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Abstract 
We describe the design of a Windows file-system directory 
service that ensures the persistence, integrity, privacy, 
syntactic legality, and case-insensitive uniqueness of the 
names it indexes.  Byzantine state replication provides 
persistence and integrity, and encryption imparts privacy.  
To enforce Windows’ baroque name syntax – including 
restrictions on allowable characters, on the terminal 
character, and on several specific names – we develop a 
cryptographic process, called “exclusive encryption,” that 
inherently excludes syntactically illegal names and that 
enables the exclusion of case-insensitively duplicate 
names without access to their plaintext.  This process 
excludes entire names by mapping the set of allowed 
strings to the set of all strings, excludes certain characters 
through an amended prefix encoding, excludes terminal 
characters through varying the prefix coding by character 
index, and supports case-insensitive comparison of names 
by extracting and encrypting case information separately.  
We also address the issues of hiding name-length 
information and access-authorization information, and we 
report a newly discovered problem with enforcing case-
insensitive uniqueness for Unicode names. 

1. Introduction 

This paper details the design of a Windows-compatible 
file-system directory service that provides data privacy, 
data integrity, and access control even if the servers that 
manage the directory are untrusted.  Our design uses 
encryption for protecting data privacy and Byzantine 
replication for protecting data integrity.  Although this 
basic approach is applicable to any type of generic data-
storage service, our directory service must additionally 
maintain the syntactic legality and case-insensitive 
uniqueness of filenames, even though it cannot have 
access to the plaintext of these names.  We address these 
requirements by constructing an encryption process that is 
inherently incapable of encrypting syntactically illegal 
names.  More precisely, the decryption process will 
always produce a syntactically legal plaintext name, given 
any arbitrary bit string as an encrypted input, and the 
encryption process is simply the inverse of this procedure.  
Furthermore, the encryption provides a one-to-one 
mapping from de-cased legal names to their encrypted 
representations, so directory servers can verify the case-
insensitive uniqueness of names within each directory. 

The context for this work is Farsite [1], a secure, 
scalable file system that logically functions as a 
centralized file server but that is physically distributed 
among a network of untrusted desktop workstations.  For 
storing both file data and directory metadata, Farsite uses 
replication to provide reliability and integrity despite the 
failure or compromise of a subset of replica holders, and it 
uses encryption to provide privacy.  Files and directories 
have very different properties, so different replication and 
encryption techniques are applicable to each.  Since files 
are large, they cannot afford a high degree of replication, 
but since they are opaque to the system, they can be 
protected by conventional encryption and a cryptographic 
integrity check.  By contrast, directory metadata is 
relatively small, allowing a greater degree of replication, 
but it needs to be managed by the system.  To facilitate 
this management, Farsite uses Byzantine state replication 
[9], which preserves the integrity of any arbitrary 
sequence of operations on the replicated data, as long as 
strictly fewer than one third of the replica-holders are 
faulty or compromised [23]. 

A file system’s directory service provides a named 
index of files, organized into a hierarchy of directories.  
Each directory contains a list of entries, and each entry 
includes a locally unique name and a reference to a file or 
another directory.  Associated with each directory is list of 
readers, who are authorized to read entry names; a list of 
writers, who are authorized to add or modify entry names; 
and one owner, who is authorized to change other users’ 
access authorization.  A secure directory service must 
provide the following access-control semantics: 
• Only a reader can read entry names. 
• Only a writer can add or modify entry names. 
• Only the owner can grant or revoke read/write access. 
These access restrictions must apply not only to other 
users in the system, but also to the directory service itself.  
A compromised directory server should not be able to read 
entry names, add or modify entry names, or grant or 
revoke read/write authorization. 

In addition to access control, we need to maintain the 
following correctness properties: 
• No correctly functioning client will ever see a 

syntactically illegal name in a directory. 
• No correctly functioning client will ever see two 

identical names in the same directory. 
• No two correctly functioning clients will ever see 

different views of the same directory. 



 

Windows’ particular syntactic restrictions on directory 
entry names are as follows [28]: 
• A name may not be null. 
• A name may not contain any control characters (those 

with Unicode value less than 32). 
• A name may not contain any of the following reserved 

characters:  " * / : < > ? \ | 
• A name may not end with a space or a period. 
• A name may not match any of the following reserved 

strings (where n is any decimal digit): AUX, COMn, 
CON, CONIN$, CONOUT$, LPTn, NUL, or PRN. 

Furthermore, for purposes of determining whether two 
names are identical, character case is ignored. 

The above properties would be straightforward for a 
directory service to enforce if it could see the names of the 
directory entries.  It is far more problematic to address the 
general case in which the servers are not authorized 
readers of the directories they maintain.  Our solution is a 
cryptographic process we call “exclusive encryption” 
because it inherently excludes syntactically illegal names 
and because it enables the exclusion of duplicate names 
without access to their plaintext.  This process employs 
several techniques: 
• name mapping to exclude reserved strings 
• a procedure for separating out case information 
• encoding to exclude null names, control characters, 

reserved characters, and disallowed terminal characters 
• a technique for modifying any block cipher to make it 

surjective for arbitrary-length strings 
These techniques, which could be beneficial in other 

applications besides our secure directory service, are 
detailed in § 3, and they are combined into the full 
exclusive encryption process in § 4.  In § 5 and § 6, we 
discuss other issues and related work before concluding in 
§ 7.  But first, the following section presents the 
architecture and design of the secure directory service for 
which exclusive encryption was developed, illustrating 
how we can satisfy both the access-control semantics and 
the correctness properties listed above. 

