

A Secure Directory Service based on Exclusive Encryption

John R. Douceur, Atul Adya, Josh Benaloh, William J. Bolosky, Gideon Yuval
Microsoft Research

{johndo, adya, benaloh, bolosky, gideony}@microsoft.com

Abstract
We describe the design of a Windows file-system directory
service that ensures the persistence, integrity, privacy,
syntactic legality, and case-insensitive uniqueness of the
names it indexes. Byzantine state replication provides
persistence and integrity, and encryption imparts privacy.
To enforce Windows’ baroque name syntax – including
restrictions on allowable characters, on the terminal
character, and on several specific names – we develop a
cryptographic process, called “exclusive encryption,” that
inherently excludes syntactically illegal names and that
enables the exclusion of case-insensitively duplicate
names without access to their plaintext. This process
excludes entire names by mapping the set of allowed
strings to the set of all strings, excludes certain characters
through an amended prefix encoding, excludes terminal
characters through varying the prefix coding by character
index, and supports case-insensitive comparison of names
by extracting and encrypting case information separately.
We also address the issues of hiding name-length
information and access-authorization information, and we
report a newly discovered problem with enforcing case-
insensitive uniqueness for Unicode names.

1. Introduction

This paper details the design of a Windows-compatible
file-system directory service that provides data privacy,
data integrity, and access control even if the servers that
manage the directory are untrusted. Our design uses
encryption for protecting data privacy and Byzantine
replication for protecting data integrity. Although this
basic approach is applicable to any type of generic data-
storage service, our directory service must additionally
maintain the syntactic legality and case-insensitive
uniqueness of filenames, even though it cannot have
access to the plaintext of these names. We address these
requirements by constructing an encryption process that is
inherently incapable of encrypting syntactically illegal
names. More precisely, the decryption process will
always produce a syntactically legal plaintext name, given
any arbitrary bit string as an encrypted input, and the
encryption process is simply the inverse of this procedure.
Furthermore, the encryption provides a one-to-one
mapping from de-cased legal names to their encrypted
representations, so directory servers can verify the case-
insensitive uniqueness of names within each directory.

The context for this work is Farsite [1], a secure,
scalable file system that logically functions as a
centralized file server but that is physically distributed
among a network of untrusted desktop workstations. For
storing both file data and directory metadata, Farsite uses
replication to provide reliability and integrity despite the
failure or compromise of a subset of replica holders, and it
uses encryption to provide privacy. Files and directories
have very different properties, so different replication and
encryption techniques are applicable to each. Since files
are large, they cannot afford a high degree of replication,
but since they are opaque to the system, they can be
protected by conventional encryption and a cryptographic
integrity check. By contrast, directory metadata is
relatively small, allowing a greater degree of replication,
but it needs to be managed by the system. To facilitate
this management, Farsite uses Byzantine state replication
[9], which preserves the integrity of any arbitrary
sequence of operations on the replicated data, as long as
strictly fewer than one third of the replica-holders are
faulty or compromised [23].

A file system’s directory service provides a named
index of files, organized into a hierarchy of directories.
Each directory contains a list of entries, and each entry
includes a locally unique name and a reference to a file or
another directory. Associated with each directory is list of
readers, who are authorized to read entry names; a list of
writers, who are authorized to add or modify entry names;
and one owner, who is authorized to change other users’
access authorization. A secure directory service must
provide the following access-control semantics:
• Only a reader can read entry names.
• Only a writer can add or modify entry names.
• Only the owner can grant or revoke read/write access.
These access restrictions must apply not only to other
users in the system, but also to the directory service itself.
A compromised directory server should not be able to read
entry names, add or modify entry names, or grant or
revoke read/write authorization.

In addition to access control, we need to maintain the
following correctness properties:
• No correctly functioning client will ever see a

syntactically illegal name in a directory.
• No correctly functioning client will ever see two

identical names in the same directory.
• No two correctly functioning clients will ever see

different views of the same directory.

Windows’ particular syntactic restrictions on directory
entry names are as follows [28]:
• A name may not be null.
• A name may not contain any control characters (those

with Unicode value less than 32).
• A name may not contain any of the following reserved

characters: " * / : < > ? \ |
• A name may not end with a space or a period.
• A name may not match any of the following reserved

strings (where n is any decimal digit): AUX, COMn,
CON, CONIN$, CONOUT$, LPTn, NUL, or PRN.

Furthermore, for purposes of determining whether two
names are identical, character case is ignored.

The above properties would be straightforward for a
directory service to enforce if it could see the names of the
directory entries. It is far more problematic to address the
general case in which the servers are not authorized
readers of the directories they maintain. Our solution is a
cryptographic process we call “exclusive encryption”
because it inherently excludes syntactically illegal names
and because it enables the exclusion of duplicate names
without access to their plaintext. This process employs
several techniques:
• name mapping to exclude reserved strings
• a procedure for separating out case information
• encoding to exclude null names, control characters,

reserved characters, and disallowed terminal characters
• a technique for modifying any block cipher to make it

surjective for arbitrary-length strings
These techniques, which could be beneficial in other

applications besides our secure directory service, are
detailed in § 3, and they are combined into the full
exclusive encryption process in § 4. In § 5 and § 6, we
discuss other issues and related work before concluding in
§ 7. But first, the following section presents the
architecture and design of the secure directory service for
which exclusive encryption was developed, illustrating
how we can satisfy both the access-control semantics and
the correctness properties listed above.

2. Secure directory service design

To more clearly highlight the challenges we face in our
design, we reframe the above-described access-control and
correctness requirements as six problems that need to be
solved:

1. preventing an unauthorized user from reading
directory entry names

2. preventing an unauthorized user from modifying a
directory

3. preventing a server from reading directory entry
names

4. preventing a server from making an unauthorized
directory modification

5. preventing an authorized writer from incorrectly
modifying a directory

6. preventing the authorized owner from incorrectly
modifying a directory

A conventional directory service running on trusted
servers can readily address problems 1 and 2 by
authenticating and mediating all user requests. Problem 3
can be addressed by encrypting directory entry names and
not allowing the server access to the encryption key.
Problem 4 can be addressed through the technique of
Byzantine fault-tolerance [9], a general and powerful
mechanism for constructing replicated state machines that
can tolerate arbitrary behavior by any subset of strictly
fewer than one third of the replicas. Solutions to problems
5 and 6 – which don’t revive the first four problems – are
the main contributions of the present paper.

