
To appear in proceedings of EuroStar 2007 conference

Focusing Test Efforts While Servicing Large Systems
Jacek Czerwonka
Microsoft Corp.

Redmond, WA 98052
jacekcz@microsoft.com

ABSTRACT

Building large software systems is hard. Maintaining large
systems is equally difficult. Making post-release changes
requires not only thorough understanding of the architecture of
a component about to be changed but also its dependencies and
interactions with other components in the system. Testing such
changes in reasonable time is a tough problem on its own as
infinitely many test cases can be executed for any modification.
What if you had to make such modifications daily, maintain
reasonable turnaround time, and you had a few hundred million
users intolerant of even the smallest mistakes? This is the
challenge Microsoft’s Windows Serviceability group faces each
day.

One way of battling complexity of software re-testing is to
ensure that appropriate information is collected and used to
guide and focus test efforts. Data needs to be modification-
specific but should allow testers to understand system-wide
implications of the change and risks it involves. The Windows
Serviceability team uses a set of software metrics that are based
on both static analysis of source code and dynamic analysis of
tests running on the system. Both aspects come together and
deliver data used to predict risk and impact of a change and to
guide re-testing of modified code by answering the following
questions: Which parts of the change are the riskiest? Which
existing test cases should be executed to maximize the chances
of finding defects? Which parts of the change will not be covered
by existing tests? What dependent pieces of code need to be re-
tested?

This paper presents an analysis of the challenges behind
servicing Windows operating system, ideas behind our system
of collecting and reporting change-related data, implementation
details, and some of the results we were able to achieve with it.
Above all, this paper will show how appropriately collected and
applied data exposes an additional layer of detail which
supplements testers’ own skills and experiences and allows for
better understanding of testing required in the context of a
specific code change.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complexity measures,
product metrics.

Keywords

Software maintenance, software metrics, large systems, risk and
impact evaluation

1. MAINTENANCE TESTING

Software maintenance is a set of activities associated with
changes to software after it has been delivered to end-users. The
IEEE Standard for Software Maintenance (1) defines three main
types of maintenance activities:

1. Corrective maintenance: reactive modification of a
software product to correct discovered faults, which
includes:
a. Emergency maintenance: unscheduled corrective

maintenance performed to keep a system operational.

2. Adaptive maintenance: modification performed to keep a
computer program usable in changed or changing
environment.

3. Perfective maintenance: modification to improve
performance or maintainability.

The amount of effort going into each of these categories will
vary depending on the nature of the software considered, its
intended purpose, size and characteristics of its current user
base. However, the software maintenance phase exhibits
attributes that are common across different software products:

1. Software maintenance is expensive. It is generally accepted
that the maintenance phase consume the majority of
resources required to take a software product throughout
its lifecycle, from inception until end-of-life. The total cost
of maintenance is estimated to comprise 50% or more of
total life-cycle costs. (2)

2. Maintenance work is typically done by people who had not
created the system. Unless the effective lifetime of a
software product is relatively short, it should be expected
that original designers, developers and testers are no
longer involved in changes to the product. Reverse
engineering might be necessary in absence of good
documentation and institutional knowledge.

3. The maintenance staff is typically much smaller in size than
the development staff required to create the product in the
first place.

4. Changes in deployed software carry a high risk due to
possibility of introducing unwanted behavior. Customer’s
tolerance to such breaking changes is low.

All of these characteristics influence testing during software
maintenance phase. Testing of changes to deployed software is
necessarily a different activity from software testing before
release. Even though software maintenance testing deals with
fewer changes, it typically needs to happen in very limited time
and often with limited resources. On the other hand, increased

To appear in proceedings of EuroStar 2007 conference

Figure 1. Servicing branch structure

risk and cost of making mistakes might warrant expanded test
scope. These two competing forces create a challenging
environment.

2. WINDOWS SERVICING LANDSCAPE

2.1 Customers

Customers interested in receiving updates to Windows can be
very broadly divided onto four groups. Home users
predominantly use the client version of the operating system
like Windows Vista, Windows XP, or Windows MediaCenter and
want to keep their PCs in good working condition. Small and
medium-size businesses, as well as enterprises use both
Windows server and client releases and want to protect their IP,
avoid work stoppage, keep their maintenance costs low and
want their investments in IT infrastructure working reliably.
Original equipment manufacturers (OEMs) and
independent hardware vendors (IHVs) produce PCs and
devices working with Windows and want the operating system
to support the newest hardware and help their customers
obtain the best possible experience. Independent software
vendors (ISVs) produce applications for Windows and need
compatibility between different Windows versions and to have
all the application features supported.

