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Abstract 
 

How do you tell a computer from a human?  The 
situation arises often on the Internet, when online polls 
are conducted, accounts are requested, undesired email is 
received, and chat-rooms are spammed.  The approach 
we use is to create a visual challenge that is easy for 
humans but difficult for a computer.  More specifically, 
our challenge is to recognize a string of random  
distorted characters.  To pass the challenge, the subject 
must type in the correct corresponding ASCII string.  
From an OCR point of view, this problem is interesting 
because our goal is to use the vast amount of 
accumulated knowledge to defeat the state of the art OCR 
algorithms. This is a role reversal from traditional OCR 
research. 

Unlike many other systems, our algorithm is based on 
the assumption that segmentation is much more difficult 
than recognition.  Our image challenges present hard 
segmentation problems that humans are particularly apt 
at solving.  The technology is currently being used in 
MSN’s Hotmail registration system, where it has 
significantly reduced daily registration rate with minimal 
Consumer Support impact. 
 

1. Introduction 
 

Work on distinguishing computers from humans traces 
back to the original Turing Test [1] which asks that a 
human distinguish between another human and a machine 
by asking questions of both.  Recent interest has turned to 
developing systems that allow a computer to distinguish 
between another computer and a human to enable the 
construction of automatic filters to prevent automated 
scripts from utilizing services intended for humans [2].  
Such systems have been termed Human Interactive Proofs 
(HIPs) [3] or Completely Automated Public Turing Tests 
to Tell Computers and Humans Apart (CAPTCHAs) [4].  
An overview of the work in this area can be found in [5]. 

The CMU CAPTCHA project and the work at PARC 
[6] are presently the most advanced of these efforts and 
include various text recognition, visual pattern 
recognition, image processing, and audio recognition 
challenges.  

Construction of HIPs that are of practical value is 
difficult because it is not sufficient to develop challenges 

at which humans are somewhat more successful than 
machines.  This is because there is little cost in having an 
automatic attacker that fails most of the time.  In practice, 
if one wants to block automated scripts, a challenge at 
which humans are 99% successful and machines are 1% 
successful is still not sufficient if the cost of failures and 
repetitions is low for a machine.  Thus, to be useful, a HIP 
must make the cost of an automated attack high enough to 
discourage repeated guessing.  In a strong sense, a HIP is 
successful if the cost of answering challenges with a 
machine is higher than the cost of soliciting humans to 
perform the same task. 

 
1.1. Synthesis and analysis 

 
One important advantage of the HIP approach is that 
generating a HIP is a “synthesis” task while breaking it is 
an “analysis” task.  Computationally, Synthesis is usually 
orders of magnitude easier than analysis, especially when 
synthesis is lossy.  For instance,  computing a 2D 
projection of a 3D object, merging the projection into a 
larger image, and occluding it with other objects are all 
trivial image synthesis tasks.  Locating and reconstructing 
the original object is much more difficult and is still an 
unsolved vision problem.   
     Fortunately, the task for generating a HIP is usually a 
synthesis one, while breaking the HIP can be made an 
analysis task.  This generally makes it easier to modify a 
HIP paradigm than a system that has been constructed to 
analyze it.  Even if analysis techniques catch up with a 
particular HIP system on one axis, a simple modification 
can often create a new design that is beyond the reach of 
analysis tools on some other axis.  This has the potential 
to place an enormous burden on adversaries who seek to 
defeat a HIP system.  For instance, if a HIP required 
counting how many instances of chairs appear in an 
image, and if an adversarial party had painstakingly built a 
chair detector, the HIP paradigm could easily change to 
counting butterflies, and the adversary might have to build 
a butterfly detector from scratch.  This is an arms race 
stacked in favor of HIPs. 
    It is interesting to note that other races can be stacked 
differently.  For instance SPAM filtering put the burden of 
analysis on the filtering while the spammer has the much 
easier task of synthesis.  This is also an arm’s race, but it 
is stacked in the favor of the spammer which does the 



synthesis. When the filter blocks the spam, the spammer 
can very cheaply generate different forms of email.  
Because analysis is so much harder than synthesis, it may 
eventually become difficult even for the human to sort the 
SPAM from genuine email based on content alone.  An 
interesting strategy is to turn the tables around and 
challenge the spammers with a HIP. 
 