Figure 1 illustrates the architecture of our system.
Directory servers are organized into Byzantine-fault-
tolerant server groups of size S, which can tolerate
T = (S – 1) / 3 misbehaving servers [23]. All servers in
a group maintain identical directory-state information. As
the group receives requests from clients, the servers within
the group collectively assign an operation number to each
request using a Byzantine agreement algorithm, which
guarantees that if no more than T of the servers are faulty,
all correct servers will agree on an order in which to
process the received requests [9]. When a server is
prepared to begin a transactional state update, it informs
all other servers in the group of its readiness. Once a
server learns of at least 2 T other servers that are ready as
well, it commits its persistent state update. Each operation
performable by a server group must be defined to have a
deterministic effect on the replicated directory state. This
combination of consistent ordering of requests, two-phase
supermajority commit, and deterministic operation ensures
that all correct servers within the group maintain
consistent copies of the shared state [9].

When each server completes an operation, it sends a
reply to the requesting client. By hypothesis, no more
than T servers in each group are faulty, so a client that
receives T + 1 matching replies can be confident that the
reply content is genuine. Our design employs the highly
efficient Castro-Liskov protocol [9] for its Byzantine state
replication, which, due to its complexity and extensive
description elsewhere [9, 10, 11], we do not describe
further herein. The interested reader can find a wealth of
information on Byzantine fault-tolerance [8, 12, 17, 23]
and replicated state machines [22, 35] in the literature.

Figure 1. Directory service architecture (S = 4, T = 1)

client

server

group

server server

server server

client

client

For the remainder of this paper, we simply assume that
the Byzantine server group acts as a single server that can
be trusted to perform the requests it receives. However,
we do not assume that it is safe to allow the server group
to view or directly modify user-sensitive data, since a
single compromised server could inappropriately disclose
information.

Each directory has an associated symmetric encryption
key that is used for encrypting the directory’s name
information. This directory key is not available (in an
unencrypted form) to the servers that maintain the
directory metadata. Figure 2 illustrates the state that a
server maintains for each directory, which has four
components:
• a list of directory entries
• an access control list (ACL) of access control entries

(ACEs) for authorized readers and writers
• a distinguished access control entry for the owner
• a one-way hash of the directory key
Each directory entry contains the entry name encrypted
with the directory key (using the exclusive encryption
process described in § 4) and a reference to the file or
directory associated with that name. Each access control
entry contains a user’s public key, a copy of the directory
key encrypted with the user’s public key, and a bit
indicating whether the user has write authorization. The
owner is implicitly a writer, so the distinguished access
control entry for the owner does not include a write-
authorization bit.

Definition 1: An authorized reader of a directory is a
user for which the directory state includes an ACE that (a)
contains the user’s public key and (b) contains a ciphertext
value that, when decrypted with the user’s private key and
hashed, yields the directory key hash value stored in the
directory state.

Definition 2: An authorized writer of a directory is a user
for which the directory state includes an ACE that either
(a) contains the user’s public key and has the write-
authorization bit set or (b) contains the user’s public key
and is the distinguished owner ACE.

Definition 3: The owner of a directory is the user for
which the distinguished owner ACE in the directory state
contains the user’s public key.

We illustrate the use of the directory state by detailing
the steps involved in a standard set of directory operations:
creating a new directory; adding and removing read/write
access; reading and listing directory entries; and creating,
renaming, and deleting entries.

2.1. Creating a new directory

Olivia, an authorized writer of directory “foo”, creates
a subdirectory of “foo” with the name “bar” by sending
the server group a create entry message, which is handled
as described in § 2.5. If the creation succeeds, Olivia
randomly chooses a new symmetric encryption key for the
directory, encrypts the directory key with her own public
key, and computes a one-way hash of the directory key.
She then sends her public key, the encrypted directory
key, and the key hash to the server group, which uses
these values to initialize the owner ACE and the directory
key hash. At this point, the directory contains no entries,
and the ACL contains only the owner ACE.

2.2. Owner operation: add reader/writer

Olivia can make Rita an authorized reader of directory
“bar” by encrypting the directory key with Rita’s public
key and sending Rita’s public key and encrypted directory
key to the server group, as part of an add reader message
that she signs with her own private key. (If Olivia has
forgotten the directory key, she can retrieve her own ACE
from the server and decrypt the directory key using her
private key.) The server group verifies the owner’s
signature and creates a new ACE using the received data.

To make Wallace an authorized writer, Olivia performs
a similar procedure but sends the server group an add
writer message. The server group treats add reader and
add writer messages identically, except for the latter it
also sets the write-authorization bit in the user’s ACE.

Olivia can make Blaine a blind writer by granting him
write authorization but not read authorization. She does
this by sending an add writer message that contains an
incorrect value for the encrypted directory key. Without
access to the correct directory key, Blaine is unable to
decrypt the entry names; however, the write-authorization
bit in his ACL instructs the server group to accept his
directory updates. (More on this in § 2.5.)

Figure 2. Directory state maintained by each server

ExclEnc(DirKey, Name1), Reference1

ExclEnc(DirKey, Name2) , Reference2

ExclEnc(DirKey, NameN) , ReferenceN

User1PubKey, PubEnc(User1PubKey, DirKey), WriteAuth1

Directory entries Access Control List (ACL)

DirKey hash: Owner ACE:

User2PubKey, PubEnc(User2PubKey, DirKey), WriteAuth2

UserUPubKey, PubEnc(UserUPubKey, DirKey), WriteAuthU

OwnerPubKey, PubEnc(OwnerPubKey, DirKey)Hash(DirKey)

2.3. Owner operation: remove reader/writer

Removing write access is trivially accomplished by
clearing the write-authorization bit in the user’s ACE.

Removing read access is more involved, because it
requires re-keying the directory. To revoke Wallace’s
read access and leave him as a blind writer, Olivia first
retrieves the directory state from the server group. Then,
she randomly chooses a new directory key, hashes it, and
encrypts it with the public keys of all authorized readers
(other than Wallace). She then decrypts and re-encrypts
all entry names with the new key and sends all of the new
information (except the directory key) back to the server
group, which updates its state appropriately.

