit integers. Thus, for any desired security parameter

N , the ratio of plaintext size to ciphertext size (as well as to random bits required or

to the size of the integers computed upon) can be made arbitrarily close to one.

There are also some applications where one bit at a time probabilistic encryption

is unsuitable regardless of e�ciency. This paper describes two such applications {

non-interactive veri�able secret sharing and a method for obtaining veri�able secret-

ballot elections { in which the dense probabilistic encryption method described here

can be used while there is no apparent way of developing similar solutions with bitwise

probabilistic encryption.

2 The Encryption Method

This section will show how to generate \one-to-many" functions (or randomized func-

tions) E

r

for any odd integer r with the following basic properties.

� Given a messageM 2 Z

r

= f0; 1; 2; : : : ; r� 1g, it is computationally easy to for

any participant to form an encryption z 2 E

r

(M).

� The decryption of any z 2 E

r

(M) is unique { that is, if M

1

;M

2
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r

with
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2

, then E

r
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) \ E
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) = ;; and this unique decryption can be

computed by the creator of E

r

.

� Under a suitable cryptographic assumption it is \infeasible" to compute M

(or even gain so much as an inverse polynomial advantage at computing any

predicate on M) given simply the details of the randomized function E

r

and an

encryption z 2 E

r

(M).

In addition to these properties, several other useful properties will be achieved.

� Given a message M 2 Z

r

any participant can generate a z 2 E

r

(M) together

with a certi�cate u which can be used to prove to any other participant(s) that

z 2 E

r

(M).

� Given an encryption z 2 E

r

(M), it is possible for the creator of E

r

to pro-

duce a certi�cate u which is uniformly selected from the set of all possible user

certi�cates and can, likewise, be used to prove that z 2 E

r

(M).

� There are easily (and universally) computable functions \
" and \�" which

have the property that whenever z
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2.1 Encryption

A randomized encryption function E

r

satisfying the above properties can be developed

as follows.

1. Select two \large" primes p and q such that r divides (p � 1), r and (p� 1)=r

are relatively prime, and r and (q � 1) are relatively prime. (Such primes are

easy to generate by searching among appropriate arithmetic sequences.) Form

n = pq.

2. Select y 2 Z

�

n

= fx 2 Z

n

: gcd(x; n) = 1g such that y

(p�1)(q�1)=r

mod n 6= 1.

3. Reveal n and y. The randomized encryption function E

r

is de�ned by the set

E

r

(M) = fy

M

u

r

mod n : u 2 Z

�

n

g.

It is now a trivial matter for a user given a message M 2 Z

r

and randomized

function E

r

to (by randomly and uniformly selecting u 2 Z

�

n

) generate a uniform

element z = (y

M

u

r

mod n) 2 E

r

(M). Furthermore, this u serves as a certi�cate to

prove that z 2 E

r

(M).

To see that decryptions are unique, observe that y

M
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M
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implies that y
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r

mod n. By the construction of y, this, in

turn, implies that M

1

mod r = M

2

mod r. It then follows immediately that the sets

E

r

(0); E

r

(1); E

r

(2); : : : ; E

r

(r � 1) form a partition of Z

�

n

, and this gives the unique

decryption property. Also, the two functions given by z

1


 z

2

= (z

1

� z

2

) mod n and

z
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 z

2

= (z

1

� z

�1

2

) mod n can easily be seen to satisfy the homomorphic properties

described above.

In contrast, the original Goldwasser-Micali probabilistic encryption is essentially

the special case of this method in which r = 2. However, since it is impossible for

r = 2 to be relatively prime to q � 1 when q is a large prime, the Goldwasser-Micali

system must restrict consideration to those elements of Z

�

n

with a Jacobi symbol of

+1. There is no need for such a restriction in the dense system described here.

2.2 Decryption

Security of decryption is based on the cryptographic assumption that deciding higher

residuosity is computationally di�cult: given z, r, and n of unknown factorization,

there is no known polynomial time algorithm to determine whether or not there exists

an x such that z = x

r

mod n.

In the case where n = pq is of the form described above and the prime factors p

and q are known, the process of deciding higher residuosity is e�ciently computable

by the following simple rule:

z 2 E

r

(0) if and only if z

(p�1)(q�1)=r

mod n = 1:



Thus, if r is small, one can simply decrypt a message z by determining (exhaustively)

the smallest non-negative integer m such that (y

�m

z mod n) 2 E

r

(0).

