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ABSTRACT

In this paper we present a new approach for estimating tlee-int
polation parameters of language models (LM) which are used a
classifiers. With the classical maximum likelihood (ML) iest-
tion theoretically one needs to have a huge amount of datthand
fundamental density assumption has to be correct. Usuaéyod
these conditions is violated, so different optimizatioocht&ques
like maximum mutual information (MMI) and minimum classifi-
cation error (MCE) can be used instead, where the inteiipalat
parameters are not optimized on its own but in consideraifon
all models together. In this paper we present how MCE and MMI
techniques can be applied to two different kind of interfiota
strategies: the linear interpolation, which is the staddaterpola-
tion method and the rational interpolation. We compare MIGE
and MMI on the German part of théerbmobil corpus, where we
get a reduction of 3% of classification error when discrirtiirg
between 18 dialog act classes.

1. INTRODUCTION
Language models (LM) are very important for automatic sheec
recognition systems; they are widely used in word recogsie
estimate the probability of a word chain in order to redueerthm-
ber of possible paths in forward decoding or to find the bestiwo
chain in a word hypotheses graph or lattice. If LM are trained
class dependent and run in parallel, they can serve asfidessi
for tasks like topic spotting, language identification aralaly act
(DA) classification. LM work on every kind of symbol sequence
with a finite vocabulary, e.g. word sequences, phoneme segag
or codebook class sequences; they are thus applicable todoan
mains, even if there is no word information available.

We use LM classifiers in the task of topic spotting on the
Switchboard-corpus with codebook classes or phonemes as ba-
sic symbol [9]. Furthermore, we perform language identiitca
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our LM classifiers [4]. Within the speech-to-speech tratitsia
project Verbmobil [2] we use language models to classify and
segment incoming turns in units of DA for the shallow proaegs
module which uses a template based translation as faleggrét
the deep linguistic analysis fails. DA are, e.g., “greetirfgon-
firmation of a date”, “suggestion of a place”. For our exp&nis
we use the 18 DA from the first phase\éérbmobil which were
defined based on their illocutionary force [5].

To address the problem of sparse data, often language mod-
els use interpolation strategies to get reliable perfogaagven
when there is not enough data available. The classical appro
is to have a certain kind of interpolation strategy and tarijze
the free interpolation parameters using maximum likelth¢dL)
estimation. According to [7] this method is optimal when the-
damental density assumption is valid and enough data ikabl&i
At least one of these conditions is violated, so we will ndttge
optimal classifier. In [1] maximum mutual information (MMg&)s-
timation was proposed as an alternative to ML estimation. |EIM
training tries to find the parameter set maximizing the agqrést
ori probability of training data, which tends to be more mwas
able since classification is usually performed by findingrtiuelel
with the highest a posteriori probability. Another nongraetric
approach is minimum classification error training, whidesrto
minimize a representation of error rate directly [6].

2. STOCHASTIC LANGUAGE MODELS

In most cases language models are used to calculate thebgroba
ity of a word sequencev = w'...w” in a given language or
context. We use oupolygram language modglsl] which are a
special kind ofstochastici-gram model to estimate the probabil-
ity of every kind ofsymbol sequencehere a symbol could be a
word, phoneme or a codebook class.

2.1. Maximum Likelihood Estimation

using codebook class sequences produced by one or more vecto

quantizer and decide for one language on the scores compyted
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Using polygrams the probability of the symbol sequence. . w”
can be approximated withid symbol history:
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With this historyv we can estimate the conditional probabilities
P(w | v) from a given training corpus simply by using the maxi-
mum likelihood (ML) estimation:

_ #(w)
#)

where#(-) denotes the frequency of its argument in the training
data. Of course, one would like to choose a large numbe¥ of
for the history length — the approximation made by a LM of leigh
order gets closer to the real probability. Unfortunatehg tbum-
ber of parameters to estimate increases exponentiallytidtkize
of N, and thus the ML estimates become far from being reliable
because of the limited training data.

A compromise with respect to this conflict between the model
context sizeV and the training data volume can be made by intro-
ducing a weighted interpolation scheme.

P*(w'|v) , With & =| wiv |,

2.2. Interpolation

The basic idea of applying interpolation methods is to falth
on the probability estimation of subsequences shorter khakn
example is thdinear interpolationwhich uses all subsequences up
to the lengthv [8] :
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The fraction1/L accounts for unseen sequences, wheie the
number of words known to the LM, and ensures that no proba-
bilities are set to zero. The interpolation coefficieats can be
estimated using thExpectation Maximization (EMjlgorithm on
a given validation set if we perform ML optimization.

Another interpolation method is thational interpolation[11];
it gives a higher weight to those-grams which have been seen
more frequently in the training set using a weighting fuoicgjx (v):

P(w|v) =Y g (v) P*(w|v).
k

With the weighting functiory, (v) defined as a hyperbolistic func-

tion R
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with thebias C' we obtain the formula
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The classification of an utterance is done by choosing the LM
which has the best a posteriori probability.

3. OPTIMIZATION METHODS

Before using the discriminative optimization techniques ésti-
mation of LM interpolation parameters we describe MMI anel th
MCE approaches in more detail.