2. Secure directory service design 

To more clearly highlight the challenges we face in our 
design, we reframe the above-described access-control and 
correctness requirements as six problems that need to be 
solved: 

1. preventing an unauthorized user from reading 
directory entry names 

2. preventing an unauthorized user from modifying a 
directory 

3. preventing a server from reading directory entry 
names 

4. preventing a server from making an unauthorized 
directory modification 

5. preventing an authorized writer from incorrectly 
modifying a directory 

6. preventing the authorized owner from incorrectly 
modifying a directory 

A conventional directory service running on trusted 
servers can readily address problems 1 and 2 by 
authenticating and mediating all user requests.  Problem 3 
can be addressed by encrypting directory entry names and 
not allowing the server access to the encryption key.  
Problem 4 can be addressed through the technique of 
Byzantine fault-tolerance [9], a general and powerful 
mechanism for constructing replicated state machines that 
can tolerate arbitrary behavior by any subset of strictly 
fewer than one third of the replicas.  Solutions to problems 
5 and 6 – which don’t revive the first four problems – are 
the main contributions of the present paper. 

Figure 1 illustrates the architecture of our system.  
Directory servers are organized into Byzantine-fault-
tolerant server groups of size S, which can tolerate 
T = (S – 1) / 3 misbehaving servers [23].   All servers in 
a group maintain identical directory-state information.  As 
the group receives requests from clients, the servers within 
the group collectively assign an operation number to each 
request using a Byzantine agreement algorithm, which 
guarantees that if no more than T of the servers are faulty, 
all correct servers will agree on an order in which to 
process the received requests [9].  When a server is 
prepared to begin a transactional state update, it informs 
all other servers in the group of its readiness.  Once a 
server learns of at least 2 T other servers that are ready as 
well, it commits its persistent state update.  Each operation 
performable by a server group must be defined to have a 
deterministic effect on the replicated directory state.  This 
combination of consistent ordering of requests, two-phase 
supermajority commit, and deterministic operation ensures 
that all correct servers within the group maintain 
consistent copies of the shared state [9]. 

When each server completes an operation, it sends a 
reply to the requesting client.  By hypothesis, no more 
than T servers in each group are faulty, so a client that 
receives T + 1 matching replies can be confident that the 
reply content is genuine.  Our design employs the highly 
efficient Castro-Liskov protocol [9] for its Byzantine state 
replication, which, due to its complexity and extensive 
description elsewhere [9, 10, 11], we do not describe 
further herein.  The interested reader can find a wealth of 
information on Byzantine fault-tolerance [8, 12, 17, 23] 
and replicated state machines [22, 35] in the literature. 

 

Figure 1. Directory service architecture (S = 4, T = 1) 
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For the remainder of this paper, we simply assume that 
the Byzantine server group acts as a single server that can 
be trusted to perform the requests it receives.  However, 
we do not assume that it is safe to allow the server group 
to view or directly modify user-sensitive data, since a 
single compromised server could inappropriately disclose 
information. 

Each directory has an associated symmetric encryption 
key that is used for encrypting the directory’s name 
information.  This directory key is not available (in an 
unencrypted form) to the servers that maintain the 
directory metadata.  Figure 2 illustrates the state that a 
server maintains for each directory, which has four 
components: 
• a list of directory entries 
• an access control list (ACL) of access control entries 

(ACEs) for authorized readers and writers 
• a distinguished access control entry for the owner 
• a one-way hash of the directory key 
Each directory entry contains the entry name encrypted 
with the directory key (using the exclusive encryption 
process described in § 4) and a reference to the file or 
directory associated with that name.  Each access control 
entry contains a user’s public key, a copy of the directory 
key encrypted with the user’s public key, and a bit 
indicating whether the user has write authorization.  The 
owner is implicitly a writer, so the distinguished access 
control entry for the owner does not include a write-
authorization bit. 

Definition 1:  An authorized reader of a directory is a 
user for which the directory state includes an ACE that (a) 
contains the user’s public key and (b) contains a ciphertext 
value that, when decrypted with the user’s private key and 
hashed, yields the directory key hash value stored in the 
directory state. 

Definition 2:  An authorized writer of a directory is a user 
for which the directory state includes an ACE that either 
(a) contains the user’s public key and has the write-
authorization bit set or (b) contains the user’s public key 
and is the distinguished owner ACE. 

Definition 3:  The owner of a directory is the user for 
which the distinguished owner ACE in the directory state 
contains the user’s public key. 

We illustrate the use of the directory state by detailing 
the steps involved in a standard set of directory operations:  
creating a new directory; adding and removing read/write 
access; reading and listing directory entries; and creating, 
renaming, and deleting entries. 

2.1. Creating a new directory 

Olivia, an authorized writer of directory “foo”, creates 
a subdirectory of “foo” with the name “bar” by sending 
the server group a create entry message, which is handled 
as described in § 2.5.  If the creation succeeds, Olivia 
randomly chooses a new symmetric encryption key for the 
directory, encrypts the directory key with her own public 
key, and computes a one-way hash of the directory key.  
She then sends her public key, the encrypted directory 
key, and the key hash to the server group, which uses 
these values to initialize the owner ACE and the directory 
key hash.  At this point, the directory contains no entries, 
and the ACL contains only the owner ACE. 