During the post-release phase any of these groups might be the
primary target of a fix. All of our customers however expect two
things when a Windows fix is requested: quality, defined as
seamless integration and lack of change in behavior1, and
reasonable turnaround time between a problem is reported and
having a fix ready for deployment.

2.2 Support complexity

A Windows fix is a packaged set of binaries. When installed,
these new binaries will replace (or if completely new, be added
to) the binaries existing on the machine. Let’s look at the
complexities behind producing a fix for Windows in the context
of number of variations that need to be built and tested.

When a new Windows OS version is released to manufacturing
(RTM), the servicing team assumes ownership of all the source
code used to build that version of Windows and will use it to
produce hotfixes. Post-RTM code changes are cumulative. When
a fix to binary FOO.EXE is made for the first time, the resulting
package will contain only change a1. When a later change a2 is
made to the same binary, that new hotfix will contain binary
FOO.EXE with both changes a1 and a2. This approach simplifies
code maintenance but as time goes on and more fixes get
implemented, the likelihood of the resulting hotfix containing
more than just one change increases. Consequently, if any of the
changes are faulty and the failure is not discovered early, quality
of all subsequent hotfixes will be negatively affected.

1 If a change in behavior was intended, it should be backwards
compatible.

To minimize this problem, the servicing team maintains two
copies (branches) of the source code. They are identical at RTM.
One branch is used for Global Distribution Releases (GDR) and
contains only changes that are to be released very broadly e.g.
through the Windows Update service. Another, used for Limited
Distribution Releases (LDR), contains all changes regardless of
the scope of distribution.

The reason for having the GDR branch is to minimize the
accumulation of changes in widely-applicable hotfixes in case
any of them is faulty and causes the OS to misbehave. Whenever
we can we use the binaries coming from the less-changing GDR
branch and only use the LDR binaries if absolutely necessary.2
See Figure 1.

Figure 2. Eight possible payloads for one fix

At certain points in time all changes made to the LDR branch are
rolled into a Service Pack. Apart from LDR changes, a Service
Pack might contain additional fixes (perfective maintenance). Its

2 One reason to use LDR branch is because the fix was not intended to be
very widely distributed and resides only in the LDR code. Also, when a
binary on the system is already from the LDR branch, any new versions
of that same binary have to come from the LDR branch; otherwise fixes
already on the machine might be lost when a newer GDR binary is
installed.

X86 hotfix
package

For latest SP

• GDR binaries

• LDR binaries

For previous SP

• GDR binaries

• LDR binaries

X64 hotfix
package

For latest SP

• GDR binaries

• LDR binaries

For previous SP

• GDR binaries

• LDR binaries

IA64 hotfix
package

For latest SP

• GDR binaries

• LDR binaries

For previous SP

• GDR binaries

• LDR binaries

LDR branch

GDR branch

SP1 release

RTM release

B L B L L B

B – broad-scope fix
L – limited-scope fix

To appear in proceedings of EuroStar 2007 conference

release signifies a start of another set of branches, which will be
used for fixes intended to be installed on computers with that
Service Pack version already deployed.

In practical terms a hotfix is an installable package that includes
a set of new binaries. In the case of Windows, there is typically
more than one package released for each fix. For example, there
might be one package intended for Windows running on 32-bit
(X86) and two for 64-bit (X64 and IA64) Windows. Before
Windows Vista, each supported language was also packaged
separately. Each hotfix package contains up to four sets of
binaries. Separate GDR and LDR versions constitute one
dimension. We support installing packages on the last two
Service Packs therefore we create a separate set of binaries for
each. Figure 2 shows all 12 basic package variations produced
for each fix.

In the context of testing the differentiation does not stop there.
Windows comes in a wide range of editions. For example
Windows Vista has five major flavors: Home Basic, Home
Premium, Business, Enterprise, and Ultimate (3). All Windows
versions contain the same core set of binaries but their behavior
or functionality limitations might be different between editions.
A change to a binary which is subject to such different
limitations, will likely trigger testing on more than one edition.

The last thing to consider is the time for which support is
extended to customers. Depending on the version of Windows it,
support will either be 5 or 10 years (4). During this time, th
Windows Serviceability group will investigate problems, modify
source code, build and test fixes.

All of these aspects bring to light the requirement for the
Windows maintenance testing process to be very efficient. It
needs to have the ability to identify with high accuracy the areas
of software directly or indirectly affected by the fix and to bring
up and allow analysis of differences between hotfix variations.