1.2. Character recognition versus other visual 
HIPs 
 

There are many synthesis tasks which might be 
appropriate as HIPs.  Among visual challenges, we have 
chosen character recognition for several reasons.  First, 
the task must be extremely simple and universal.   Humans 
may have to solve lots of HIPs in different situations.  If 
they have to read and understand different instructions for 
each HIP, it puts an important cognitive burden on the 
subject who is likely to eventually refuse to do it.  For 
instance, recognizing random objects in a scene may be a 
good challenge, but it requires instructions as to which 
objects must be recognized, and a description of the 
dictionary of the object names.  Universality is unlikely to 
happen as different and competing entities are likely to 
generate HIPs with incompatible instructions.  Counting 
objects in a scene also requires instructions and 
potentially large images since we need to count several 
different entities to maintain a less than one in a thousand 
chance of an adversary being successful by random 
guessing.  This then also becomes a fairly complex 
cognitive task for human subjects. 

Identifying letters, on the other hand, has several 
advantages.  The dictionary is obvious and each class has 
an assigned button on the keyboard.  Letters/digits have 
less ambiguity and are more language independent than 
other object names, and every computer has primitives to 
draw them on a bitmap.  Optical character recognition 
(OCR) is a very well understood problem for both printed 
and cursive text, and we know the strengths, weaknesses, 
and complexity of the state of the art algorithms [7].  
Arguably, if any visual HIP has a chance of becoming 
universal, character recognition HIPs are probably it. 

 
1.3. Pure classification tasks 
 

Pure classification tasks, however, can be solved in a 
fairly automatic way.  Since the ‘P’ in “CAPTCHA” 
stands for public, it is possible to generate a large 
database of challenges with their labels.  We can then 
train state of the art learning algorithms, such as neural 
networks or Support Vector Machines (SVM), on this 
database and expect fairly good results.  Since this 
procedure is automatic, every time the HIP paradigm  
changes, a new database can be generated and fed to the 

learning algorithm to break the new paradigm.  A large 
number of analysis problems are solved is such a way.  
Indeed, many in the field consider that at least for printed 
characters, OCR is a solved problem.  Even for cursive 
and highly distorted characters, the state of the art OCRs 
are remarkably robust and can recognize letters under 
extreme conditions of distortion and noise [7].   

We therefore propose to augment the classification task 
with a segmentation task.  In section 2, we argue that 
segmentation is intrinsically harder than classification and 
still presents an insurmountable challenge for the current 
state of the art algorithms.   

This is not equivalent to saying that the problem will 
never be solved.  Clearly, if humans can do it, we have no 
way to assert that machines cannot.  However, humans 
benefit from massive parallel visual processing and yet-to-
be-understood multi-scale reasoning algorithms.  When 
computer algorithms approach human segmentation 
abilities, many important vision tasks will be resolved as 
well.  In the meantime, segmentation HIPs can provide 
useful services. 
 

2. Recognition versus segmentation 
 
Is pattern recognition fundamentally different from pattern 
segmentation and detection?  Can segmentation be cast as 
a recognition problem?   
 
2.1. The “everything else” space 
 
One might argue that it is possible to build a segmenter 
out of a recognizer by running the recognizer over the 
entire image, and training it to only fire when valid 
patterns are encountered.   Despite the fact that this 
approach may not be practical at test time (for 
computational reasons), the main problem is that training 
such a recognizer might be prohibitively expensive.  The 
recognizer needs to distinguish valid characters from bad 
input.  This is potentially very difficult because the class 
boundary between a given class and everything else is 
typically much more complex than the class boundary 
between two classes, which is often linear for all practical 
purposes.  The intrinsic dimensionality of the everything-
else space can be much larger than the intrinsic 
dimensionality of the space generated by valid examples.  
Depending on the problem, the space of “sampled” 
everything-else can be zero (every sample is a valid 
pattern), large (e.g. mis-aligned or cropped valid patterns) 
or hopelessly huge (purposefully designed “garbage” 
patterns). Therefore, to train a classifier to recognize 
everything-else can be a much harder task than regular 
classification between given classes.   
 