This process can be further accelerated by pre-processing. For each M 2 Z

r

, a

canonical value T

M

can be computed as

T

M

= y

M(p�1)(q�1)=r

mod n:

It can be shown that for every z 2 E

r

(M), it is true that z

(p�1)(q�1)=r

mod n = T

M

.

Thus, the r (distinct) values T

0

; T

1

; : : : ; T

r�1

can be pre-computed, and any encrypted

value z can be decrypted by a table look-up on the value z

(p�1)(q�1)=r

mod n.

If r is of moderate size, a combination of the two previous methods can be used

to bring the storage, pre-computation time, and decryption time all to O(

p

r). The

idea (sometimes known as \big-step little-step" is to pre-compute T

M

for M � k

p

r

as k ranges from 1 to

p

r. These values serve as milestones which are only about

p

r

steps apart. Given a z of unknown decryption, one can �nd the smallest non-negative

integer m for which the T

M

corresponding to y

�m

z has been pre-computed. This m

is bounded above by

p

r and can be regarded as an o�set from the pre-computed

decryption value T

M

. The decryption of such a z is therefore the value M +m.

Finally, even if r is large, decryption is e�cient provided that r contains no large

prime factors. An extreme case in which decryption is very e�cient is when r is of the

form r = 3

k

for some positive integer k. In this case, the decryption of a value z can

be computed in ternary notation. First, the low order \trit" t

k

of the decryption of z

is the unique value t

k

2 f0; 1; 2g such that (y

�t

k

z)

(p�1)(q�1)=3

mod n = 1. Once t

k

has

been computed, the next-to-last trit t

k�1

2 f0; 1; 2g is computed as the unique value

such that (y

�t

k

�3t

k�1

z)

(p�1)(q�1)=3

2

mod n = 1. Next, t

k�2

2 f0; 1; 2g is computed as

the unique value such that (y

�t

k

�3t

k�1

�3

2

t

k�2

z)

(p�1)(q�1)=3

3

mod n = 1. This process

is continued until the ternary representation ht

1

; t

2

; : : : ; t

k

i of the decryption of z is

computed.

3 Some Applications

Besides the advantages of greater density in probabilistic encryption, there are some

tasks which can be performed with the methods described here which cannot, in any

apparent way, be done by any other means whatsoever.

3.1 Veri�able Secret Sharing

The notion of secret sharing was introduced by Shamir in [Sham79]. Shamir de�nes

threshold schemes to be methods of dividing a secret value s into shares such that



(1) Any subset of shares which exceeds a predetermined size is su�cient to recon-

struct the secret.

(2) Any smaller subset of shares gives no information (in an information theoretic

sense) about the secret.

Shamir described a method of secret sharing based on polynomial interpolation

and evaluation.

In 1985, Chor, Goldwasser, Micali, and Awerbach ([CGMA85]) described the prob-

lem of veri�able secret sharing. The problem here is to develop a protocol for secret

sharing such that when it is complete each shareholder is con�dent that its share

is meaningful. (Note that a dishonest secret sharer could give some shareholders

worthless information rather than actual shares.)

Chor, Goldwasser, Micali, and Awerbach give a protocol which achieves veri�able

secret sharing. However, their method is exponential in the number of shareholders.

The application of the encryption method described in this paper to the problem

of veri�able secret sharing was �rst given in [Bena86] in which interactive proof tech-

niques are also required. Feldman ([Feld87]), Ben-Or, Goldwasser, and Wigderson

([BGW88]), Rabin ([Rabi88]), and Rabin and Ben-Or ([RaBO89]) later expanded

upon this approach.

The basic technique used in all of these methods is to perform computations on

shares of secrets without �rst combining the shares to form the secrets. This is easily

possible if the shares are encrypted using the dense probabilistic encryption method

given. Computations on shares can be performed using the homomorphism properties

described in the previous section.

One of the simplest of these veri�able secret sharing methods is formed by com-

bining the encryption method described herein with Shamir's polynomial based secret

sharing ([Sham79]) and the ideas of Feldman's non-interactive veri�able secret sharing

([Feld87]).