3.1. Maximum Mutual Information Estimation

The MMI approach is a discriminative extension of the maximau
posteriori estimation (MAP)[1]. In contrast to ML the a pasori
probability of one model is maximized under the assumptia t
one pattern of this model was observed. The objective fandb
maximize is the following

I
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wherelT is the number of sentences in the validation &ets the
number of considered language moddps,is the a priori prob-
ability of model M, andq(:) refers to the correct model for the
sentencé. For MMIE the denominatoP (w;) is written as

I
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3.2. Minimum Classification Error

Another discriminative approach proposed in [3] is the mimin
classification error approach. It has been successfullg insthe
domain of estimation of HMM parameters e.g. in [10]. The ba-
sic idea is the functional representation of the error fiamobf the
classifier. It is based on thgigmoidfunction which is 1 for ev-
ery correctly classified phrase and 0 otherwise. Insteadeofeal
Sigmoid function an exponential approximation is used

1
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One slightly difference from the classical version apphofac the
MCE leads to the objective function which is to be constrddte
following way:

e Choose criteriory, (A, w;) which is the basic score for the
underlying classifier; in our researches we apply the Bayes
classifier which leads to

ga(A,wi) = —log P(w;| M) + log P(M,)
e For every phrase; find modelM.. (i) such that

r(i) = argmin gq(A, w;)
a#q(i)

The modelM, (i) is hence the model with the highest prob-
ability of observationw; but not the correct one.

¢ Build difference functiord with
5(A= wl) = Gr(i) (A= wl) — 9q(3) (A= wl)
e The probability to perform a correct classification of pleras

w; IS written as

1
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which tends to zero iP(w;|My(;)) € P(w;i|M, ;) and
to one if P(w;|My(;y) > P(w;i|M,(;)).



The overall objective function for MCE can be written as

R(A) = HR (A) = H m

which can be interpreted as the probability for no clasdifica
errors for the whole validation set. Supposed we use unif@rm
priori distribution P, this can be written as

I
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4. USING MCE AND MMI FOR LANGUAGE MODEL
INTERPOLATION

Estimation of the interpolation parameters as describsdétion 2
is done using th&eneral Probabilistic Descen@GPD)[6] algo-
rithm which implies the estimation of gradient vector foe thb-
jective function

20 = 2 4 Oy p(pt-D)y,

The value ofx is estimated using the standard Monte-Carlo algo-
rithm. Instead of optimizing of the interpolation paramets we
substitute them by} = (uF)? for the linear interpolation and by

(ut)?
PIA(THK
for the rational interpolation. This allows us to exclude tvo
stochastic conditions imposed on the weigkits

The element of the gradient vector for the MMI algorithm can b
transformed to
(Piwil)
R 2
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For both objective functions we need the derivations of tloeleh

related probabilitied, (w) andﬁ,,(wj |v) for the interpolation pa-
rametergu;. For the linear interpolation these are:

(ﬁt(uﬂ'\u));s - % (P;(wf|v) - ﬁt(uﬂ‘\u))
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Figure 1: High correlation of the objective function andagui-
tion rate on the validation set.

and

(Po(w)),

and for the rational interpolation:
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5. EXPERIMENTS AND RESULTS

Until now we tested the different optimization techniquesdata
from theVerbmobil corpus for the task DA classification. We use
a training set with 19795 phrases and a test set with 254Geéra
for the experiments with 18 DA classes with lexicon size dd@5
words. The validation set used for interpolation paramepi-
mization contains 1980 phrases which we excluded from tie-tr
ing set.

To get a feeling of the methods efficiency it is necessary to
know how the applied objective function fits the recognitrate
on the validation set during the iterations. In our experitaave
reached a high correlation of these two values for both apéim
tion methods (see Figure 1) which justifies the choice of ike d
criminative techniques we have made.

Furthermore it is remarkable that the monotone growth of the
objective function does not implicate the permanent imgnoent
of the recognition rate not even on the validation set. |ddbe
resulting gradient vector composes of gradient vectoredery
phrase of the validation set. This means that the generabiwap
ment of the recognition quality can be accompanied by thégbar
loss of the recognition rate owing those very phrases whizsti-g
ent direction has been suppressed by the majority of the set.
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Figure 2: Comparison of recognition rates for ML, MCE and MMI

estimations during interpolation process when usingarigg and
rational interpolation.

As it can be seen in Figure 2 the recognition rate on the tést se

of MMIE is after a small number of interpolation iteratiorissady

much better than for ML whereas recognition rates for MCE and

for ML are nearly the same. After 100 iterations we got a rédac

of error rate of more than 3 percent when comparing MMIE and
ML. Even MCE proved to be slightly better than ML. This makes
sense because MMI seems to be “more discriminative” than MCE

In fact: on each iteration step of MMI optimization every abe
from the validation set causes alteration of all modelsfaents
whereas with MCE only parameter of two modeté:{ andq(z))
are to be modified.

Comparing our different interpolation strategies for bojtti-
mization techniques the rational interpolation outperfeithe lin-

ear interpolation even if we use differentgram sizes (see Ta-

ble 1).

6. CONCLUSION AND FUTURE WORK

In [1] it was shown, that using discriminative optimizatitecth-
nigues for estimation of HMMs parameters improved recaogmit

rate. We applied MMI and the MCE techniques in order to es-
timate interpolation parameters of LM. We could show that di

criminative optimization techniques of interpolation ffents
improve recognition results for the 18 class problem in #mekt

of dialog act classification. The best results we achievedgus

the rational interpolation and MMI estimation which cuts ew

n linear rational
ML | MMI | MCE | ML | MMI | MCE

2| 63.3%| 66.7% | 66.5% | 66.3% | 67.6% | 66.9%

3| 636%| 66.9% | 66.4% | 66.6% | 67.2% | 66.8%

Table 1: Recognition rates for MMI, MCE and ML using linear
and rational interpolation for bi- and trigrams.
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we are going to test the discriminative techniques in othekg

like topic spotting on th&witchboard-corpus and language iden-

tification. We would like to extend the estimation technigjie
different interpolation strategies and to estimatertkgram prob-
abilities themself using discriminative methods.
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