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ABSTRACT 

Building large software systems is hard. Maintaining large 
systems is equally difficult. Making post-release changes 
requires not only thorough understanding of the architecture of 
a component about to be changed but also its dependencies and 
interactions with other components in the system. Testing such 
changes in reasonable time is a tough problem on its own as 
infinitely many test cases can be executed for any modification. 
What if you had to make such modifications daily, maintain 
reasonable turnaround time, and you had a few hundred million 
users intolerant of even the smallest mistakes? This is the 
challenge Microsoft’s Windows Serviceability group faces each 
day. 

One way of battling complexity of software re-testing is to 
ensure that appropriate information is collected and used to 
guide and focus test efforts. Data needs to be modification-
specific but should allow testers to understand system-wide 
implications of the change and risks it involves. The Windows 
Serviceability team uses a set of software metrics that are based 
on both static analysis of source code and dynamic analysis of 
tests running on the system. Both aspects come together and 
deliver data used to predict risk and impact of a change and to 
guide re-testing of modified code by answering the following 
questions: Which parts of the change are the riskiest? Which 
existing test cases should be executed to maximize the chances 
of finding defects? Which parts of the change will not be covered 
by existing tests? What dependent pieces of code need to be re-
tested? 

This paper presents an analysis of the challenges behind 
servicing Windows operating system, ideas behind our system 
of collecting and reporting change-related data, implementation 
details, and some of the results we were able to achieve with it. 
Above all, this paper will show how appropriately collected and 
applied data exposes an additional layer of detail which 
supplements testers’ own skills and experiences and allows for 
better understanding of testing required in the context of a 
specific code change. 

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Metrics—complexity measures, 
product metrics. 

Keywords 

Software maintenance, software metrics, large systems, risk and 
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1. MAINTENANCE TESTING 

Software maintenance is a set of activities associated with 
changes to software after it has been delivered to end-users. The 
IEEE Standard for Software Maintenance (1) defines three main 
types of maintenance activities: 

1. Corrective maintenance: reactive modification of a 
software product to correct discovered faults, which 
includes: 
a. Emergency maintenance: unscheduled corrective 

maintenance performed to keep a system operational. 
 

2. Adaptive maintenance: modification performed to keep a 
computer program usable in changed or changing 
environment. 
 

3. Perfective maintenance: modification to improve 
performance or maintainability.  

The amount of effort going into each of these categories will 
vary depending on the nature of the software considered, its 
intended purpose, size and characteristics of its current user 
base. However, the software maintenance phase exhibits 
attributes that are common across different software products: 

1. Software maintenance is expensive. It is generally accepted 
that the maintenance phase consume the majority of 
resources required to take a software product throughout 
its lifecycle, from inception until end-of-life. The total cost 
of maintenance is estimated to comprise 50% or more of 
total life-cycle costs. (2) 
 

2. Maintenance work is typically done by people who had not 
created the system. Unless the effective lifetime of a 
software product is relatively short, it should be expected 
that original designers, developers and testers are no 
longer involved in changes to the product. Reverse 
engineering might be necessary in absence of good 
documentation and institutional knowledge. 
 

3. The maintenance staff is typically much smaller in size than 
the development staff required to create the product in the 
first place. 
 

4. Changes in deployed software carry a high risk due to 
possibility of introducing unwanted behavior. Customer’s 
tolerance to such breaking changes is low. 

 
All of these characteristics influence testing during software 
maintenance phase. Testing of changes to deployed software is 
necessarily a different activity from software testing before 
release. Even though software maintenance testing deals with 
fewer changes, it typically needs to happen in very limited time 
and often with limited resources. On the other hand, increased 
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Figure 1. Servicing branch structure 

risk and cost of making mistakes might warrant expanded test 
scope. These two competing forces create a challenging 
environment. 