If Olivia were to revoke Rita’s read access, she could –
after re-keying the directory and replacing the hash –
instruct the server group to remove Rita’s ACE, since it
provides neither write nor read access. Alternatively,
Olivia could leave this ACE in place, even though it has
no authorization value (cf. § 5.2 obfuscation techniques).

2.4. Reader operations: read entry / list entries

To read an entry in the directory, Rita first retrieves her
ACE and the directory key hash from the server group.
She decrypts the directory key using her private key,
hashes it, and verifies the hash against the directory key
hash from the server group. (If the directory state does not
contain an ACE for Rita or if the hashes don’t match, then
she is – by definition – not an authorized reader.) Rita
encrypts the entry name she is looking for – using the
exclusive encryption procedure – with the directory key,
and sends the encrypted name to the server group, as part
of a read entry message. If the server group finds a
matching encrypted name in the entry list, it returns the
associated reference information to Rita.

To list all entries in the directory, Rita begins as above,
but rather then sending a read entry message containing a
specific encrypted name, she sends a list entries message
to the server group. The group responds by sending Rita a
list of all encrypted entry names, which she can decrypt
using the directory key.

2.5. Writer operations: create / rename / delete

To create a new entry in the directory, Wallace
retrieves his ACE and the directory key hash, decrypts and
verifies the directory key, selects a new entry name,
encrypts it with the directory key, and sends the encrypted
name to the server group, as part of a create entry message
that he signs with his own private key. The server group
verifies Wallace’s signature as that of an authorized
writer, checks the encrypted name for uniqueness among
the list of existing encrypted names, and adds a new entry
if the name is unique.

Blaine can also create a new entry in the directory;
however, he does not know the name of the entry that he is
creating. If he did, then he could use probing to test

whether the directory contains a particular entry name,
which he should not be allowed to do since he is not an
authorized reader. To create a new entry, Blaine generates
a random encrypted name and sends it to the server group
in a create entry message. If the new name is unique, the
server accepts it; if it is not, Blaine has to generate a
different name, but he learns nothing about the names of
entries in the directory, since he does not know what
plaintext name his randomly chosen encrypted name
would decrypt to.

A rename operation is substantially similar, except that
instead of creating a new entry, the server group sets the
encrypted name in an existing entry to the new encrypted
name.

To delete an entry in the directory, Wallace obtains and
decrypts the directory key as above, encrypts the entry
name with the directory key, and sends the encrypted
name to the server group in a signed delete entry message.
The server group verifies Wallace’s signature and removes
the entry with the matching encrypted name, if it exists.

2.6. Directory service security properties

In this subsection, we present and informally justify six
security properties maintained by our directory service
design. The properties are the access-control semantics
and correctness properties itemized in § 1.

In justifying our claims of the following properties, we
assume that fewer than a third of the servers in any server
group are compromised, so the group can be assumed to
provide clients with accurate information and to correctly
update the directory state in response to client requests.
We assume the security of the underlying cryptosystem,
and we assume that authorized users do not deliberately
leak information to other users.

Property 1: No one other than an authorized reader can
read entry names.

Justification: Entry names are encrypted with the
directory key, and are thus unreadable without knowledge
of the directory key. In turn, the directory key is stored
only in ciphertext form, encrypted with the public key of
the authorized readers.

Property 2: No one other than an authorized writer can
add or modify entry names.

Justification: The server group updates the entry list only
after verifying that the signature on the write request
corresponds to a public key in the directory’s ACL.

Property 3: No one other than the owner can grant or
revoke read/write authorization.

Justification: The server group updates the ACL and the
directory key hash only after verifying that the signature
on the update request corresponds to the public key in the
owner ACE of the directory.

Property 4: No correctly functioning client will ever see
a syntactically illegal name in a directory.

Justification: A correctly functioning client will decrypt
entry names using the exclusive encryption process, which
will produce a syntactically legal plaintext name from any
arbitrary ciphertext bit string.

Property 5: No correctly functioning client will ever see
two case-insensitively identical names in the same
directory.

Justification: The server group ensures uniqueness of the
ciphertext entry names, and the exclusive encryption
process provides a one-to-one mapping from de-cased
legal names to their encrypted representations.

Property 6: No two correctly functioning clients will
ever see different views of the same directory.

Justification: The Byzantine protocol guarantees that the
server group sends the same state information to all
requesting readers. Since a reader is authorized only if the
decrypted server key hashes to the server group’s
directory key hash value, all authorized readers will use
the same directory key for name decryption. Thus, all
authorized readers will see the same set of entry names.

Properties 4 and 5 rest heavily on the exclusive
encryption process, to which we now turn our attention.

3. Techniques for exclusive encryption

This section details a set of techniques that can be used
to enforce or enable specific types of exclusions. The
general approach is to construct a relation between the
domain of syntactically legal names and the codomain of
all possible bit strings. This relation must be bijective:
• Injectivity is necessary so that the process is reversible

and decryption is possible.
• Surjectivity is necessary for syntax enforcement.
• Injectivity of the inverse is necessary for duplication of

plaintext to be detectable by examination of ciphertext.
• Surjectivity of the inverse is necessary for all legal

names to be representable.
Although these properties are not all independent of one
another, we enumerate them separately to be precise about
why we need each one. In particular, surjectivity and
inverse injectivity are closely related, but each has a
different consequence in our environment.

Exclusive encryption is performed by applying one or
more of the techniques described in § 3.1 through § 3.5 (to
achieve the desired exclusion), followed by an encryption
step (specifically, a block cipher augmented by the
technique described in § 3.6). Exclusive decryption is
performed by a decryption step (as described in § 3.6)
followed by the inverse of one or more of the techniques
from § 3.1 through § 3.5.

It is conceptually easiest to understand each of these
techniques by appreciating how its inverse (which is
performed after decryption) prevents the production of an
excluded name. The technique that is applied before
encryption is constructed by inverting the inverse.