2.3 Hotfix testing process

2.3.1 Objectives
The primary objective of the hotfix testing process is to
minimize the number of regressions, defined as unintended
changes in the system’s behavior, found in released hotfixes.
Secondarily, we should be able to release fixes efficiently, within
days or weeks rather than months.

2.3.2 Process
All problem reports related to Windows go through one of the
product support channels. A small portion of these support
cases turns out to be true code defects (corrective maintenance)
or requests to change behavior (adaptive maintenance). The
Windows Serviceability team assumes responsibility for
implementing necessary changes in both cases and starts the
hotfix request process (Figure 3).

Each hotfix request begins with triage which involves
representatives of business management, development, testing,
product support, and the customer in a brainstorming session

on available and feasible workarounds, potential methods of
fixing, and risks and efforts required from development and
testing.

Figure 3. Hotfix release process

Assuming the fix is approved by all parties3, developers then
implement the fix and get it code reviewed. Testers at the same
time, prepare and carry out their test plans.

Hotfix testing is typically carried out in three sequential phases:

1. Fix-specific testing or unit testing. This set of tests makes
sure the fix itself is in fact correcting the original problem
as expected.

2. Component integration testing. Internally, Windows is
well componentized and all binaries have a place within
some component area; interfaces between these areas
serve as boundaries of component testing. The objective is
to find and remove any regression in behavior within the
component itself as well as at each of its interfaces.

3. System integration testing. The changed component
might have dependencies i.e. other components that use it
through its interfaces. Each such dependent component
might require re-testing, at least in places where it calls
into changed code.

When reasonable confidence in the quality of the fix is gained, it
is sent to the customer for final acceptance. Upon approval, the
hotfix is released.

3. TESTING CHALLENGES

Testing in general is an open-ended activity and more tests can
always be developed for any non-trivial software. In the context
of software maintenance, the challenge is to find the smallest set
of tests that maximizes the defect-finding power of its members.
Re-running all tests in our collateral (millions) on each fix would
give us a good understanding of the level of quality4 but is not

3 Fixes might not turn into a code change if the customer accepts a
feasible workaround or the triage team concludes the risks are too high
for the expected benefits.
4 At least to the extent of the resulting system being of the same quality
as the original release.

Triage
Fix

Development
Code Reviews

Fix-specific
Testing

Component
Testing

Integration
Testing

Acceptance Release

To appear in proceedings of EuroStar 2007 conference

feasible from either the turnaround time point of view or cost
incurred. On the other hand, not doing testing at all provides
terrific turnaround time but we learn nothing about the quality
of changed software. Some middle-ground must exist where
enough testing is done to mitigate risks and enough information
is gathered to assess the level of quality.

Knowing how much testing is needed involves having deep
understanding of the software under test as well as the change
itself and its effects, and selecting from existing or adding just
enough new tests to uncover side-effects of the change. The
main idea behind the work described in this paper is that
additional information about the system and the change itself
will help a tester do her job more efficiently and effectively.
More specifically, in the context of the three aforementioned
categories of tests we want to get answers to the following
questions:

For the fix-specific testing:

1. Which parts of changed code will we reach with our
existing tests?

2. For changes already covered with existing tests, are they
enough?

3. For which parts of changed code do we not currently have
any tests?

4. Which parts of the changed code carry the most risk of
regressing existing behavior?

For the component integration testing:

1. Which tests from our component-specific test collateral
should we run?

2. In which order should we run them so that we maximize
our chances of finding problems early?

For the system integration testing:

1. Which other components will be affected by this change
and with what level of indirection?

2. How exactly are other components affected (e.g. function
calls of shared data)?

3. What are the paths that will lead to executing the
dependency link between that component and the changed
component?

4. PATCH ANALYSIS TOOLSET

The Windows Serviceability team has created a set of tools
which intend to help testers analyze changes, identify risks and
answer some of the questions mentioned above. The primary
objective of the toolset is to expose information in a systematic
way. There are six major data points we collect and report to
testers in the context of a specific change. All of them are

indicative of regression risk and consequently the needed scope
of testing:

1. Detailed package content.
2. List of existing tests likely to uncover defects.
3. List of dependent components.
4. List of changed lines of code for which tests don’t exist.
5. Quality of the test process for the changed area.
6. Regression probability (partial support at this time).