2.2. Segmentation successes 



 
There are a few cases where classifiers are trained for 
detection and segmentation.  For instance neural networks 
have been successfully used for the segmentation of 
cursive handwriting [8].  However, this success relies on 
three contributing factors.  The cursive segmentation 
problem is 1-dimentional, the everything-else space is 
limited to transition from valid classes to valid classes 
(mis-alignment), and classification is helped by a language 
model.  If the segmentation was 2 dimensional, the 
dynamic programming algorithm provided by Viterbi 
would not work and would be prohibitively expensive [9].  
Because the everything-else space is relatively small, it 
can be sampled and learned.  Even so, the performance 
would not be satisfactory if a language model was not 
used to filter out mis-classification of “everything-else as 
valid characters.  
    Another example is the use of a boosting classifier for 
face detection [10].  In this case, boosting is used to select 
features to detect faces in an image, with a remarkably 
low rate of false positives.  The success of human face 
detection is due to the presence of very characteristic 
features around faces, e.g. darker regions around the eyes, 
nose and mouth, with a fixed relationship between them, 
which can be detected by a clever algorithm, and used for 
localization.  If a set of low level features can be linked 
with the presence of an object, localization is a much 
easier task.  Of course, in an adversarial case, extra care is 
taken to ensure that valid and invalid patterns created by 
distortions have similar features. 
 
2.3. Making segmentation difficult 
 
Unlike cursive handwriting and face detection where the 
segmentation task is fixed, we have the freedom to set our 
problem to make segmentation difficult.  In particular, we 
can choose a 2D setting, generate a very high dimensional 
space for everything-else, and remove many features that 
could distinguish valid characters from random patterns.  
We also do not limit our selection of strings to those that 
appear in a dictionary.  Figure 1 is a simple illustration of 
the difference between classification and segmentation.  

 
Figure 1.  Top: No distortions.  Bottom: Random 
placements and arcs drawn with foreground (2 
per letter) and background (1 per letter) colors. 

The top portion of the figure contains the unaltered letters 
‘ABCDE’. The same letters at the bottom have been 
randomly moved and covered with arcs of both 
foreground and background color.  Even with such simple 
processing, off the shelf OCRs fail to recognize these 
letters.  For instance, when the Scansoft OCR was fed the 
tiff images from figure 2, 
 

 
 
 

 
Figure 2.  Top: No distortions.  Middle: image 
warping.  Bottom: Random positions, and 1 
foreground arc per letter. 
 
it produced respectively “THE QUICK BROWN FOX 
JUMPS”, “TIlE QUICK BkOWN FOX iUMPS”, and 
“YaJ _oJJI – YMMP”. Distortions such as warping 
(which will be described in the next section) clearly affect 
recognition but not nearly as much as arcs and random 
positioning.  One reason is that letter placement is not 
known a-priori in the last example and random positions 
yield fictitious characters that are as valid to the OCR as 
the true characters.  Yet this task remains fairly easy for 
humans.   
    It should be noted that in this example, a clever 
programmer could easily distinguish the added strokes 
from the letters by looking for constant thickness, 
horizontal and vertical alignments, serifs, etc. and solve 
this problem.  The algorithm, however, would have to be 
custom for this particular alteration.  We will show in later 
sections much more challenging images that even 
intensive custom programming might not break. 
 

3. Distortions 
 
The simplest distortions are random rotations and 
translations of the characters, but most good OCR 
software is insensitive to such distortions.  We therefore 
add a general warping function.  First, we compute a pair 
of warp fields by generating random (white) noise and 
then use a separable recursive low-pass filter [11].  Two 
parameters control this step:  the cut-off frequency of the 
low-pass filter and a scaling factor that multiplies the 
whole (normalized) field.  The first parameter controls the 
smoothness of the deformation while the second 
parameter controls its intensity.  These warp fields are 
then used to re-sample the originally rendered character 
bitmap using an inverse warping algorithm [12].  

 



Figure 3.  Image after applying warp field. 

Figure 3 shows the resulting image after the original 
image has been deformed with a low-frequency random 
warp field. 
 

4. Arcs 
 
In order to make the character segmentation task more 
difficult, we draw random arcs over the generated letters.  
Arcs are drawn in both the foreground and background 
color, in order to potentially link or break apart letter 
features. 
   Each arc is drawn as a Cardinal spline [13] with three 
control points.  The end points of each arc are chosen 
(with random perturbations) to roughly bridge the space 
between adjacent characters.  The midpoint is chosen as a 
random deflection of the average position of the 
endpoints, in order to give each arc some random 
curvature.  Figure 4 shows the resulting image after some 
random arcs have been superimposed. 