2. WINDOWS SERVICING LANDSCAPE 

2.1 Customers 

Customers interested in receiving updates to Windows can be 
very broadly divided onto four groups. Home users 
predominantly use the client version of the operating system 
like Windows Vista, Windows XP, or Windows MediaCenter and 
want to keep their PCs in good working condition. Small and 
medium-size businesses, as well as enterprises use both 
Windows server and client releases and want to protect their IP, 
avoid work stoppage, keep their maintenance costs low and 
want their investments in IT infrastructure working reliably. 
Original equipment manufacturers (OEMs) and 
independent hardware vendors (IHVs) produce PCs and 
devices working with Windows and want the operating system 
to support the newest hardware and help their customers 
obtain the best possible experience. Independent software 
vendors (ISVs) produce applications for Windows and need 
compatibility between different Windows versions and to have 
all the application features supported. 

During the post-release phase any of these groups might be the 
primary target of a fix. All of our customers however expect two 
things when a Windows fix is requested: quality, defined as 
seamless integration and lack of change in behavior1, and 
reasonable turnaround time between a problem is reported and 
having a fix ready for deployment. 

2.2 Support complexity 

A Windows fix is a packaged set of binaries. When installed, 
these new binaries will replace (or if completely new, be added 
to) the binaries existing on the machine. Let’s look at the 
complexities behind producing a fix for Windows in the context 
of number of variations that need to be built and tested. 

When a new Windows OS version is released to manufacturing 
(RTM), the servicing team assumes ownership of all the source 
code used to build that version of Windows and will use it to 
produce hotfixes. Post-RTM code changes are cumulative. When 
a fix to binary FOO.EXE is made for the first time, the resulting 
package will contain only change a1. When a later change a2 is 
made to the same binary, that new hotfix will contain binary 
FOO.EXE with both changes a1 and a2. This approach simplifies 
code maintenance but as time goes on and more fixes get 
implemented, the likelihood of the resulting hotfix containing 
more than just one change increases. Consequently, if any of the 
changes are faulty and the failure is not discovered early, quality 
of all subsequent hotfixes will be negatively affected. 

                                                                        

1 If a change in behavior was intended, it should be backwards 
compatible. 

To minimize this problem, the servicing team maintains two 
copies (branches) of the source code. They are identical at RTM. 
One branch is used for Global Distribution Releases (GDR) and 
contains only changes that are to be released very broadly e.g. 
through the Windows Update service. Another, used for Limited 
Distribution Releases (LDR), contains all changes regardless of 
the scope of distribution. 

 

The reason for having the GDR branch is to minimize the 
accumulation of changes in widely-applicable hotfixes in case 
any of them is faulty and causes the OS to misbehave. Whenever 
we can we use the binaries coming from the less-changing GDR 
branch and only use the LDR binaries if absolutely necessary.2 
See Figure 1. 

 

Figure 2. Eight possible payloads for one fix 

At certain points in time all changes made to the LDR branch are 
rolled into a Service Pack. Apart from LDR changes, a Service 
Pack might contain additional fixes (perfective maintenance). Its 

                                                                        

2 One reason to use LDR branch is because the fix was not intended to be 
very widely distributed and resides only in the LDR code. Also, when a 
binary on the system is already from the LDR branch, any new versions 
of that same binary have to come from the LDR branch; otherwise fixes 
already on the machine might be lost when a newer GDR binary is 
installed. 
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release signifies a start of another set of branches, which will be 
used for fixes intended to be installed on computers with that 
Service Pack version already deployed. 

In practical terms a hotfix is an installable package that includes 
a set of new binaries. In the case of Windows, there is typically 
more than one package released for each fix. For example, there 
might be one package intended for Windows running on 32-bit 
(X86) and two for 64-bit (X64 and IA64) Windows. Before 
Windows Vista, each supported language was also packaged 
separately. Each hotfix package contains up to four sets of 
binaries. Separate GDR and LDR versions constitute one 
dimension. We support installing packages on the last two 
Service Packs therefore we create a separate set of binaries for 
each. Figure 2 shows all 12 basic package variations produced 
for each fix. 

In the context of testing the differentiation does not stop there. 
Windows comes in a wide range of editions. For example 
Windows Vista has five major flavors: Home Basic, Home 
Premium, Business, Enterprise, and Ultimate (3). All Windows 
versions contain the same core set of binaries but their behavior 
or functionality limitations might be different between editions. 
A change to a binary which is subject to such different 
limitations, will likely trigger testing on more than one edition. 