4.1 Package content

The first step to understanding impact and risk of change is to
realize what exactly is being changed. It is not easy in many
cases since source code might get compiled into multiple
binaries and changed binaries might force inclusion of
dependent binaries in the package as well. Moreover, even
though testers are most often interested in perusing the last
code modification, sometimes they also want to know the extent
of changes done since the last broadly distributed release of said
executable, for example the last Service Pack in which the binary
was included. The reason is that broad releases have typically
gone through a very extensive and rigorous test process and,
more importantly, have already been deployed in the field and
their level of quality is known.

Therefore, the first thing the Patch Analysis tools show is the
number and the extent of changes done since the last known
good (LKG) version of each binary. We show this on three levels:
binary, source file, and at an individual procedure level. Figure 4
shows a sample change summary.

It is likely that the same change applies to multiple branches of
code. Figure 4 only shows one branch. In the tool however we
would show details for each baseline code branch affected by
the fix. With that, testers would be able to look at the same
change in multiple contexts and decide if full re-testing in each
branch is necessary. Often similarities between code changes
can be exploited to our advantage and test processes shortened.

4.2 Quality of the test process

In our test collateral, each executable has specific regression
tests associated with it. These are supposed to exercise the
binary’s functionality in a deep way (e.g. unit tests, specific
functionality tests etc.). As much as we want to have uniformity
in quality and fault detecting power of such tests, that is very
hard to achieve in the real world. Not only might tests vary in
their comprehensiveness, which is relatively easy to correct, but
also the nature of a specific binary, its design, or evolving
environment will naturally make some areas more change- and
regression-prone. Therefore, it is important to understand
which binaries were regression prone in the past and for which
binaries we have very reliable and dependable test suites.

To appear in proceedings of EuroStar 2007 conference

Figure 4. Change summary

We show two numbers with intention of exposing the
regression finding power of our internal test processes, namely
historical internal and external regression rates for a given
binary. The internal regression rate (IR) for a binary is a
number of times the binary, when changed, had a problem in it
and we found it before releasing it. The external regression
rate (ER) measures the number of times we did not manage to
find an existing problem in a binary and it was later found in the
field. Both are shown as a percentage of the total number of
releases done since the branch was created for the given binary.
Naturally, you would think of a 50% regression rate differently
depending on whether we had observed it over 2 or 20 releases.
Therefore to give context to IR and ER, we also show the total
number of releases (Total changes).

If either IR or ER is high, we advise testers to think of that binary
as regression prone i.e. they should expect defects in it.
Depending on which number is higher we can point out where
they should focus their efforts: running their existing tests or
adding new ones. In any case we want to minimize ER, problems
found in the field.

4.3 Test coverage and test prioritization

For test prioritization, Patch Analysis uses Microsoft’s Echelon
tools (5). Echelon calculates differences between two binaries
and then uses previously stored code coverage information to
identify tests which will trigger execution of changed parts of
the binary. It prioritizes tests according to their change covering
ability, with tests covering most of the changed code at the top
of the list. We do not recommend that only these tests are run
but rather that they are run first. (See Figure 6).

There will be cases where certain portions of changed code
might be identified as not covered through existing tests. These
“test holes” are an important indicator of test effort required
since ideally all changed code would be executed before the
release. In our tool, a source level view of changes5 represents
this information in a form of “green” (covered by existing tests)
and “red” (not covered) coloring of all changed lines of code. Our

5 Not depicted in this paper.

recommendation is that all currently uncovered parts of code
have tests developed and executed for them.

Figure 5. Well-prioritized test execution (solid line) vs.
execution of tests not prioritized by effectiveness (dashed)

Test prioritization algorithms implemented in Echelon try to
minimize the number of tests that cover the maximum changed
lines of code. A better approach would be to try to minimize
effort (man-hours, machine time or both) required to cover
maximum changes. This is an area of further study.

4.4 Dependency identification

Since our code coverage database contains information on all
tests developed for Windows OS, we might sometimes see that
tests that were not specifically intended for the changed binary
are identified as high priority tests. This is frequently an
indication that some dependent binary will trigger execution of
code in the changed binary. Our recommendation is that these
tests should be executed as part of system integration testing.
The number of such “foreign” tests is another indication of how
far-reaching the change is and again an indication of the test
effort required when testing.