2.2. Owner operation: add reader/writer 

Olivia can make Rita an authorized reader of directory 
“bar” by encrypting the directory key with Rita’s public 
key and sending Rita’s public key and encrypted directory 
key to the server group, as part of an add reader message 
that she signs with her own private key.  (If Olivia has 
forgotten the directory key, she can retrieve her own ACE 
from the server and decrypt the directory key using her 
private key.)  The server group verifies the owner’s 
signature and creates a new ACE using the received data. 

To make Wallace an authorized writer, Olivia performs 
a similar procedure but sends the server group an add 
writer message.  The server group treats add reader and 
add writer messages identically, except for the latter it 
also sets the write-authorization bit in the user’s ACE. 

Olivia can make Blaine a blind writer by granting him 
write authorization but not read authorization.  She does 
this by sending an add writer message that contains an 
incorrect value for the encrypted directory key.  Without 
access to the correct directory key, Blaine is unable to 
decrypt the entry names; however, the write-authorization 
bit in his ACL instructs the server group to accept his 
directory updates.  (More on this in § 2.5.) 

 

Figure 2. Directory state maintained by each server 
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2.3. Owner operation: remove reader/writer 

Removing write access is trivially accomplished by 
clearing the write-authorization bit in the user’s ACE. 

Removing read access is more involved, because it 
requires re-keying the directory.  To revoke Wallace’s 
read access and leave him as a blind writer, Olivia first 
retrieves the directory state from the server group.  Then, 
she randomly chooses a new directory key, hashes it, and 
encrypts it with the public keys of all authorized readers 
(other than Wallace).  She then decrypts and re-encrypts 
all entry names with the new key and sends all of the new 
information (except the directory key) back to the server 
group, which updates its state appropriately. 

If Olivia were to revoke Rita’s read access, she could – 
after re-keying the directory and replacing the hash – 
instruct the server group to remove Rita’s ACE, since it 
provides neither write nor read access.  Alternatively, 
Olivia could leave this ACE in place, even though it has 
no authorization value (cf. § 5.2 obfuscation techniques). 

2.4. Reader operations: read entry / list entries 

To read an entry in the directory, Rita first retrieves her 
ACE and the directory key hash from the server group.  
She decrypts the directory key using her private key, 
hashes it, and verifies the hash against the directory key 
hash from the server group.  (If the directory state does not 
contain an ACE for Rita or if the hashes don’t match, then 
she is – by definition – not an authorized reader.)  Rita 
encrypts the entry name she is looking for – using the 
exclusive encryption procedure – with the directory key, 
and sends the encrypted name to the server group, as part 
of a read entry message.  If the server group finds a 
matching encrypted name in the entry list, it returns the 
associated reference information to Rita. 

To list all entries in the directory, Rita begins as above, 
but rather then sending a read entry message containing a 
specific encrypted name, she sends a list entries message 
to the server group.  The group responds by sending Rita a 
list of all encrypted entry names, which she can decrypt 
using the directory key. 

2.5. Writer operations: create / rename / delete 

To create a new entry in the directory, Wallace 
retrieves his ACE and the directory key hash, decrypts and 
verifies the directory key, selects a new entry name, 
encrypts it with the directory key, and sends the encrypted 
name to the server group, as part of a create entry message 
that he signs with his own private key.  The server group 
verifies Wallace’s signature as that of an authorized 
writer, checks the encrypted name for uniqueness among 
the list of existing encrypted names, and adds a new entry 
if the name is unique. 

Blaine can also create a new entry in the directory; 
however, he does not know the name of the entry that he is 
creating.  If he did, then he could use probing to test 

whether the directory contains a particular entry name, 
which he should not be allowed to do since he is not an 
authorized reader.  To create a new entry, Blaine generates 
a random encrypted name and sends it to the server group 
in a create entry message.  If the new name is unique, the 
server accepts it; if it is not, Blaine has to generate a 
different name, but he learns nothing about the names of 
entries in the directory, since he does not know what 
plaintext name his randomly chosen encrypted name 
would decrypt to. 

A rename operation is substantially similar, except that 
instead of creating a new entry, the server group sets the 
encrypted name in an existing entry to the new encrypted 
name. 

To delete an entry in the directory, Wallace obtains and 
decrypts the directory key as above, encrypts the entry 
name with the directory key, and sends the encrypted 
name to the server group in a signed delete entry message.  
The server group verifies Wallace’s signature and removes 
the entry with the matching encrypted name, if it exists. 

2.6. Directory service security properties 

In this subsection, we present and informally justify six 
security properties maintained by our directory service 
design.  The properties are the access-control semantics 
and correctness properties itemized in § 1. 

In justifying our claims of the following properties, we 
assume that fewer than a third of the servers in any server 
group are compromised, so the group can be assumed to 
provide clients with accurate information and to correctly 
update the directory state in response to client requests.  
We assume the security of the underlying cryptosystem, 
and we assume that authorized users do not deliberately 
leak information to other users. 

Property 1:  No one other than an authorized reader can 
read entry names. 

Justification:  Entry names are encrypted with the 
directory key, and are thus unreadable without knowledge 
of the directory key.  In turn, the directory key is stored 
only in ciphertext form, encrypted with the public key of 
the authorized readers. 

Property 2:  No one other than an authorized writer can 
add or modify entry names. 

Justification:  The server group updates the entry list only 
after verifying that the signature on the write request 
corresponds to a public key in the directory’s ACL. 

Property 3:  No one other than the owner can grant or 
revoke read/write authorization. 