The last thing to consider is the time for which support is 
extended to customers. Depending on the version of Windows it, 
support will either be 5 or 10 years (4). During this time, th 
Windows Serviceability group will investigate problems, modify 
source code, build and test fixes. 

All of these aspects bring to light the requirement for the 
Windows maintenance testing process to be very efficient. It 
needs to have the ability to identify with high accuracy the areas 
of software directly or indirectly affected by the fix and to bring 
up and allow analysis of differences between hotfix variations.  

2.3 Hotfix testing process 

2.3.1 Objectives 
The primary objective of the hotfix testing process is to 
minimize the number of regressions, defined as unintended 
changes in the system’s behavior, found in released hotfixes. 
Secondarily, we should be able to release fixes efficiently, within 
days or weeks rather than months. 

2.3.2 Process 
All problem reports related to Windows go through one of the 
product support channels. A small portion of these support 
cases turns out to be true code defects (corrective maintenance) 
or requests to change behavior (adaptive maintenance). The 
Windows Serviceability team assumes responsibility for 
implementing necessary changes in both cases and starts the 
hotfix request process (Figure 3). 

Each hotfix request begins with triage which involves 
representatives of business management, development, testing, 
product support, and the customer in a brainstorming session 

on available and feasible workarounds, potential methods of 
fixing, and risks and efforts required from development and 
testing. 

 

Figure 3. Hotfix release process 

Assuming the fix is approved by all parties3, developers then 
implement the fix and get it code reviewed. Testers at the same 
time, prepare and carry out their test plans. 

Hotfix testing is typically carried out in three sequential phases: 

1. Fix-specific testing or unit testing. This set of tests makes 
sure the fix itself is in fact correcting the original problem 
as expected. 
 

2. Component integration testing. Internally, Windows is 
well componentized and all binaries have a place within 
some component area; interfaces between these areas 
serve as boundaries of component testing. The objective is 
to find and remove any regression in behavior within the 
component itself as well as at each of its interfaces. 
 

3. System integration testing. The changed component 
might have dependencies i.e. other components that use it 
through its interfaces. Each such dependent component 
might require re-testing, at least in places where it calls 
into changed code. 

 
When reasonable confidence in the quality of the fix is gained, it 
is sent to the customer for final acceptance. Upon approval, the 
hotfix is released. 

3. TESTING CHALLENGES 

Testing in general is an open-ended activity and more tests can 
always be developed for any non-trivial software. In the context 
of software maintenance, the challenge is to find the smallest set 
of tests that maximizes the defect-finding power of its members. 
Re-running all tests in our collateral (millions) on each fix would 
give us a good understanding of the level of quality4 but is not 

                                                                        

3 Fixes might not turn into a code change if the customer accepts a 
feasible workaround or the triage team concludes the risks are too high 
for the expected benefits. 
4 At least to the extent of the resulting system being of the same quality 
as the original release. 
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feasible from either the turnaround time point of view or cost 
incurred. On the other hand, not doing testing at all provides 
terrific turnaround time but we learn nothing about the quality 
of changed software. Some middle-ground must exist where 
enough testing is done to mitigate risks and enough information 
is gathered to assess the level of quality. 

Knowing how much testing is needed involves having deep 
understanding of the software under test as well as the change 
itself and its effects, and selecting from existing or adding just 
enough new tests to uncover side-effects of the change. The 
main idea behind the work described in this paper is that 
additional information about the system and the change itself 
will help a tester do her job more efficiently and effectively. 
More specifically, in the context of the three aforementioned 
categories of tests we want to get answers to the following 
questions: 

For the fix-specific testing: 

1. Which parts of changed code will we reach with our 
existing tests? 

2. For changes already covered with existing tests, are they 
enough? 

3. For which parts of changed code do we not currently have 
any tests? 

4. Which parts of the changed code carry the most risk of 
regressing existing behavior? 

 
For the component integration testing: 

1. Which tests from our component-specific test collateral 
should we run? 

2. In which order should we run them so that we maximize 
our chances of finding problems early? 

 
For the system integration testing: 

1. Which other components will be affected by this change 
and with what level of indirection? 

2. How exactly are other components affected (e.g. function 
calls of shared data)? 

3. What are the paths that will lead to executing the 
dependency link between that component and the changed 
component? 

