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Physical database design tools rely on a DBA-provided workload to pick an “optimal” set of in-
dexes and materialized views. Such tools allow either creating a new such configuration or adding
new structures to existing ones. However, these tools do not provide adequate support for in-
cremental and flexible refinement of existing physical structures. Although such refinements are
often very valuable for DBAs, a completely manual approach to refinement can lead to infeasi-
ble solutions (e.g., excessive use of space). In this paper, we focus on the important problem of
physical design refinement and propose a transformational architecture that is based upon two
novel primitive operations, called merging and reduction. These operators help refine a configu-
ration, treating indexes and materialized views in a unified way, as well as succinctly explain the
refinement process to DBAs.

Categories and Subject Descriptors: H.2.2 [Physical Design]: Access Methods

1. INTRODUCTION

In the last decade, automated physical design for relational databases was studied
by several research groups (e.g., [Agrawal et al. 2000; Chaudhuri and Narasayya
1997; 1999; Valentin et al. 2000; Zilio et al. 2004; Agrawal et al. 2006]) and nowadays
database vendors offer tools to automatically recommend and tune the physical
design of a relational database management system — or DBMS (e.g., [Agrawal
et al. 2004; Dageville et al. 2004; Zilio et al. 2004]). These tools require the DBA to
gather a representative workload, possibly using profiling tools in the DBMS, and
then are able to recommend indexes and materialized views that fit in the available
storage and would make the representative workload execute as fast as possible.
However, the above paradigm of physical database design does not address the
following key scenarios that are of great importance in enterprises:

—Responding to Incremental Changes: Gradual changes in data statistics or usage
patterns may make the existing physical design inappropriate. At the same time,
physical design changes are disruptive (as query plans can drastically change).
For incremental changes in the data statistics or workload, DBAs desire changes
in physical design that are as few as possible and yet meet the constraints on the
physical design (such as storage, update cost, or limited degradation with respect
to the optimal physical design). Unfortunately, an altogether new design (driven
by automated tools) might be very different from the original one as these tools
have very limited support for such “incremental tuning”.
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—Significant Manual Design Input: Despite the wide availability of automated
tools, the physical design process in database installations of moderate to high
complexity often rely on manual input from DBAs. The need for such man-
ual input arise due to several reasons. First, while the automated tools reduce
the complexity of the physical design process, it is still nontrivial to identify a
representative workload that can be used to drive the physical design in its en-
tirety. Second, automated tools do not consider all factors that impact physical
design (e.g., the impact of replication architectures). Finally, the output of a
physical design tool may be fine-tuned by DBAs based on their lifelong experi-
ence. However, a configuration designed with such manual input often results in
non-obvious redundancy, which increases the storage (and update) requirements.
DBAs are thus interested in incrementally refining this initial configuration to
remove redundancy, without significantly impacting efficiency.

These examples show the need of additional tools that go beyond statically rec-
ommending a configuration for a given workload. Specifically, we believe that it
is important to automatically refine a configuration by eliminating implicit redun-
dancy without compromising efficiency. We call this the Physical Design Refinement
problem. Our idea is to start from the initial, possibly redundant configuration,
and progressively refine it until some property is satisfied (e.g., the configuration
size or its performance degradation meets a pre-specified threshold).

Vim=merge(V1 V5)

\% Vg=reduce(V) V = f(Vg, base tables)
(b) Reduction Operation.

Fig. 1. Merging and reduction as primitive operators for physical design tuning.

We can think of a refinement session as composed of a series of basic transforma-
tions, which locally change the current configuration by trading space and efficiency.
In this paper, we identify two atomic operations, merging and reduction, which pro-
vide this basic functionality. Merging and reduction unify different techniques that
apply to indexes and materialized views proposed earlier in the literature. Intu-
itively (see Figure 1), merging combines two views and avoids storing their common
information twice, but requires compensating actions to retrieve the original views
(f1 and f5 in the figure). Reduction, in turn, keeps a smaller sub-expression of a
view, but requires additional work (possibly accessing base tables) to recreate the
original view. We can see merging and reduction as the analogous to union and

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



Physical Design Refinement: The “Merge-Reduce” Approach : 3

subset operators for sets!. More generally, we can see our proposed techniques as
moving from a traditional bottom-up architecture for tuning physical designs (e.g.,
see [Chaudhuri and Narasayya 1997; Agrawal et al. 2000; Valentin et al. 2000])
to a transformation-based engine, which gives more flexibility and allows differ-
ent optimization goals to be stated and tackled in a more unified way. This is
analogous to the appearance of transformation-based query optimizers (e.g., the
Cascades framework [Graefe 1995]) as an alternative to classical bottom-up query
optimizers (e.g., System-R [Selinger et al. 1979]). We believe that the merge and
reduce operators, along with a transformation-based engine to guide the search of
configurations, have the potential of becoming the foundation of next-generation
design tuning tools, by unifying seemingly disparate and ad-hoc techniques into a
common, flexible framework.