Justification:  The server group updates the ACL and the 
directory key hash only after verifying that the signature 
on the update request corresponds to the public key in the 
owner ACE of the directory. 

Property 4:  No correctly functioning client will ever see 
a syntactically illegal name in a directory. 



 

Justification:  A correctly functioning client will decrypt 
entry names using the exclusive encryption process, which 
will produce a syntactically legal plaintext name from any 
arbitrary ciphertext bit string. 

Property 5:  No correctly functioning client will ever see 
two case-insensitively identical names in the same 
directory. 

Justification:  The server group ensures uniqueness of the 
ciphertext entry names, and the exclusive encryption 
process provides a one-to-one mapping from de-cased 
legal names to their encrypted representations. 

Property 6:  No two correctly functioning clients will 
ever see different views of the same directory. 

Justification:  The Byzantine protocol guarantees that the 
server group sends the same state information to all 
requesting readers.  Since a reader is authorized only if the 
decrypted server key hashes to the server group’s 
directory key hash value, all authorized readers will use 
the same directory key for name decryption.  Thus, all 
authorized readers will see the same set of entry names. 

Properties 4 and 5 rest heavily on the exclusive 
encryption process, to which we now turn our attention. 

3. Techniques for exclusive encryption 

This section details a set of techniques that can be used 
to enforce or enable specific types of exclusions.  The 
general approach is to construct a relation between the 
domain of syntactically legal names and the codomain of 
all possible bit strings.  This relation must be bijective: 
• Injectivity is necessary so that the process is reversible 

and decryption is possible. 
• Surjectivity is necessary for syntax enforcement. 
• Injectivity of the inverse is necessary for duplication of 

plaintext to be detectable by examination of ciphertext. 
• Surjectivity of the inverse is necessary for all legal 

names to be representable. 
Although these properties are not all independent of one 
another, we enumerate them separately to be precise about 
why we need each one.  In particular, surjectivity and 
inverse injectivity are closely related, but each has a 
different consequence in our environment. 

Exclusive encryption is performed by applying one or 
more of the techniques described in § 3.1 through § 3.5 (to 
achieve the desired exclusion), followed by an encryption 
step (specifically, a block cipher augmented by the 
technique described in § 3.6).  Exclusive decryption is 
performed by a decryption step (as described in § 3.6) 
followed by the inverse of one or more of the techniques 
from § 3.1 through § 3.5. 

It is conceptually easiest to understand each of these 
techniques by appreciating how its inverse (which is 
performed after decryption) prevents the production of an 
excluded name.  The technique that is applied before 
encryption is constructed by inverting the inverse. 

3.1. Mapping to exclude specific strings 

To exclude entire strings (e.g. “AUX”) from the set of 
encryptable names, we construct a bijective mapping from 
the set of non-excluded strings to the set of all strings.  By 
applying the inverse of this mapping after decryption, any 
possible decrypted string will de-map to an allowed string.  
For the result of the inverse mapping to match the original 
plaintext, the mapping must be applied before encryption. 

A simple way to define the mapping is by choosing a 
(mostly) arbitrary character χ and removing one instance 
of this character from any string equal to an excluded 
name followed by one or more instances of χ. 

For example, if χ is the underscore character and the 
name “foo” is excluded, we map “foo_” to “foo”, “foo_ _” 
to “foo_”, etc.  There is no mapping for “foo”, because it 
is excluded.  Non-excluded names are mapped with the 
identity function, so “bar” maps to “bar”. 

By construction, any arbitrary string de-maps to an 
allowed string:  Mapped name “foo” de-maps to “foo_”.  
Mapped name “foo_” de-maps to “foo_ _”.  There is no 
mapped name that can de-map to “foo”.  Mapped name 
“bar” de-maps to “bar”. 

The choice of character χ is not entirely arbitrary.  It 
must be chosen not to cause one excluded name to map to 
another.  For example, if “fo” and “foo” are both reserved 
names, the character ‘o’ cannot be chosen for χ. 

3.2. Separating out case information 

To enable case-insensitive comparison of names, we 
decouple the character content of each name from its case 
information.  We do this by creating a string of bits that 
indicate the case of characters at corresponding positions 
in the original string.  Once we have extracted the case 
information, we de-case the original string by converting 
all uppercase characters to their lowercase equivalents.  
Uppercase characters are thus illegal in the de-cased 
string, so they are added to the set of excluded characters 
handled by the technique described in § 3.3–3.5. 

When recombining the character and case information, 
exceptions can be handled in a straightforward manner:  
For characters that have no case distinction, the case 
information bit is ignored.  If the case information string 
has fewer bits than the character string has characters, the 
remainder can be treated as zeroes; and if it has more bits, 
the excess can be ignored.  Case recombination is thus not 
injective, but this is not a problem since case is irrelevant 
to duplicate determination. 

3.3. Encoding to exclude specific characters 

Excluding specific characters (e.g. ‘/’) is more involved 
than it might seem.  One approach is to encode the string 
using a coding table that includes only legal characters.  
However, since the count of legal characters is not a 
power of two, fixed-bit-width encoding is not surjective.  
If we correct this by multiply encoding some of the 
characters, we destroy inverse injectivity. 



 

Prefix coding [14] (e.g. Huffman coding) presents a 
promising avenue, but it is not surjective:  It is not 
possible to determine whether an encrypted string ends 
with a complete character code.  If upon decoding we 
either discard or arbitrarily complete any partial terminal 
character, we again destroy inverse injectivity. 