4. PATCH ANALYSIS TOOLSET 

The Windows Serviceability team has created a set of tools 
which intend to help testers analyze changes, identify risks and 
answer some of the questions mentioned above. The primary 
objective of the toolset is to expose information in a systematic 
way. There are six major data points we collect and report to 
testers in the context of a specific change. All of them are 

indicative of regression risk and consequently the needed scope 
of testing: 

1. Detailed package content. 
2. List of existing tests likely to uncover defects. 
3. List of dependent components. 
4. List of changed lines of code for which tests don’t exist. 
5. Quality of the test process for the changed area. 
6. Regression probability (partial support at this time). 

 

4.1 Package content 

The first step to understanding impact and risk of change is to 
realize what exactly is being changed. It is not easy in many 
cases since source code might get compiled into multiple 
binaries and changed binaries might force inclusion of 
dependent binaries in the package as well. Moreover, even 
though testers are most often interested in perusing the last 
code modification, sometimes they also want to know the extent 
of changes done since the last broadly distributed release of said 
executable, for example the last Service Pack in which the binary 
was included. The reason is that broad releases have typically 
gone through a very extensive and rigorous test process and, 
more importantly, have already been deployed in the field and 
their level of quality is known. 

Therefore, the first thing the Patch Analysis tools show is the 
number and the extent of changes done since the last known 
good (LKG) version of each binary. We show this on three levels: 
binary, source file, and at an individual procedure level. Figure 4 
shows a sample change summary. 

It is likely that the same change applies to multiple branches of 
code. Figure 4 only shows one branch. In the tool however we 
would show details for each baseline code branch affected by 
the fix. With that, testers would be able to look at the same 
change in multiple contexts and decide if full re-testing in each 
branch is necessary. Often similarities between code changes 
can be exploited to our advantage and test processes shortened. 

4.2 Quality of the test process 

In our test collateral, each executable has specific regression 
tests associated with it. These are supposed to exercise the 
binary’s functionality in a deep way (e.g. unit tests, specific 
functionality tests etc.). As much as we want to have uniformity 
in quality and fault detecting power of such tests, that is very 
hard to achieve in the real world. Not only might tests vary in 
their comprehensiveness, which is relatively easy to correct, but 
also the nature of a specific binary, its design, or evolving  
environment will naturally make some areas more change- and 
regression-prone. Therefore, it is important to understand 
which binaries were regression prone in the past and for which 
binaries we have very reliable and dependable test suites. 
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Figure 4. Change summary 

We show two numbers with intention of exposing the 
regression finding power of our internal test processes, namely 
historical internal and external regression rates for a given 
binary. The internal regression rate (IR) for a binary is a 
number of times the binary, when changed, had a problem in it 
and we found it before releasing it. The external regression 
rate (ER) measures the number of times we did not manage to 
find an existing problem in a binary and it was later found in the 
field. Both are shown as a percentage of the total number of 
releases done since the branch was created for the given binary. 
Naturally, you would think of a 50% regression rate differently 
depending on whether we had observed it over 2 or 20 releases. 
Therefore to give context to IR and ER, we also show the total 
number of releases (Total changes). 

If either IR or ER is high, we advise testers to think of that binary 
as regression prone i.e. they should expect defects in it. 
Depending on which number is higher we can point out where 
they should focus their efforts: running their existing tests or 
adding new ones. In any case we want to minimize ER, problems 
found in the field. 

4.3 Test coverage and test prioritization 

For test prioritization, Patch Analysis uses Microsoft’s Echelon 
tools (5). Echelon calculates differences between two binaries 
and then uses previously stored code coverage information to 
identify tests which will trigger execution of changed parts of 
the binary. It prioritizes tests according to their change covering 
ability, with tests covering most of the changed code at the top 
of the list. We do not recommend that only these tests are run 
but rather that they are run first. (See Figure 6). 