Automatic A Manual
Physical Design [w....____..{ Physical Design
Deployment
(Section 6)

Physical
Configuration

Changes in Workload
Changes in Data Distribution/Size
Manual Changes to Configuration

(Cost/Space/Complexity)-constrained
Physical Design Refinement
(Sections 4 and 5)

Fig. 2. Physical Design Refinement and Scheduling Cycle.

This paper builds upon the work in [Bruno and Chaudhuri 2006a] to address
challenges in physical design refinement, and is structured as follows. In Sections 2
and 3 we introduce the primitive operations of merging and reduction. In Section 4
we address the physical design refinement problem, or PDR. In Section 5 we intro-
duce important variations and generalizations of the original PDR problem (e.g., a
variation that attempts to minimize the space used by the final configuration with-
out exceeding a cost bound, denoted Dual-PDR, and a generalization that limits
the number of transformations that may be applied to the original configuration,
denoted CPDR). In Section 6 we formally define the physical design scheduling

1We can eventually obtain every combination of elements in a family of sets by applying union and
subset operations. Analogously, merging and reduction can be seen as the fundamental building
blocks to manipulate designs for indexes and materialized views in a DBMS.
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task that is used to deploy the refinement. Section 7 we report an experimental
evaluation on the techniques of this paper and in Section 8 we review related work.

Figure 2 shows a typical interaction of a DBA and the different techniques intro-
duced in this paper. Initially, the DBA uses automatic tools in conjunction with
manual tuning to obtain an initial configuration that is deployed (Section 6). After
the new physical configuration is in place, the DBMS processes workloads until
some triggering condition happens (e.g., changes in the data distribution, manual
changes to the configuration, or other motivating example discussed earlier). At
this point, the DBA intervenes and refines the physical design using some of the
techniques discussed in Sections 4 and 5. Depending on the unique characteristics
of the DBMS, workloads, and physical design, DBAs might select which optimiza-
tion problem to address using one of PDR, Dual-PDR, or CPDR. After interacting
with these refining tools, a new configuration is obtained and deployed, closing the
cycle.

2. MERGING OPERATION

In this section we describe the merging operation between materialized views. Merg-
ing two materialized views V7 and V5 results in a new materialized view Vs that
reduces the amount of redundancy between Vi and V. The resulting view Vj; is
usually smaller than the combined sizes of V; and V5 at the expense of longer ex-
ecution times for queries that exploit V), instead of the original ones. As a simple
example, consider the following two materialized views:

Vi= SELECT a,b Vo = SELECT b,c
FROM R FROM R
WHERE a<10 WHERE b<10

Suppose that the space required to materialize both V; and V5 is too large. In this
case, we can replace both Vi and V5 by the alternative Vj; defined as:

Vum = SELECT a,b,c
FROM R
WHERE a<10 OR b<10

The main property of this alternative view is that every query that can be answered
using either V4 or V5 can also be answered by Va;. The reason is that we can rewrite
both V] and V5 in terms of Vs as follows:

Vi = SELECT a,b Vo = SELECT b,c
FROM Vs FROM Vs
WHERE a<10 WHERE b<10

If the tuples that satisfy both R.a < 10 and R.b < 10 are a significant fraction of
R, the size of Va; might be much smaller than the sum of the sizes of the original
views V7 and V5. In fact, V), is the smallest view that can be used to generate both
V1 and V,. It is also important to note that queries that are answered using V; or
V5, are less efficiently answered by Vas. The reason is that Vs is a generalization
of both V; and V5 and contains additional, non relevant tuples with respect to the
original views. In other words, by merging V; and Vs into V), we are effectively
trading space for efficiency. We now formally define the view merging operation.
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2.1 Formal Model

To formalize the view merging operation, we consider three query languages. Let
L be the language that defines input views, £,; the language that defines merged
views, and L¢ the language that defines compensating actions to re-create the
original views in terms of the merged view.