To address the last problem, we can truncate the final 
encoded character in such a way that it can be completed 
on decode without losing inverse injectivity.  In particular, 
after encoding, we remove all trailing zero bits (if there 
are any) and the one bit that precedes all trailing zero bits.  
Before decoding, we append a one bit and as many zero 
bits as necessary to complete the final character code. 

Unfortunately, although this technique preserves 
inverse injectivity, it loses inverse surjectivity:  There is 
no encoded bit string that corresponds either to the null 
string or to any string that ends with the character whose 
code is all zeroes.  For our purposes, the former limitation 
is an advantage, since the null string is not syntactically 
legal.  We address the latter limitation in the following 
subsection. 

3.4. Avoiding the terminal character restriction 

The limitation on the terminal character imposed by the 
above technique would actually be advantageous if 
Windows’ syntax restrictions prohibited only one specific 
character (such as either space or period) from terminating 
a name.  However, since the number of prohibited 
terminating characters is not exactly one, this is a problem. 

We can remove this limitation by modifying the 
encoding mechanism.  Using the symbol ζ to designate the 
character whose prefix code is all zeroes, we remove and 
count all trailing ζ characters from the string to be 
encoded, encode the remainder of the string as above, and 
prepend to the encoded string a sequence of one bits equal 
in number to the count of ζ characters removed from the 
original string, followed by a zero bit.  The encoded string 
thus begins with a unary representation of the count of ζ 
characters at the end of the unencoded string. 

3.5. Varying exclusions by character position 

We can vary the set of allowed characters according to 
the specific character position, simply by using a different 
prefix coding table to encode (and decode) the characters 
in that position.  So, for example, we could exclude a 
certain character from the first position in a string but 
allow it in all remaining positions. 

This technique only works for specific character 
positions counted from the left of the string, but by 
reversing the string before encoding it, we can support 
Windows’ restriction on the terminal character of a name. 

3.6. Surjective block-cipher encryption 

As mentioned above, syntax enforcement requires an 
encryption method that is surjective.  Stream ciphers [27] 
satisfy this requirement; however, reusing a stream – 

which would be required for detecting duplicate entry 
names – leaks a large amount of information and is known 
to be a severe security weakness. 

Conventional block cipher padding techniques [30] are 
not surjective, but – with one exception – the following 
technique is:  Prepend to the plaintext a one bit preceded 
by as many zero bits as necessary to bring the total length 
up to a multiple of the cipher block size.  After decryption, 
discard all leading bits up to and including the first one 
bit.  This technique is surjective except that it cannot 
produce a padded value whose first block equals zero.  
This exception is tolerable as long as this case can be 
identified and rejected by the server. 

To enable the exceptional case to be identified, we 
encrypt the padded string with block cipher F, defined as 
follows, where E is any standard block cipher encryption: 

If the first block of the padded plaintext equals zero, then 
the first block of the ciphertext equals zero, irrespective of 
the encryption key. 

Decryption is performed with the inverse function F–1, 
defined as follows, where E–1 is the inverse of E: 

This technique can be applied to cipher modes [30] 
other than ECB.  In particular, it will work correctly with a 
chaining mode such as CBC as long as the initialization 
vector is set to zero.  The fixed initialization vector can 
leak information about names with matching prefixes, so 
if this is a concern, we could apply an all-or-nothing 
transform [33] to the string before padding.  Also, the 
augmented cipher F is needed only for the first block; 
subsequent blocks can be encrypted using the unmodified 
block cipher E, since they are allowed to be zero. 

4. Exclusive encryption process 

This section specifies the full exclusive encryption and 
decryption processes used by our secure directory service.  
The following two subsections present a specific usage of 
the techniques described in the previous section. 

4.1. Encryption 

Figure 3 illustrates the full procedure for exclusively 
encrypting a directory entry name.  First, the client maps 
the name (§ 3.1):  If the name equals “AUX”, “COMn”, 
“CON”, “CONIN$”, “CONOUT$”, “LPTn”, “NUL”, or 
“PRN”, for any digit n, followed by one or more 
underscores, the client removes one trailing underscore; 
otherwise, it leaves the name alone. 
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Next, the client separates out case information (§ 3.2):  
It extracts the case of each character into a separate bit 
string, and it de-cases the mapped name by converting all 
uppercase characters to their lowercase equivalents. 

Then, it reverses the de-cased name (§ 3.5) so that the 
following encoding step can restrict the terminal character. 

To encode the reversed name, the client first removes 
all trailing underscores (§ 3.4).  Then, it encodes the first 
character of the reversed name using a prefix coding table 
that encodes underscore as all zeroes and that does not 
include codes for ‘"’, ‘*’, ‘/’, ‘:’, ‘<’, ‘>’, ‘?’, ‘\’, ‘|’, 
uppercase characters, control characters, space, or period 
(§ 3.5).  The remaining characters are encoded using a 
prefix coding table that is similar, except it includes codes 
for space and period.  From the final encoded character, 
the client removes all trailing zero bits (if any) and the one 
bit that precedes all trailing zero bits (§ 3.3).  The encoded 
name is constructed as a one bit for each underscore that 
was removed (§ 3.4) followed by a zero bit, followed by 
each encoded character in sequence. 

The client pads and encrypts the name using function F 
defined in § 3.6.  The case information is also encrypted, 
but this uses the unmodified block cipher E. 