0%

20%

40%

60%

80%

100%

120%

0
%

5
%

1
0

%
1

5
%

2
0

%
2

5
%

3
0

%
3

5
%

4
0

%
4

5
%

5
0

%
5

5
%

6
0

%
6

5
%

7
0

%
7

5
%

8
0

%
8

5
%

9
0

%
9

5
%

10
0%

N
u

m
b

er
 o

f
d

ef
ec

ts
 id

en
ti

fi
ed

Percent of tests ran so far

High value-adding testing

Low value-adding testing

To appear in proceedings of EuroStar 2007 conference

Figure 6. Highest priority tests

However, even though our code coverage database provides us
information about existing tests, in context of the entire system
it is necessarily only as comprehensive as existing test cases.
Since code coverage data is collected at run-time during code
execution, if a piece of code does not get tested at all, there is no
usable information for it. As a complementary measure, we
should try to analyze the system in a way that is independent of
the run-time execution. The idea here is that if we can discover
dependency potential, this information can lead to additional
testing in places where no execution was done before.

Patch Analysis use MaX tools (6) to do this analysis. First we
generate a call graph for all binaries in the operating system
which represents all discoverable places from which we can call
any reachable procedure. If such a procedure is modified we can
immediately determine all of its direct and indirect callers.
Figure 7 depicts an example where a function Ac in binary A,
reachable though entry-point Ae was changed. Function Be in
binary B is known to have call sites into A through Ae. Binary B

is then identified as impacted by a change in Ac and will be
added to the list of dependent binaries. Figure 7 depicts how, by
putting together result of run-time (Echelon) and static (MaX)
analysis, we are able to present a more comprehensive picture
of dependent areas.

Dependency analysis methods we currently employ have their
limitations. Currently, MaX is able to discover the most
prevalent types of calls between procedures both in unmanaged
and managed code. We currently do not identify dependencies
that are triggered by data, for example if two binaries use the
same file, configuration entries, or objects, we do not discover
such cases. Further work is necessary in this area and we hope
to add more types of dependencies over time.

4.5 Regression risk

The goal for this metric is to have a quantifiable measure of
fault-proneness of a given binary. The idea is to try to
understand and quantify the risk of a particular change given
historical data on similar changes.

Failure-proneness is the probability that a particular
software element (such as a binary) will fail in the
operation in the field. (7)

Figure 8. Dependency list

Figure 7. Static dependency analysis

Changed
Binary (A)

Ac() Ae()

Dependent
Binary (B)

Be()

To appear in proceedings of EuroStar 2007 conference

Figure 9. Effectiveness of Patch Analysis

Studies described in (7) and (8) concentrate on developing
statistical models for estimating the number of defects that will
be found after RTM based on pre-RTM characteristics of
binaries. Attributes being considered as predictors of risk are:
size of the binary, number of functions and global variables in a
module, average number of lines of code per function, number
of incoming and outgoing dependencies, maximum and total
complexity of functions, depth of class inheritance. The
aforementioned studies have shown that some of these have
strong correlation with defects found after the release,
specifically in context of the Windows code base.

The Windows Serviceability team is investing in repurposing
methods described in (7) and (8) for our area of interest. We are
currently working on recalibrating the prediction models. In the
meantime, we use McCabe’s cyclomatic complexity of changed
functions (9) and provide their complexity before and after a
change is implemented (Figure 4). Such presentation of data
allows us to discover fixes where complex functions needed to
be changed and fixes where complexity substantially increases.
Both kinds of events should trigger greater scrutiny of the
affected pieces of changed code.

5. RESULTS

Patch Analysis has been in use for about 12 months. To measure
its effectiveness we have examined a sample of 49 fixes which
contained defects (regressions). 6 We then went back to the
reports we created for the original fix in an attempt to learn
whether the reports were successful in focusing test efforts
appropriately.

6 Here we are not discriminating between how many of those defects
were found internally vs. externally as we are trying to measure the
overall effectiveness of the approach.

The results, which are shown in Figure 9, suggest that the
employed methods can be useful in helping testers focus their
efforts. Another analysis that would try to quantify impact of the
Patch Analysis tools on the number of externally-found
regressions specifically is planned. We hope to report on it in
future.

Patch Analysis toolset has evolved considerably over the last 12
months and has seen its adoption rates improve substantially
over time. We have tried to ensure its accuracy and
effectiveness without sacrificing simplicity and usability. In the
process, we have come to realize the following underlying
principles that are of practical importance in creating data
mining tools like ours:

1. Metrics should be simple to understand, empirical,
insightful. Users need to understand the connection
between a given metric and the outcome (preventing
regressions in our case). Metrics should provide
information that would otherwise be hidden.