There will be cases where certain portions of changed code 
might be identified as not covered through existing tests. These 
“test holes” are an important indicator of test effort required 
since ideally all changed code would be executed before the 
release. In our tool, a source level view of changes5 represents 
this information in a form of “green” (covered by existing tests) 
and “red” (not covered) coloring of all changed lines of code. Our 

                                                                        

5 Not depicted in this paper. 

recommendation is that all currently uncovered parts of code 
have tests developed and executed for them. 

 

Figure 5. Well-prioritized test execution (solid line) vs. 
execution of tests not prioritized by effectiveness (dashed) 

Test prioritization algorithms implemented in Echelon try to 
minimize the number of tests that cover the maximum changed 
lines of code. A better approach would be to try to minimize 
effort (man-hours, machine time or both) required to cover 
maximum changes. This is an area of further study. 

4.4 Dependency identification 

Since our code coverage database contains information on all 
tests developed for Windows OS, we might sometimes see that 
tests that were not specifically intended for the changed binary 
are identified as high priority tests. This is frequently an 
indication that some dependent binary will trigger execution of 
code in the changed binary. Our recommendation is that these 
tests should be executed as part of system integration testing. 
The number of such “foreign” tests is another indication of how 
far-reaching the change is and again an indication of the test 
effort required when testing. 
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Figure 6. Highest priority tests

However, even though our code coverage database provides us 
information about existing tests, in context of the entire system 
it is necessarily only as comprehensive as existing test cases. 
Since code coverage data is collected at run-time during code 
execution, if a piece of code does not get tested at all, there is no 
usable information for it. As a complementary measure, we 
should try to analyze the system in a way that is independent of 
the run-time execution. The idea here is that if we can discover 
dependency potential, this information can lead to additional 
testing in places where no execution was done before. 

 

 
Patch Analysis use MaX tools (6) to do this analysis. First we 
generate a call graph for all binaries in the operating system 
which represents all discoverable places from which we can call 
any reachable procedure. If such a procedure is modified we can 
immediately determine all of its direct and indirect callers. 
Figure 7 depicts an example where a function Ac in binary A, 
reachable though entry-point Ae was changed. Function Be in 
binary B is known to have call sites into A through Ae. Binary B 

is then identified as impacted by a change in Ac and will be 
added to the list of dependent binaries. Figure 7 depicts how, by 
putting together result of run-time (Echelon) and static (MaX) 
analysis, we are able to present a more comprehensive picture 
of dependent areas. 

Dependency analysis methods we currently employ have their 
limitations. Currently, MaX is able to discover the most 
prevalent types of calls between procedures both in unmanaged 
and managed code. We currently do not identify dependencies 
that are triggered by data, for example if two binaries use the 
same file, configuration entries, or objects, we do not discover 
such cases. Further work is necessary in this area and we hope 
to add more types of dependencies over time. 

4.5 Regression risk 

The goal for this metric is to have a quantifiable measure of 
fault-proneness of a given binary. The idea is to try to 
understand and quantify the risk of a particular change given 
historical data on similar changes. 

Failure-proneness is the probability that a particular 
software element (such as a binary) will fail in the 
operation in the field. (7) 

 

 

 

Figure 8. Dependency list 

 

Figure 7. Static dependency analysis 
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Figure 9. Effectiveness of Patch Analysis 

Studies described in (7) and (8) concentrate on developing 
statistical models for estimating the number of defects that will 
be found after RTM based on pre-RTM characteristics of 
binaries. Attributes being considered as predictors of risk are: 
size of the binary, number of functions and global variables in a 
module, average number of lines of code per function, number 
of incoming and outgoing dependencies, maximum and total 
complexity of functions, depth of class inheritance. The 
aforementioned studies have shown that some of these have 
strong correlation with defects found after the release, 
specifically in context of the Windows code base. 