After the client sends the encrypted name and the 
encrypted case information to the servers, the server group 
verifies the encrypted name by making sure its first block 
is not equal to zero  (§ 3.6).  If it is, it rejects the client’s 
request.  Otherwise, it performs the requested operation 
according to the appropriate procedure from § 2. 

4.2. Decryption 

Figure 4 illustrates the full procedure for exclusively 
decrypting a directory entry name.  First, the client 
decrypts the encrypted name using function F–1 defined in 
§ 3.6 and removes the padding.  It also decrypts the case 
information using unmodified block cipher E–1. 

It then appends a one bit followed by a number of zero 
bits whose count equals the length of the longest prefix 
code in the coding table  (§ 3.3), after which it removes all 
leading one bits (if any) and the succeeding zero bit 
(§ 3.4).  It then decodes the first character using the coding 
table that excludes space and period (§ 3.5), and it decodes 
the remaining characters using the other coding table 
(§ 3.3).  Decoding stops when only zero bits remain.  The 
client then appends an underscore for each leading one bit 
it removed from the encoded string (§ 3.4). 

The client then reverses the decoded name (§ 3.5), and 
it recombines the case information (§ 3.2). 

Finally, the client de-maps the name (§ 3.1) by 
appending an underscore if the string equals “AUX”, 
“COMn”, “CON”, “CONIN$”, “CONOUT$”, “LPTn”, 
“NUL”, or “PRN”, for any digit n, followed by zero or 
more underscores. 

A client that follows this decryption procedure is 
guaranteed to see entry names that satisfy the correctness 
properties itemized in § 1, irrespective of whatever data 
any other client attempted to send to the directory server 
group. 

 

 

Figure 3. Exclusive encryption procedure 

 

Figure 4. Exclusive decryption procedure 
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4.3. Examples 

Table 1 presents two prefix tables for a very limited 
alphabet, in which the only legal characters are ‘a’, ‘b’, 
underscore, period, and space (shown with the symbol � ).  
Since period and space are not legal trailing characters, the 
code table for the first character (after reversing the string) 
has no codes for these characters.  

With neither reserved strings nor case information, and 
using an identity function as a 4-bit block cipher, Table 2 
shows the exclusively encrypted ciphertext for all legal 
one- and two-character names.  It also shows the plaintext 
for all possible values of a single ciphertext block. 

Walking through one example, the name “bb” reverses 
to itself, and it has no trailing underscores.  The first ‘b’ of 
the reversed name is encoded using the first code table to 
1, and the second ‘b’ is encoded using the standard code 
table to 01, from which the trailing one is removed since it 
is the last character.  The encoded name is thus 0 (no 
trailing underscores) 1 (‘b’) 0 (‘b’ less the trailing one) = 
010.  This is encrypted by prepending a one, preceded by 
no zero bits to pad it up to a multiple of 4 bits.  Applying 
the identity function yields 1010. 

5. Other issues 

In this section, we discuss several somewhat tangential 
issues, such as preventing leakage of name-length 
information, providing privacy of information other than 
entry names, dealing with revisions to the Unicode 
standard, and offering the Windows semantics of making 
ownership not necessarily imply read or write access. 

5.1. Hiding name-length information 

Although exclusive encryption prevents unauthorized 
readers from knowing the name of an entry, it leaks the 
approximate length of the name.  Specifically, the length 
(in blocks) of the ciphertext name places upper and lower 
bounds on the length (in characters) of the plaintext name.  
We can prevent this leakage, at the expense of placing a 
somewhat quirky restriction on the length of entry names, 
by modifying the procedure as follows. 

First, we must establish a length L that all ciphertext 
names will have.  This must be a multiple of the block 
size, and it in turn limits the length of plaintext names in a 
convoluted manner:  Since characters are encoded using 
variable-bit-length encoding, the length of the ciphertext is 
only approximately related to the length of the plaintext. 

Before encrypting, rather than padding a name to bring 
its total length up to a multiple of the cipher block size, we 
pad it so as to bring its length up to L, unless the encoded 
name is too long, in which case it cannot be encrypted 
using this technique.  The padding is the same as before: a 
one bit preceded by as many zero bits as necessary. 

This technique is surjective except that it cannot 
produce a padded value that is all zeroes.  However, rather 
than using a modified cipher that enables the server to 
check for this case, it is simpler to map this special case to 
a valid legal name that is too long to be encrypted by the 
standard procedure.  One obvious candidate is the string 
whose encoding is L zero bits followed by a one bit. 

If we use an all-or-nothing transform [33] to hide 
partial name matches, it should be applied to the string 
after it is padded, rather than before; otherwise, it will leak 
length information through matching zero prefix blocks. 

5.2. Obfuscating non-name information 

Although our directory service provides privacy against 
unauthorized readers, this privacy only concerns entry 
names.  It would be nice if we could also prevent leakage 
of other data, such as file sizes, timestamps, attributes, and 
directory structure (all of which are above lumped into 
“reference” information), as well as access authorization.  
Sizes and timestamps seem impossible to hide from the 
servers, because the servers themselves directly witness 
the data represented by these fields, namely when a file is 
created or written and how much space it consumes.  On 
the other hand, attributes are straightforward to hide using 
standard encryption.  For items that fit neither of these two 
classes, one approach to improving privacy is obfuscation. 