2. Metrics are project- and context- specific. The choice of
metrics is determined by the project at hand. Even metrics
that can be applied universally will have project-specific
thresholds above which risk is substantially larger.
Statistical analysis of data helps determine these
thresholds.

3. Metrics should be non-redundant. Few, carefully chosen
data points are easier to use than a lot of numbers. Each
data point should add a substantial amount of new
information.

4. Information should be actionable. Metrics should be
interpreted and users need to understand how to act based
on the data presented. Some a priori assumptions are
necessary (i.e. “if you see complexity >= 50 be warned”) but

7

12 13

11
6

Not enough information to determine if report helped find a
defect

Obvious problem; found before Patch Analysis methods could
be applied

Identified the exact test that was able to detect the defect

Identified the dependent area whose tests found the defect
(but not the exact test)

Did not indentify areas or tests that would lead to finding the
defect

To appear in proceedings of EuroStar 2007 conference

some of this knowledge can only be accumulated over time
while our tools and data points are in use.

6. FUTURE WORK

Our future work is going to focus on the following areas:

1. Accuracy and comprehensiveness of metric collection.
We are going to address the most important gaps in
discovering dependencies between modules and functions.
For example, we will attempt to take into account shared
data stores like data files, configuration entries, and objects.

2. Project specific risk analysis. As mentioned in section 4.5,
we are currently evaluating methods for risk prediction.
We hope to make substantial progress in the next 12
months and report results then.

3. Ensuring validity in a changing development system.
Development process is a constantly evolving social system.
If our risk prediction work is completed, we should be able
to make better accept/reject decisions on hotfix requests.
As a result, we might see adjustments in acceptance criteria
which in turn might affect what predictors we use for
calculating risk and how strongly they correlate with the
actual regressions found later in the field. We expect we
will need to recalculate our models every few months to
keep up with these changes.

7. CONCLUSIONS

Windows due to its size, complexity, diverse set of users and
roles it plays in the PC ecosystem poses a unique maintenance
challenge. Expectations for hotfix quality and response time are
very high.

Patch Analysis is being developed to expose testers to
previously hidden information with the purpose of helping them
make decisions on the scope of testing required to minimize
risks of further problems in changed code. Since its deployment,
the tool has been able to help testers find defects by either
identifying individual tests or areas of testing likely to uncover
problems. Its adoption has increased significantly in recent
months. Experience we have gained working on the first
iteration will be applied to the next version of the tool in which
we plan to make substantial further progress in our quest to
have an accurate and reliable risk and test impact evaluation
system.

8. ACKNOWLEDGEMENTS

I would like to thank Anand Paranjpe, a Test Manager at
Microsoft, for providing support to this initiative, my colleagues:
Ranajoy Sanyal, Rajiv Das and others who have contributed
their time and effort to the Patch Analysis toolset, and Jari Jattu,
Sonny Chinthamani and Brandy Koetters who reviewed this
paper.

Special acknowledgement to all Microsoft engineers who, over
the years, created the infrastructure tools used in this project.

9. BIBLIOGRAPHY

1. IEEE Standard for Software Maintenance. 1998. IEEE Std
1219-1998.

2. Vliet, Hans Van. Software Engineering: Principles and
Practices. West Sussex, England : John Wiley & Sons, 2000.

3. Windows Vista Editions. [Online] Microsoft Corp., 2007.
[Cited: June 2, 2007.]
http://www.microsoft.com/windows/products/windowsvista/
editions/.

4. Product Support Lifecycle. [Online] Microsoft Corp., July 30,
2004. [Cited: June 2, 2007.]
http://support.microsoft.com/select/?target=lifecycle.

5. Effectively Prioritizing Tests in Development Environment.
Amitabh Srivastava, Jay Thiagarajan. 2002. ISSTA.

6. Amitabh Srivastava, Jay Thiagarajan, Craig Schertz.
Efficient Integration Testing using Dependency Analysis. s.l. :
Microsoft Research, July 2005. MSR-TR-2005-94.

7. Using Historical In-Process and Product Metrics for Early
Estimation of Software Failures. Nachiappan Nagappan,
Thomas Ball, Brendan Murphy. Raleigh, NC : Proceedings of
the International Symposium on Software Reliability
Engineering, 2006.

8. Mining Metrics to Predict Component Failures. Nachiappan
Nagappan, Thomas Ball, Andreas Zeller. Shanghai, China : s.n.,
2006.

9. McCabe, Tom. A Complexity Measure. IEEE Transactions on
Software Engineering. 1976, Vol. 2, 4.