3.1. Mapping to exclude specific strings

To exclude entire strings (e.g. “AUX”) from the set of
encryptable names, we construct a bijective mapping from
the set of non-excluded strings to the set of all strings. By
applying the inverse of this mapping after decryption, any
possible decrypted string will de-map to an allowed string.
For the result of the inverse mapping to match the original
plaintext, the mapping must be applied before encryption.

A simple way to define the mapping is by choosing a
(mostly) arbitrary character χ and removing one instance
of this character from any string equal to an excluded
name followed by one or more instances of χ.

For example, if χ is the underscore character and the
name “foo” is excluded, we map “foo_” to “foo”, “foo_ _”
to “foo_”, etc. There is no mapping for “foo”, because it
is excluded. Non-excluded names are mapped with the
identity function, so “bar” maps to “bar”.

By construction, any arbitrary string de-maps to an
allowed string: Mapped name “foo” de-maps to “foo_”.
Mapped name “foo_” de-maps to “foo_ _”. There is no
mapped name that can de-map to “foo”. Mapped name
“bar” de-maps to “bar”.

The choice of character χ is not entirely arbitrary. It
must be chosen not to cause one excluded name to map to
another. For example, if “fo” and “foo” are both reserved
names, the character ‘o’ cannot be chosen for χ.

3.2. Separating out case information

To enable case-insensitive comparison of names, we
decouple the character content of each name from its case
information. We do this by creating a string of bits that
indicate the case of characters at corresponding positions
in the original string. Once we have extracted the case
information, we de-case the original string by converting
all uppercase characters to their lowercase equivalents.
Uppercase characters are thus illegal in the de-cased
string, so they are added to the set of excluded characters
handled by the technique described in § 3.3–3.5.

When recombining the character and case information,
exceptions can be handled in a straightforward manner:
For characters that have no case distinction, the case
information bit is ignored. If the case information string
has fewer bits than the character string has characters, the
remainder can be treated as zeroes; and if it has more bits,
the excess can be ignored. Case recombination is thus not
injective, but this is not a problem since case is irrelevant
to duplicate determination.

3.3. Encoding to exclude specific characters

Excluding specific characters (e.g. ‘/’) is more involved
than it might seem. One approach is to encode the string
using a coding table that includes only legal characters.
However, since the count of legal characters is not a
power of two, fixed-bit-width encoding is not surjective.
If we correct this by multiply encoding some of the
characters, we destroy inverse injectivity.

Prefix coding [14] (e.g. Huffman coding) presents a
promising avenue, but it is not surjective: It is not
possible to determine whether an encrypted string ends
with a complete character code. If upon decoding we
either discard or arbitrarily complete any partial terminal
character, we again destroy inverse injectivity.

To address the last problem, we can truncate the final
encoded character in such a way that it can be completed
on decode without losing inverse injectivity. In particular,
after encoding, we remove all trailing zero bits (if there
are any) and the one bit that precedes all trailing zero bits.
Before decoding, we append a one bit and as many zero
bits as necessary to complete the final character code.

Unfortunately, although this technique preserves
inverse injectivity, it loses inverse surjectivity: There is
no encoded bit string that corresponds either to the null
string or to any string that ends with the character whose
code is all zeroes. For our purposes, the former limitation
is an advantage, since the null string is not syntactically
legal. We address the latter limitation in the following
subsection.

3.4. Avoiding the terminal character restriction

The limitation on the terminal character imposed by the
above technique would actually be advantageous if
Windows’ syntax restrictions prohibited only one specific
character (such as either space or period) from terminating
a name. However, since the number of prohibited
terminating characters is not exactly one, this is a problem.

We can remove this limitation by modifying the
encoding mechanism. Using the symbol ζ to designate the
character whose prefix code is all zeroes, we remove and
count all trailing ζ characters from the string to be
encoded, encode the remainder of the string as above, and
prepend to the encoded string a sequence of one bits equal
in number to the count of ζ characters removed from the
original string, followed by a zero bit. The encoded string
thus begins with a unary representation of the count of ζ
characters at the end of the unencoded string.

3.5. Varying exclusions by character position

We can vary the set of allowed characters according to
the specific character position, simply by using a different
prefix coding table to encode (and decode) the characters
in that position. So, for example, we could exclude a
certain character from the first position in a string but
allow it in all remaining positions.

This technique only works for specific character
positions counted from the left of the string, but by
reversing the string before encoding it, we can support
Windows’ restriction on the terminal character of a name.

3.6. Surjective block-cipher encryption

As mentioned above, syntax enforcement requires an
encryption method that is surjective. Stream ciphers [27]
satisfy this requirement; however, reusing a stream –

which would be required for detecting duplicate entry
names – leaks a large amount of information and is known
to be a severe security weakness.

Conventional block cipher padding techniques [30] are
not surjective, but – with one exception – the following
technique is: Prepend to the plaintext a one bit preceded
by as many zero bits as necessary to bring the total length
up to a multiple of the cipher block size. After decryption,
discard all leading bits up to and including the first one
bit. This technique is surjective except that it cannot
produce a padded value whose first block equals zero.
This exception is tolerable as long as this case can be
identified and rejected by the server.

To enable the exceptional case to be identified, we
encrypt the padded string with block cipher F, defined as
follows, where E is any standard block cipher encryption:

If the first block of the padded plaintext equals zero, then
the first block of the ciphertext equals zero, irrespective of
the encryption key.

Decryption is performed with the inverse function F–1,
defined as follows, where E–1 is the inverse of E:

This technique can be applied to cipher modes [30]
other than ECB. In particular, it will work correctly with a
chaining mode such as CBC as long as the initialization
vector is set to zero. The fixed initialization vector can
leak information about names with matching prefixes, so
if this is a concern, we could apply an all-or-nothing
transform [33] to the string before padding. Also, the
augmented cipher F is needed only for the first block;
subsequent blocks can be encrypted using the unmodified
block cipher E, since they are allowed to be zero.

4. Exclusive encryption process

This section specifies the full exclusive encryption and
decryption processes used by our secure directory service.
The following two subsections present a specific usage of
the techniques described in the previous section.