Table 1. Example prefix codes for 5-character alphabet 

Character First prefix code Std. prefix code

_ 00 000 

a 01 001 

b 1 01 

.  10 

�   11 

Table 2. Encryptions and decryptions with identity cipher 

Plaintext Ciphertext  Ciphertext Plaintext 

_ 0001  0000 illegal 

a 0100  0001 _ 

b 0010  0010 b 

_ _ 0011  0011 _ _ 

_a 1100  0100 a 

_b 0110  0101 .b 

a_ 0010 0000  0110 _b 

aa 0010 0100  0111 _ _ _ 

ab 0001 0100  1000 ._ 

b_ 0001 0000  1001 .a 

ba 0001 0010  1010 bb 

bb 1010  1011 � b 

._ 1000  1100 _a 

.a 1001  1101 _.b 

.b 0101  1110 __b 

� _ 0001 0001  1111 _ _ _ _ 

� a 0001 0011    

� b 1011    



 

Obfuscating access authorization is straightforward.  
The owner of a directory can insert ACEs for unauthorized 
users and set their encrypted directory keys to garbage 
values, and the server has no way of knowing whether or 
not the ACEs belong to authorized readers.  Furthermore, 
the owner can insert ACEs for randomly generated public 
keys that correspond to no actual user, and for these it can 
even set the write-authorization bit, since no one (other 
than the owner) knows the corresponding private keys. 

Obfuscating structural information about the number of 
entries in a directory is a considerably harder problem; in 
fact, we do not currently have a solution.  To hide the size 
of a large directory by splitting it into smaller directories 
requires a means of partitioning the entries that still 
enables the servers to enforce directory-wide name 
uniqueness but does not divulge the logical coherence of 
the partitions to the servers.  Furthermore, maintaining the 
guarantee that no two correct clients see different views of 
the same directory requires a means for enforcing 
consistent access controls among all partitions of a 
directory, again without betraying this coherence to the 
servers.  Even if we were to devise such a mechanism, it 
seems likely that traffic analysis could obviate any benefit 
from this obfuscation. 

5.3. Unicode revision and case insensitivity 

In developing this directory service, we discovered a 
problem inherent in the use of case-insensitive comparison 
for determining duplicate entry names.  Since the Unicode 
standard [41] is evolving, many character codes are not 
yet defined.  Windows allows directory entry names to 
contain undefined characters (and this is in fact necessary 
for portability between systems with different language 
packs installed), but it makes case-insensitive comparisons 
only for characters that have been defined (and installed).  
This can lead to a situation in which two names are not at 
first determined to be identical but then are later judged to 
be identical following a revision of the Unicode standard 
(and installation of a language pack). 

There are three options for dealing with this issue: 
• Abandon the guarantee that no two entries in the same 

directory have the same name. 
• Abandon case-insensitive name comparison. 
• Partition the set of allowed characters into two subsets, 

one case-insensitive and the other case-sensitive. 
The first of these options is what Windows does; 

however, it breaks a reasonable guarantee upon which 
applications may rely.  It is not clear that this poses a true 
security risk, but since it has been shown that violating a 
system’s assumptions about its input data can provide an 
entrée for attackers [32], we are uncomfortable taking this 
approach. 

The second option is sensible and internally consistent, 
but it changes the semantics that most Windows users 
expect from their file systems, and it threatens backward 
compatibility for the large installed base of applications 
that have evolved with the current semantics. 

The third option, though somewhat counterintuitive, is 
our chosen approach.  There are two obvious alternatives 
for selecting a case-insensitive subset:  First, we could 
implement case insensitivity for a particular version of the 
Unicode standard, (e.g., 3.2.0 [42]), thereby providing 
broad linguistic coverage.  Second, we could select a small 
subset – such as Basic Latin or Latin-1 – that we expect to 
cover the majority of use for actual directory entry names.  
In particular, the Basic Latin subset is so important for 
backward compatibility that the UTF-8 standard [44] was 
developed specifically to address this concern.  This 
second alternative has the additional merit of drastically 
reducing the required size for code tables if a two-stage 
prefix encoding is employed, since the vast majority of the 
character space can be encoded with the identity function. 

5.4. Ownership without read or write access 

Windows allows the owner of a directory not to have 
read or write access, which our directory service does not.  
We require the owner to have read access; otherwise, she 
could not re-key the directory when removing a reader.  
However, in Windows, an owner always has authorization 
to grant herself read or write access, so lack of access is 
merely a convenience to prevent unintentional reading or 
writing.  We can easily provide a similar convenience by 
restricting an owner’s read or write access on the client, 
since it is irrelevant to true security. 

6. Related work 

Most distributed file systems, whether server-based 
[19, 20] or serverless [2, 40], do not address the concern 
of untrusted remote storage machines, either for privacy or 
data integrity.  Similarly, content-publishing systems [13, 
43] and content-indexing systems [18, 31, 34, 39, 45] 
neither prevent the servers from reading user data nor 
prevent the publisher from littering the namespace with 
garbage.  Although our design does not prevent a writer 
from creating nonsensical entry names, it at least restricts 
the names to a legal syntax and protects their privacy. 

The Cryptographic File System (CFS) [6] encrypts both 
file content and directory entry names on a client machine 
before writing them to a file server.  Each entry name is 
encrypted using a conventional block cipher (DES [29]) 
and subsequently encoded in an ASCII representation of 
its hexadecimal ciphertext value.  This encoding technique 
is not surjective, so syntax enforcement by the server is 
not possible.  However, since CFS does not allow sharing 
between users, the writer of a directory entry can harm 
only himself by writing a syntactically illegal name. 