To distribute shares of a secret value s 2 Z

r

(r must be prime) to m participants

such that any k of the m can determine the secret value, a randomized encryption

function E

r

is formed by the \dealer" of the secret. The dealer then randomly selects

values a

1

; a

2

; : : : ; a

k�1

2 Z

r

and forms the polynomial

P (x) = a

k�1

x

k�1

+ a

k�2

x

k�2

+ � � � + a

2

x

2

+ a

1

x+ a

0

where the constant coe�cient a

0

is given by a

0

= s. The dealer then forms m shares

s

i

= P (i) mod n for 1 � i � m and privately distributes each share s

i

to the i

th

shareholder. Next, the dealer computes encryptions z

j

2 E

r

(a

j

) of the coe�cients a

j

for 0 � j < k and publicly reveals these encryptions. It is now possible for any and



all participants to (by using the homomorphism properties) compute

w

i

=

0

@

k�1

Y

j=0

z

i

j

j

1

A

mod n:

Since z

j

2 E

r

(a

j

), the additive homomorphism property of the cryptosystem

implies that (z

j

)

�

2 E

r

(a

j

�) for any scalar �. In particular, z

i

j

j

2 E

r

(a

j

i

j

). Since the

share s

i

= P (i) mod n =

�

Q

k�1

j=0

a

j

i

j

�

mod n, the additive homomorphism property

also implies that each w

i

2 E

r

(s

i

). Thus, each w

i

is a publicly computable encryption

of the share s

i

. The dealer can then privately distribute to the i

th

shareholder a

certi�cate u

i

to prove that w

i

2 E

r

(s

i

). It is thereby impossible for the dealer to

convince a shareholder that its share is legitimate when it is not. The secret value

s can now be reconstructed at any subsequent time by any k of the shareholders.

They need only pool their shares to interpolate the polynomial P (x). The constant

coe�cient P (0) is, by de�nition, the secret. This method has the added advantage

that since shareholders have certi�cates of their shares, they cannot convincingly lie

to each other about the values of their shares. Thus, dishonest shareholders cannot

disrupt the reconstruction of the secret.

One �nal observation is that the dealer need not even be the creator of the ran-

domized encryption function E

r

. Careful examination of the process shows that the

share certi�cates u

i

, can be computed directly and simply from the random values

the dealer chose to encrypt the coe�cients. Hence, the dealer need not even be able

to decrypt E

r

to engage in this protocol.

It should be noted here that it is simply not possible to use ordinary Goldwasser-

Micali probabilistic bit encryption for this application. With Shamir's method of

secret sharing, the space from which secret and share values are chosen must be of a

size which is prime and greater than the number of shareholders. Since probabilistic

encryption methods will be used to encrypt shares, the Goldwasser-Micali bit encryp-

tion method is inadequate. (Note that segmenting share values bit by bit does not

work since the Shamir scheme can only be applied when the number of shareholders

is smaller than the secret/share space | which in this case is 2.)

3.2 Veri�able Secret-Ballot Elections

The problem of veri�able secret-ballot elections is de�ned in [Bena87], and a solution

is presented there which depends strongly on the dense probabilistic encryption de-

scribed here. The general problem is quite complex and its solution requires many

techniques which are not addressed here. Instead of trying to present here a complete

solution to the veri�able secret-ballot election problem, an overview will be given

which demonstrates the use of dense probabilistic encryption.



The oversimpli�ed scheme presented here has many omissions and should not be

read as a claim of a secure method of holding veri�able secret-ballot elections. The

reader is referred to [Bena87] for a complete treatment.

The scheme described in this section is centralized. A central government is

assumed to exist. The government prepares a dense probabilistic encryption function

E

r

as described herein with r greater than the number of eligible voters and publicly

reveals E

r

.

Each voter selects either a random v

i

2 E

r

(0) to denote a \no vote" or a random

v

i

2 E

r

(1) to denotes a \yes vote". Each voter then publicly releases its v

i

. By the

homomorphism properties, W = (

Q

v

i

) mod n is an encryption of the sum of the

unencrypted values. In this case, therefore, W is an encryption of the total number

of yes votes cast by voters. Thus, the central government need only decrypt this one

value W to determine the tally of the election; and by providing a certi�cate u of

this decryption, the government can prove to all observers that the claimed tally is

accurate.

There are, of course, many problems with this scheme. But this is the fundamental

idea used in [CoFi85], [BeYu86], [Cohe86], [Bena87], and [BeTu94] to enable a variety

of practical veri�able election schemes.

4 Conclusions

This paper has described a method of dense probabilistic encryption which has many

similarities to, but many advantages over, the original method of probabilistic en-

cryption introduced by Goldwasser and Micali. These advantages also apply relative

to all previous methods of probabilistic encryption.

Many variations of this method are possible depending on the users' willingness to

depend upon stronger assumptions in exchange for more e�cient decryption. Applica-

tions of this method have also been given in which traditional probabilistic encryption

methods are not just less e�cient, but are instead unusable.
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