4.1. Encryption

Figure 3 illustrates the full procedure for exclusively
encrypting a directory entry name. First, the client maps
the name (§ 3.1): If the name equals “AUX”, “COMn”,
“CON”, “CONIN$”, “CONOUT$”, “LPTn”, “NUL”, or
“PRN”, for any digit n, followed by one or more
underscores, the client removes one trailing underscore;
otherwise, it leaves the name alone.

() () ()
()








=

=

=

otherwisexkE

xkEkE

x

xkF

,

0,0,

00

, Q

Q

() () ()
()








=

=

=
−

−−−

otherwiseykE

ykEkE

y

ykF

,

0,0,

00

,

1

111
Q

Q

Next, the client separates out case information (§ 3.2):
It extracts the case of each character into a separate bit
string, and it de-cases the mapped name by converting all
uppercase characters to their lowercase equivalents.

Then, it reverses the de-cased name (§ 3.5) so that the
following encoding step can restrict the terminal character.

To encode the reversed name, the client first removes
all trailing underscores (§ 3.4). Then, it encodes the first
character of the reversed name using a prefix coding table
that encodes underscore as all zeroes and that does not
include codes for ‘"’, ‘*’, ‘/’, ‘:’, ‘<’, ‘>’, ‘?’, ‘\’, ‘|’,
uppercase characters, control characters, space, or period
(§ 3.5). The remaining characters are encoded using a
prefix coding table that is similar, except it includes codes
for space and period. From the final encoded character,
the client removes all trailing zero bits (if any) and the one
bit that precedes all trailing zero bits (§ 3.3). The encoded
name is constructed as a one bit for each underscore that
was removed (§ 3.4) followed by a zero bit, followed by
each encoded character in sequence.

The client pads and encrypts the name using function F
defined in § 3.6. The case information is also encrypted,
but this uses the unmodified block cipher E.

After the client sends the encrypted name and the
encrypted case information to the servers, the server group
verifies the encrypted name by making sure its first block
is not equal to zero (§ 3.6). If it is, it rejects the client’s
request. Otherwise, it performs the requested operation
according to the appropriate procedure from § 2.

4.2. Decryption

Figure 4 illustrates the full procedure for exclusively
decrypting a directory entry name. First, the client
decrypts the encrypted name using function F–1 defined in
§ 3.6 and removes the padding. It also decrypts the case
information using unmodified block cipher E–1.

It then appends a one bit followed by a number of zero
bits whose count equals the length of the longest prefix
code in the coding table (§ 3.3), after which it removes all
leading one bits (if any) and the succeeding zero bit
(§ 3.4). It then decodes the first character using the coding
table that excludes space and period (§ 3.5), and it decodes
the remaining characters using the other coding table
(§ 3.3). Decoding stops when only zero bits remain. The
client then appends an underscore for each leading one bit
it removed from the encoded string (§ 3.4).

The client then reverses the decoded name (§ 3.5), and
it recombines the case information (§ 3.2).

Finally, the client de-maps the name (§ 3.1) by
appending an underscore if the string equals “AUX”,
“COMn”, “CON”, “CONIN$”, “CONOUT$”, “LPTn”,
“NUL”, or “PRN”, for any digit n, followed by zero or
more underscores.

A client that follows this decryption procedure is
guaranteed to see entry names that satisfy the correctness
properties itemized in § 1, irrespective of whatever data
any other client attempted to send to the directory server
group.

Figure 3. Exclusive encryption procedure

Figure 4. Exclusive decryption procedure

Demap

Decode

Decrypt

with F–1

Decrypt

with E–1

Restore

case

name

mapped name

cl
ie
n
t

st
ep
s

case info encoded name

encrypted

name

encrypted

case info

decased name

Reverse

reversed name

Map

Encode

Encrypt

with F

Encrypt

with E

Separate
case

Validate

name

mapped name

cl
ie
n
t

st
ep
s

case info

encoded name

encrypted name encrypted

case info

decased name

se
rv
er

st
ep

Reverse

reversed name

4.3. Examples

Table 1 presents two prefix tables for a very limited
alphabet, in which the only legal characters are ‘a’, ‘b’,
underscore, period, and space (shown with the symbol �).
Since period and space are not legal trailing characters, the
code table for the first character (after reversing the string)
has no codes for these characters.

With neither reserved strings nor case information, and
using an identity function as a 4-bit block cipher, Table 2
shows the exclusively encrypted ciphertext for all legal
one- and two-character names. It also shows the plaintext
for all possible values of a single ciphertext block.

Walking through one example, the name “bb” reverses
to itself, and it has no trailing underscores. The first ‘b’ of
the reversed name is encoded using the first code table to
1, and the second ‘b’ is encoded using the standard code
table to 01, from which the trailing one is removed since it
is the last character. The encoded name is thus 0 (no
trailing underscores) 1 (‘b’) 0 (‘b’ less the trailing one) =
010. This is encrypted by prepending a one, preceded by
no zero bits to pad it up to a multiple of 4 bits. Applying
the identity function yields 1010.

5. Other issues

In this section, we discuss several somewhat tangential
issues, such as preventing leakage of name-length
information, providing privacy of information other than
entry names, dealing with revisions to the Unicode
standard, and offering the Windows semantics of making
ownership not necessarily imply read or write access.

5.1. Hiding name-length information

Although exclusive encryption prevents unauthorized
readers from knowing the name of an entry, it leaks the
approximate length of the name. Specifically, the length
(in blocks) of the ciphertext name places upper and lower
bounds on the length (in characters) of the plaintext name.
We can prevent this leakage, at the expense of placing a
somewhat quirky restriction on the length of entry names,
by modifying the procedure as follows.

First, we must establish a length L that all ciphertext
names will have. This must be a multiple of the block
size, and it in turn limits the length of plaintext names in a
convoluted manner: Since characters are encoded using
variable-bit-length encoding, the length of the ciphertext is
only approximately related to the length of the plaintext.

Before encrypting, rather than padding a name to bring
its total length up to a multiple of the cipher block size, we
pad it so as to bring its length up to L, unless the encoded
name is too long, in which case it cannot be encrypted
using this technique. The padding is the same as before: a
one bit preceded by as many zero bits as necessary.

This technique is surjective except that it cannot
produce a padded value that is all zeroes. However, rather
than using a modified cipher that enables the server to
check for this case, it is simpler to map this special case to
a valid legal name that is too long to be encrypted by the
standard procedure. One obvious candidate is the string
whose encoding is L zero bits followed by a one bit.