Thy Byzantine File System (BFS) [9] replaces an NFS 
server with a Byzantine-fault-tolerant replica group.  
Under the assumption that strictly fewer than one third of 
the servers are compromised (a condition that is provably 
necessary [23]), BFS guarantees the integrity of file data 
and directory metadata.  However, it does not attempt to 
provide privacy of file or directory information. 



 

SUNDR [26] is a file system that offers strong integrity 
and privacy guarantees from the server that provides data 
storage.  It does this by placing full trust in all client 
machines, which implement the entirety of the file system 
semantics on top of block-level storage provided by the 
server.  Since the server does not understand the blocks it 
stores, it cannot guarantee validity of the written data.  In 
addition, since it does not employ Byzantine replication, it 
is vulnerable to denial-of-service and data-destruction 
attacks.  It does, however, guarantee data consistency by 
means of all-or-nothing modification semantics. 

OceanStore [21] is a distributed object store that uses 
Byzantine replica groups that understand the semantics of 
all object updates.  It also employs cryptography to protect 
the privacy of user data, but the design is not yet to a point 
where it is clear how to harmonize the conflicting goals of 
privacy and full semantic understanding by the servers. 

The Phalanx [25] replication system is an alternative to 
the BFT toolkit [9] on which our service design is based.  
Phalanx addresses the issue of “dishonest writers,” in the 
sense of guaranteeing eventual consistency among 
replicas, but it does not enforce syntactical correctness. 

Our directory service provides data privacy through 
cryptographic means.  An alternative approach is to use 
secret sharing [37] to share the information among the 
servers in a Byzantine replica group.  The Cornell On-line 
Certification Authority [46] is an example of a system that 
combines Byzantine fault-tolerance with secret sharing to 
provide data privacy and integrity, specifically to protect 
the service’s private key.  One might imagine a similar 
approach to addressing directory name integrity, perhaps 
using verifiable secret sharing [4] to enforce syntax 
requirements.  However, storing different pieces of each 
name on different servers complicates the design, because 
Byzantine replicas must be exactly identical. 

There has been some other research on performing 
operations on encrypted data.  Song et al. [38] developed 
techniques for performing searches on encrypted data.  
Convergent encryption [16] enables identification and 
coalescing of duplicate files encrypted with different keys.  
Restrictive blind signatures [7] enable a signer to sign data 
that it cannot read, while permitting the signer to constrain 
the structure of the data it signs. 

The exclusive encryption process augments a standard 
block cipher to make it surjective.  BEAR and LION [3] 
and BEAST [24] are block ciphers that have a variable 
block size and are surjective.  Hasty Pudding [36] has a 
block size that is not only variable but that can even 
support fractional block sizes.  An advantage of our 
construction is that rather than introducing a new cipher 
whose security may be in doubt [15], it employs any 
extant block cipher, some of which have withstood 
extended cryptanalytic scrutiny [27]. 

Black and Rogaway [5] present three methods for 
encrypting an arbitrary finite domain, using constructions 
based on any extant block cipher.  However, without the 
name-length restrictions introduced (as a side effect) in 
§ 5.1, our encryption domain is infinite. 

7. Summary and conclusions 

In this paper, we presented the design of a secure, 
remote, file-system directory service.  Our design provides 
privacy of directory entry names not only from users who 
are not authorized readers but also from the servers that 
implement the directory service.  In a similar vein, it 
provides persistence and integrity of directory data despite 
attempts at destruction or modification either by users who 
are not authorized writers or by a small fraction of the 
implementing servers.  Furthermore, it enforces syntactic 
legality [28], uniqueness, and view consistency of 
directory entry names. 

Our service provides privacy through encryption and 
persistence and integrity through Byzantine fault-tolerance 
[9].  To enable the enforcement of name syntax and 
uniqueness without divulging name information to the 
servers, we developed an encryption procedure – which 
we call “exclusive encryption” – that is inherently 
incapable of encrypting syntactically illegal names and 
that enables a server to check for case-insensitive name 
uniqueness by examining only ciphertext. 

The exclusive encryption process includes several 
steps, each of which enables a different type of exclusion.  
To exclude specific strings, it constructs a simple mapping 
from the set of allowed strings to the set of all strings.  To 
exclude specific characters, it constructs a prefix encoding 
for all legal characters, amended with a special affix and 
terminus to maintain the required invariants.  The coding 
can be varied by index to support different restrictions at 
different character positions.  To support case-insensitive 
comparison, case information is extracted and encrypted 
separately. 

Exclusive encryption requires a block cipher encryption 
function that is surjective.  Although several new ciphers 
with this property have been proposed [3, 24, 36], we 
developed a construction that can employ (and derive 
security from) any extant block cipher.  Alternatively, we 
can directly employ any extant block cipher (without our 
augmentation) by fixing the size of the name ciphertext.  
This alternative has the desirable property of preventing 
the leakage of name length information, but it has the 
somewhat undesirable side effect of placing a hard-to-
characterize restriction on the length of entry names. 

During our development, we discovered an intrinsic 
(and, we believe, previously unreported) problem with 
enforcing case-insensitive name uniqueness, given that the 
Unicode character set is not yet fully defined.  We 
suggested several possible work-arounds, but the problem 
cannot be completely circumvented as long as the 
character set remains in flux. 

Although our service’s privacy guarantees apply only 
to directory entry names, we also considered obfuscation 
of access authorization information, which is reasonably 
straightforward, and structural information, which seems a 
priori tractable but for which we have not found a solution 
that satisfies all of our security and correctness properties.  
We regard the latter of these as an open problem. 
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