The Windows Serviceability team is investing in repurposing 
methods described in (7) and (8) for our area of interest. We are 
currently working on recalibrating the prediction models. In the 
meantime, we use McCabe’s cyclomatic complexity of changed 
functions (9) and provide their complexity before and after a 
change is implemented (Figure 4). Such presentation of data 
allows us to discover fixes where complex functions needed to 
be changed and fixes where complexity substantially increases. 
Both kinds of events should trigger greater scrutiny of the 
affected pieces of changed code. 

5. RESULTS 

Patch Analysis has been in use for about 12 months. To measure 
its effectiveness we have examined a sample of 49 fixes which 
contained defects (regressions). 6 We then went back to the 
reports we created for the original fix in an attempt to learn 
whether the reports were successful in focusing test efforts 
appropriately. 

                                                                        

6 Here we are not discriminating between how many of those defects 
were found internally vs. externally as we are trying to measure the 
overall effectiveness of the approach. 

The results, which are shown in Figure 9, suggest that the 
employed methods can be useful in helping testers focus their 
efforts. Another analysis that would try to quantify impact of the 
Patch Analysis tools on the number of externally-found 
regressions specifically is planned. We hope to report on it in 
future. 

Patch Analysis toolset has evolved considerably over the last 12 
months and has seen its adoption rates improve substantially 
over time. We have tried to ensure its accuracy and 
effectiveness without sacrificing simplicity and usability. In the 
process, we have come to realize the following underlying 
principles that are of practical importance in creating data 
mining tools like ours: 

1. Metrics should be simple to understand, empirical, 
insightful. Users need to understand the connection 
between a given metric and the outcome (preventing 
regressions in our case). Metrics should provide 
information that would otherwise be hidden. 
 

2. Metrics are project- and context- specific. The choice of 
metrics is determined by the project at hand. Even metrics 
that can be applied universally will have project-specific 
thresholds above which risk is substantially larger. 
Statistical analysis of data helps determine these 
thresholds. 
 

3. Metrics should be non-redundant. Few, carefully chosen 
data points are easier to use than a lot of numbers. Each 
data point should add a substantial amount of new 
information. 
 

4. Information should be actionable. Metrics should be 
interpreted and users need to understand how to act based 
on the data presented. Some a priori assumptions are 
necessary (i.e. “if you see complexity >= 50 be warned”) but 
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some of this knowledge can only be accumulated over time 
while our tools and data points are in use. 

6. FUTURE WORK 

Our future work is going to focus on the following areas: 

1. Accuracy and comprehensiveness of metric collection. 
We are going to address the most important gaps in 
discovering dependencies between modules and functions. 
For example, we will attempt to take into account shared 
data stores like data files, configuration entries, and objects. 
 

2. Project specific risk analysis. As mentioned in section 4.5, 
we are currently evaluating methods for risk prediction. 
We hope to make substantial progress in the next 12 
months and report results then. 
 

3. Ensuring validity in a changing development system. 
Development process is a constantly evolving social system. 
If our risk prediction work is completed, we should be able 
to make better accept/reject decisions on hotfix requests. 
As a result, we might see adjustments in acceptance criteria 
which in turn might affect what predictors we use for 
calculating risk and how strongly they correlate with the 
actual regressions found later in the field. We expect we 
will need to recalculate our models every few months to 
keep up with these changes. 

7. CONCLUSIONS 

Windows due to its size, complexity, diverse set of users and 
roles it plays in the PC ecosystem poses a unique maintenance 
challenge. Expectations for hotfix quality and response time are 
very high. 

Patch Analysis is being developed to expose testers to 
previously hidden information with the purpose of helping them 
make decisions on the scope of testing required to minimize 
risks of further problems in changed code. Since its deployment, 
the tool has been able to help testers find defects by either 
identifying individual tests or areas of testing likely to uncover 
problems. Its adoption has increased significantly in recent 
months. Experience we have gained working on the first 
iteration will be applied to the next version of the tool in which 
we plan to make substantial further progress in our quest to 
have an accurate and reliable risk and test impact evaluation 
system. 
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