If we use an all-or-nothing transform [33] to hide
partial name matches, it should be applied to the string
after it is padded, rather than before; otherwise, it will leak
length information through matching zero prefix blocks.

5.2. Obfuscating non-name information

Although our directory service provides privacy against
unauthorized readers, this privacy only concerns entry
names. It would be nice if we could also prevent leakage
of other data, such as file sizes, timestamps, attributes, and
directory structure (all of which are above lumped into
“reference” information), as well as access authorization.
Sizes and timestamps seem impossible to hide from the
servers, because the servers themselves directly witness
the data represented by these fields, namely when a file is
created or written and how much space it consumes. On
the other hand, attributes are straightforward to hide using
standard encryption. For items that fit neither of these two
classes, one approach to improving privacy is obfuscation.

Table 1. Example prefix codes for 5-character alphabet

Character First prefix code Std. prefix code

_ 00 000

a 01 001

b 1 01

. 10

� 11

Table 2. Encryptions and decryptions with identity cipher

Plaintext Ciphertext Ciphertext Plaintext

_ 0001 0000 illegal

a 0100 0001 _

b 0010 0010 b

_ _ 0011 0011 _ _

_a 1100 0100 a

_b 0110 0101 .b

a_ 0010 0000 0110 _b

aa 0010 0100 0111 _ _ _

ab 0001 0100 1000 ._

b_ 0001 0000 1001 .a

ba 0001 0010 1010 bb

bb 1010 1011 � b

._ 1000 1100 _a

.a 1001 1101 _.b

.b 0101 1110 __b

� _ 0001 0001 1111 _ _ _ _

� a 0001 0011

� b 1011

Obfuscating access authorization is straightforward.
The owner of a directory can insert ACEs for unauthorized
users and set their encrypted directory keys to garbage
values, and the server has no way of knowing whether or
not the ACEs belong to authorized readers. Furthermore,
the owner can insert ACEs for randomly generated public
keys that correspond to no actual user, and for these it can
even set the write-authorization bit, since no one (other
than the owner) knows the corresponding private keys.

Obfuscating structural information about the number of
entries in a directory is a considerably harder problem; in
fact, we do not currently have a solution. To hide the size
of a large directory by splitting it into smaller directories
requires a means of partitioning the entries that still
enables the servers to enforce directory-wide name
uniqueness but does not divulge the logical coherence of
the partitions to the servers. Furthermore, maintaining the
guarantee that no two correct clients see different views of
the same directory requires a means for enforcing
consistent access controls among all partitions of a
directory, again without betraying this coherence to the
servers. Even if we were to devise such a mechanism, it
seems likely that traffic analysis could obviate any benefit
from this obfuscation.

5.3. Unicode revision and case insensitivity

In developing this directory service, we discovered a
problem inherent in the use of case-insensitive comparison
for determining duplicate entry names. Since the Unicode
standard [41] is evolving, many character codes are not
yet defined. Windows allows directory entry names to
contain undefined characters (and this is in fact necessary
for portability between systems with different language
packs installed), but it makes case-insensitive comparisons
only for characters that have been defined (and installed).
This can lead to a situation in which two names are not at
first determined to be identical but then are later judged to
be identical following a revision of the Unicode standard
(and installation of a language pack).

There are three options for dealing with this issue:
• Abandon the guarantee that no two entries in the same

directory have the same name.
• Abandon case-insensitive name comparison.
• Partition the set of allowed characters into two subsets,

one case-insensitive and the other case-sensitive.
The first of these options is what Windows does;

however, it breaks a reasonable guarantee upon which
applications may rely. It is not clear that this poses a true
security risk, but since it has been shown that violating a
system’s assumptions about its input data can provide an
entrée for attackers [32], we are uncomfortable taking this
approach.

The second option is sensible and internally consistent,
but it changes the semantics that most Windows users
expect from their file systems, and it threatens backward
compatibility for the large installed base of applications
that have evolved with the current semantics.

The third option, though somewhat counterintuitive, is
our chosen approach. There are two obvious alternatives
for selecting a case-insensitive subset: First, we could
implement case insensitivity for a particular version of the
Unicode standard, (e.g., 3.2.0 [42]), thereby providing
broad linguistic coverage. Second, we could select a small
subset – such as Basic Latin or Latin-1 – that we expect to
cover the majority of use for actual directory entry names.
In particular, the Basic Latin subset is so important for
backward compatibility that the UTF-8 standard [44] was
developed specifically to address this concern. This
second alternative has the additional merit of drastically
reducing the required size for code tables if a two-stage
prefix encoding is employed, since the vast majority of the
character space can be encoded with the identity function.

5.4. Ownership without read or write access

Windows allows the owner of a directory not to have
read or write access, which our directory service does not.
We require the owner to have read access; otherwise, she
could not re-key the directory when removing a reader.
However, in Windows, an owner always has authorization
to grant herself read or write access, so lack of access is
merely a convenience to prevent unintentional reading or
writing. We can easily provide a similar convenience by
restricting an owner’s read or write access on the client,
since it is irrelevant to true security.

6. Related work

Most distributed file systems, whether server-based
[19, 20] or serverless [2, 40], do not address the concern
of untrusted remote storage machines, either for privacy or
data integrity. Similarly, content-publishing systems [13,
43] and content-indexing systems [18, 31, 34, 39, 45]
neither prevent the servers from reading user data nor
prevent the publisher from littering the namespace with
garbage. Although our design does not prevent a writer
from creating nonsensical entry names, it at least restricts
the names to a legal syntax and protects their privacy.

The Cryptographic File System (CFS) [6] encrypts both
file content and directory entry names on a client machine
before writing them to a file server. Each entry name is
encrypted using a conventional block cipher (DES [29])
and subsequently encoded in an ASCII representation of
its hexadecimal ciphertext value. This encoding technique
is not surjective, so syntax enforcement by the server is
not possible. However, since CFS does not allow sharing
between users, the writer of a directory entry can harm
only himself by writing a syntactically illegal name.