 

Figure 4.  Image after adding random arcs. 

 

5. Thickness Variations 
 
Arcs and letters might be distinguishable because of their 
thickness.  If this was the case, an effective adversarial 
attack could be to identify arcs and remove them, or 
identify the corresponding pixels as “don’t care”.  Once 
the letters are identified, segmentation and therefore 
classification becomes much easier. (We believe that 
warping alone does not prevent breaking the challenges.)  
It is therefore imperative to make the segmentation of the 
added arcs from the letters extremely difficult. 
 
5.1. Morphological transformations 
 
Our first attempt was to use morphological 
transformations, such as dilation and erosion on the 
characters and arcs to vary their thickness.  To do this, 
compute the distance transform [14] on the binary image, 
and set the pixels to foreground if the transform distance 
is less than a random value taken from a smoothed 
random scalar field (obtained using a similar algorithm as 
for warping).  We then do the same on the negative 
images for the erosion. To prevent characters from 
disappearing in places, we also estimate the zero partial 
derivatives of the distance transform (which correspond to 
medial axes) and prevent the corresponding pixels from 

being changed by the erosion and dilation.  An example of 
the resulting image is shown in Figure 5. 

 

Figure 5. Thickness variations from dilations and 
erosions. 

Unfortunately, this approach is not visually appealing 
because it makes the characters appear to be dirty.  The 
erosion can also sometimes eat too much of a character 
(e.g. left leg of first ‘M’ or top of ‘T’ in the figure).  We 
only implemented dilation for binary images, which has 
the drawback of loosing aliasing information on the letters 
(which is also less appealing).  Oversampling or 
implementing dilation for gray level images makes this 
method computationally expensive. 
 
5.2. Local warping 
 
A better alternative to dilation is to subject the whole 
image to a local warping.  This step is similar to the 
previous warping step described in the distortion section.  
The difference is that the cut-off frequency of the low pass 
filter is higher, while the intensity is lower.   The result is 
that warping is more localized and gives the visual 
appearance of changes in thickness.  This process makes 
distinguishing arcs from pieces of letters more difficult 
but is still esthetically pleasing and computationally 
cheap.  The result of local warping on the image and arcs 
(with no other distortion) is shown in Figure 6. 

 

Figure 6. Thickness variations from local 
warping. 

6. Deployment  
 
    Many combinations of alterations can be used to make 
the challenge more difficult to computers.  We can 
increase the size of the image (make it truly 2D), the 
number of arcs, the number of letters, and even make the 
challenge a “find k out of n” at very high difficulty 
settings. 

Using the above methods, a single distortion parameter 
can be introduced to adjust the complexity of the image.  
Initially, the setting could be a low or no distortion.  When 
the adversarial party starts breaking the challenges, the 
knob can be turned up to make the challenges harder.  
Figure 7 shows, for example, the effect of various settings 
ranging from no distortion to high distortion. 



 

 
 

Figure 7.  Images with increasing amount of 
distortions. 

Our HIP was deployed in MSN’s hotmail registration 
system (www.hotmail.com) on December 12th 2002.  A 
19% drop in daily registration was immediately observed.  
At the time of this publication, the Customer Support 
inquiries related to this implementation have been 
minimal, indicating that the HIP has been readily accepted 
by hotmail users. 
 

7. Conclusion 
 

Effective Human Interactive Proof systems are 
becoming an important component for many on-line 
services.  By making the cost prohibitive for a machine to 
gain access without the expenditure of human capital, one 
can protect many services from unwanted automated 
intrusions.  Gating services such as electronic mail, 
admission to chat rooms, and on-line polling can help 
preserve the integrity of these services. 

The techniques described in this paper leverage the 
human advantage over machines at segmenting text into 
its constituent characters.  By exploiting these advantages, 
text-based challenges can be generated that are fairly 
easily read by humans but are well beyond the current 
capabilities of automated text recognizers. 

Challenges can be generated efficiently, and their 
difficulty can be easily adjusted in response to user 
feedback or technological advances.    

While we believe that these methods provide a high 
degree of assurance, further work is likely to be necessary 
to stay ahead of developments in hardware and software 
that may better mimic the parallel processes utilized by 
humans for text recognition. 
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