Thy Byzantine File System (BFS) [9] replaces an NFS
server with a Byzantine-fault-tolerant replica group.
Under the assumption that strictly fewer than one third of
the servers are compromised (a condition that is provably
necessary [23]), BFS guarantees the integrity of file data
and directory metadata. However, it does not attempt to
provide privacy of file or directory information.

SUNDR [26] is a file system that offers strong integrity
and privacy guarantees from the server that provides data
storage. It does this by placing full trust in all client
machines, which implement the entirety of the file system
semantics on top of block-level storage provided by the
server. Since the server does not understand the blocks it
stores, it cannot guarantee validity of the written data. In
addition, since it does not employ Byzantine replication, it
is vulnerable to denial-of-service and data-destruction
attacks. It does, however, guarantee data consistency by
means of all-or-nothing modification semantics.

OceanStore [21] is a distributed object store that uses
Byzantine replica groups that understand the semantics of
all object updates. It also employs cryptography to protect
the privacy of user data, but the design is not yet to a point
where it is clear how to harmonize the conflicting goals of
privacy and full semantic understanding by the servers.

The Phalanx [25] replication system is an alternative to
the BFT toolkit [9] on which our service design is based.
Phalanx addresses the issue of “dishonest writers,” in the
sense of guaranteeing eventual consistency among
replicas, but it does not enforce syntactical correctness.

Our directory service provides data privacy through
cryptographic means. An alternative approach is to use
secret sharing [37] to share the information among the
servers in a Byzantine replica group. The Cornell On-line
Certification Authority [46] is an example of a system that
combines Byzantine fault-tolerance with secret sharing to
provide data privacy and integrity, specifically to protect
the service’s private key. One might imagine a similar
approach to addressing directory name integrity, perhaps
using verifiable secret sharing [4] to enforce syntax
requirements. However, storing different pieces of each
name on different servers complicates the design, because
Byzantine replicas must be exactly identical.

There has been some other research on performing
operations on encrypted data. Song et al. [38] developed
techniques for performing searches on encrypted data.
Convergent encryption [16] enables identification and
coalescing of duplicate files encrypted with different keys.
Restrictive blind signatures [7] enable a signer to sign data
that it cannot read, while permitting the signer to constrain
the structure of the data it signs.

The exclusive encryption process augments a standard
block cipher to make it surjective. BEAR and LION [3]
and BEAST [24] are block ciphers that have a variable
block size and are surjective. Hasty Pudding [36] has a
block size that is not only variable but that can even
support fractional block sizes. An advantage of our
construction is that rather than introducing a new cipher
whose security may be in doubt [15], it employs any
extant block cipher, some of which have withstood
extended cryptanalytic scrutiny [27].

Black and Rogaway [5] present three methods for
encrypting an arbitrary finite domain, using constructions
based on any extant block cipher. However, without the
name-length restrictions introduced (as a side effect) in
§ 5.1, our encryption domain is infinite.

7. Summary and conclusions

In this paper, we presented the design of a secure,
remote, file-system directory service. Our design provides
privacy of directory entry names not only from users who
are not authorized readers but also from the servers that
implement the directory service. In a similar vein, it
provides persistence and integrity of directory data despite
attempts at destruction or modification either by users who
are not authorized writers or by a small fraction of the
implementing servers. Furthermore, it enforces syntactic
legality [28], uniqueness, and view consistency of
directory entry names.

Our service provides privacy through encryption and
persistence and integrity through Byzantine fault-tolerance
[9]. To enable the enforcement of name syntax and
uniqueness without divulging name information to the
servers, we developed an encryption procedure – which
we call “exclusive encryption” – that is inherently
incapable of encrypting syntactically illegal names and
that enables a server to check for case-insensitive name
uniqueness by examining only ciphertext.

The exclusive encryption process includes several
steps, each of which enables a different type of exclusion.
To exclude specific strings, it constructs a simple mapping
from the set of allowed strings to the set of all strings. To
exclude specific characters, it constructs a prefix encoding
for all legal characters, amended with a special affix and
terminus to maintain the required invariants. The coding
can be varied by index to support different restrictions at
different character positions. To support case-insensitive
comparison, case information is extracted and encrypted
separately.

Exclusive encryption requires a block cipher encryption
function that is surjective. Although several new ciphers
with this property have been proposed [3, 24, 36], we
developed a construction that can employ (and derive
security from) any extant block cipher. Alternatively, we
can directly employ any extant block cipher (without our
augmentation) by fixing the size of the name ciphertext.
This alternative has the desirable property of preventing
the leakage of name length information, but it has the
somewhat undesirable side effect of placing a hard-to-
characterize restriction on the length of entry names.

During our development, we discovered an intrinsic
(and, we believe, previously unreported) problem with
enforcing case-insensitive name uniqueness, given that the
Unicode character set is not yet fully defined. We
suggested several possible work-arounds, but the problem
cannot be completely circumvented as long as the
character set remains in flux.

Although our service’s privacy guarantees apply only
to directory entry names, we also considered obfuscation
of access authorization information, which is reasonably
straightforward, and structural information, which seems a
priori tractable but for which we have not found a solution
that satisfies all of our security and correctness properties.
We regard the latter of these as an open problem.

References

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. R.

Douceur, J. Howell, J. R. Lorch, M. Theimer, R. P. Wattenhofer,

“FARSITE: Federated, Available, and Reliable Storage for an

Incompletely Trusted Environment”, 5th OSDI, Dec 2002.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R.

Wang, “Serverless Network File Systems”, 15th SOSP, ACM, Dec

1995, pp. 109-126.

[3] R. Anderson and E. Biham, “Two Practical and Provably Secure

Block Ciphers: BEAR and LION”, 3rd International Workshop on

Fast Software Encryption, 1996, pp. 113-120.

[4] J. Benaloh, “Dense Probabilistic Encryption”, Selected Areas in

Cryptography ’94, May 1994, pp. 120-128.

[5] J. Black and P. Rogaway, “Ciphers with Arbitrary Finite Domains”,

RSA Data Security Conference, Cryptographer’s Track, LNCS

1872, Springer-Verlag, Feb 2002.

[6] M. Blaze, “A Cryptographic File System for Unix”, Ist Computer

and Communications Security, ACM, Nov 1993.

[7] S. Brands, “Untraceable Off-Line Cash in Wallets with Observers”,

CRYPTO ’93, 1993, pp. 302-318.

[8] R. Canneti and T. Rabin. “Optimal Asynchronous Byzantine

Agreement”, Technical Report #92-15, Computer Science

Department, Hebrew University, 1992.

[9] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance”,

3rd OSDI, USENIX, Feb 1999, pp. 173-186.

[10] M. Castro and B. Liskov, “Authenticated Byzantine Fault

Tolerance Without Public-Key Cryptography”, Technical Memo

MIT/LCS/TM-589, MIT LCS, Jun 1999.

[11] M. Castro and B. Liskov, “A Correctness Proof for a Practical

Byzantine-Fault-Tolerant Replication Algorithm”, Technical Memo

MIT/LCS/TM-590, MIT LCS, Jun 1999.

[12] M. Castro and B. Liskov, “Proactive Recovery in a Byzantine-

Fault-Tolerant System”, 4th OSDI, USENIX, Oct 2000.

[13] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A

Distributed Anonymous Information Storage and Retrieval

System”, ICSI Workshop on Design Issues in Anonymity and

Unobervability, Jul 2000.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to

Algorithms, MIT Press, 1990.

[15] C. D’Halluin, G. Bijnens, B. Preneel, V. Rijmen, “Equivalent keys

of HPC”, Asiacrypt 99, LNCS 1716, Springer-Verlag, 1999.

[16] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, M. Theimer,

“Reclaiming Space from duplicate Files in a Serverless Distributed

File System”, ICDCS, Jul 2002.

[17] J. Garay and Y. Moses, “Fully Polynomial Byzantine Agreement

for n 3t Processors in t+1 Rounds”, SIAM Journal of Computing,

27(1), 1998.

[18] Gnutella. http://gnutelladev.wego.com

[19] R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page Jr., G. J. Popek,

and D. Rothmeier, “Implementation of the Ficus Replicated File

System”, USENIX ’90, Jun 1990, pp. 63-71.

[20] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,

R. Sidebotham, and M. West, “Scale and Performance in a

Distributed File System,” Transactions on Computer Systems,

ACM, 1988, pp. 51-81.

[21] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.

Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.

Wells, and B. Zhao, “OceanStore: An Architecture for Global-Scale

Persistent Storage”, 9th ASPLOS, ACM, Nov 2000.

[22] L. Lamport, “Time, Clocks, and the Ordering of Events in a

Distributed System”, CACM, 21(7), 1978.

[23] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals

Problem”, TPLS 4(3), ACM, 1982.

[24] S. Lucks, “BEAST: A Fast Block Cipher for Arbitrary Blocksizes”,

Communications and Multimedia Security, IFIP , 1996, pp. 144-

153.

[25] D. Malkhi and M. Reiter, “Secure and Scalable Replication in

Phalanx”, 17th SRDS, IEEE, Oct 1998, pp. 51-60.

[26] D. Mazières and D. Shasha, “Don't Trust Your File Server”, 8th

HotOS, May 2001, pp. 113-118.

[27] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of

Applied Cryptography. CRC Press, 1997.

[28] Microsoft, “File Name Conventions”, MSDN, Apr 2002.

[29] National Bureau of Standards, “Data Encryption Standard”, FIPS

Publication #46, NTIS, Apr 1977.

[30] National Bureau of Standards, “Data Encryption Standard Modes of

Operation”, FIPS Publication #81, NTIS, Dec 1980.

[31] S. Ratnasamy, P. Francis, M. Handley, and R. Karp, “A Scalable

Content-Addressable Network”, SIGCOMM 2001, ACM, Aug

2001.

[32] V. Razmov and D. R. Simon, “Practical Automated Filter

Generation to Explicitly Enforce Implicit Input Assumptions”, 17th

ACSAC, Dec 2001.

[33] R. L. Rivest, “All-Or-Nothing Encryption and The Package

Transform”, Fast Software Encryption 1997, LNCS 1267,

Springer-Verlag, 1997, pp. 210-218.

[34] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object

Location and Routing for Large-Scale Peer-to-Peer Systems”,

Middleware 2001, Nov 2001.

[35] F. Schneider, “Implementing Fault-Tolerant Services Using The

State Machine Approach: A Tutorial”, Computing Surveys, ACM,

22(4), 1990.

[36] R. Schroeppel, “An overview of the Hasty Pudding Cipher”, AES-

submission, http://www.cs.arizona.edu/~rcs/hpc, 1998.

[37] A. Shamir, “How to Share a Secret”, CACM, 22(11), pp. 612-613,

1979.

[38] D. X. Song, D. Wagner, and A. Perrig, “Practical Techniques for

Searches on Encrypted Data”, Symposium on Security and Privacy,

IEEE, 2000, pp. 44-55.

[39] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan,

“Chord: A Scalable Peer-to-Peer Lookup Service for Internet

Applications”, SIGCOMM 2001, ACM, Aug 2001.

[40] C. Thekkath, T. Mann, and E. Lee, “Frangipani: A Scalable

Distributed File System”, 16th SOSP, ACM, Dec 1997, pp. 224-

237.

[41] The Unicode Consortium, The Unicode Standard, Version 3.0,

Addison-Wesley, Feb 2000.

[42] The Unicode Consortium, Unicode Standard Annex #28: Unicode

3.2, Mar 2002,

http://www.unicode.org/unicode/reports/tr28/tr28-3

[43] M. Waldman, A. D. Rubin, and L. F. Cranor, “Publius: A Robust,

Tamper-Evident Censorship-Resistant Web Publishing System”,

9th USENIX Security Symposium, Aug 2000, pp. 59-72.

[44] F. Yergeau, “UTF-8, a Transformation Format of ISO 10646”, RFC

2279, Jan 1998.

[45] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: An

Infrastructure for Fault-Tolerant Wide-Area Location and Routing”,

UCB Tech Report UCB/CSD-01-1141.

[46] L. Zhou, F. B. Schneider, and R. van Renesse, “COCA: A Secure

Distributed On-line Certification Authority”, Technical Report

2000-1828, Department of Computer Science, Cornell University,

Dec 2000.