Definition 2.1. Given V; and V5 from L, we denote Vy; = V4 @ V5 the merging
of V4 and V2 when the following properties hold:

(1) Var belongs to L.
(2) Cl(VM) = Vl and CQ(VM) = VQ for some Ol(VM) and OQ(VM) in Ec.

(3) If the view matching algorithm matches Vi or V, for a sub-query g, it also
matches Vi for ¢ (a view matching algorithm matches a view V for a sub-
query q if ¢ can be answered from V).

(4) Vs cannot be further restricted with additional predicates and continue to
satisfy the previous properties.

View merging and view matching are indeed related problems. The idea of view
merging is to obtain, for a given pair of views, some sort of minimal view that can
be matched to a sub-query whenever the original ones do. Although both problems
are different, some of the technical details that are introduced below are related to
those in the view matching literature.

As an example, suppose that both £; and L), are the subset of SQL that only
allows simple conjunctions over single tables, and L is the full SQL language.
Consider the following views:

Vi = SELECT a,b Vo = SELECT a,b
FROM R FROM R
WHERE 10<a<30 AND 10<b<30 WHERE 20<a<40 AND 20<b<40

Merging the views above results in :

Vi @ Ve = SELECT a,b
FROM R
WHERE 10<a<40 AND 10<b<40

In this case, however, the merged Vi @ Vi can be larger the combined sizes of
the input views, as this depends on the number of tuples that satisfy (10 < a <
20 AND 30 < b < 40) or (30 < a < 40 AND 10 < b < 20) (and therefore would be
included in V3 @V, even though they do not belong to either V4 or V3). In contrast,
suppose that we relax £;; to also include disjunctions. In this case,

Vi & Vo =  SELECT a,b
FROM R
WHERE (10<a<30 AND 10<b<30) OR (10<a<40 AND 20<b<40)

Now Vi @ V5 is no larger than V3 and Vo put together, because the tuples that
satisfy (20 < a < 30 AND 20 < b < 30) are included in both V; and V5 but only
once in V43 & V,. In general, merged views can be larger than their combined inputs
even when there is redundancy, depending on the expressive power of L.
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2.2 The Lyy Language

In this section we focus on specific query languages and address the view merging
operation in detail. Specifically, we set L7 and Ly, as the subset of SQL that can be
used in a DBMS for materialized view matching (we denote this language as Lyy).
A view is then given by the following expression:

SELECT 51,93, ... — project columns (see below)
FROM 14,75, ... — tables in the database
WHERE J; AND J, AND ... — equi-join predicates
Ry AND Ry AND ... — range predicates (see below)
Zi AND Zp AND ... — residual predicates (see below)
GROUP BY G1,Go,... — grouping columns

where:

- S; are either base-table columns, column expressions, or aggregates. If the group
by clause is present, then every S; that is not an aggregate must be either equal
to one of the G; columns or be an expression in terms of them.

- R,; are range predicates. The general form of a range predicate is a disjunction of
open or closed intervals over the same column (point selections are special cases
of intervals). An example of a range predicate is (1<a<10 DR 20<a<30).

- Z; are residual predicates, that is, the set of predicates in the query definition
that cannot be classified as either equi-join or range predicates.

In other words, we can express in Lyy the class of SPJ queries with aggrega-
tion. The reason that predicates are split into three disjoint groups (join, range,
and residual) is pragmatic. During query optimization, it is easier to perform sub-
sumption tests for view matching if both the view and the candidate sub-query
are written in this structured way. Specifically, we can then perform simple sub-
sumption tests component by component and fail whenever any of the simple tests
fails. For instance, we check that the join predicates in the query are a superset
of the join predicates in the view, and the range predicates (column by column) in
the query are subsumed by the corresponding ones in the view. Some subsumption
tests are more complex than others, notably when group-by clauses are present.
We note that this procedure focuses on simplicity and efficiency and therefore can
miss some valid matchings due to complex logical rewritings that are not consid-
ered by the optimizer. Specifically, consider the case of residual predicates. The
problem of determining whether two predicates are equivalent can be arbitrarily
complex?. For that reason, the matching procedure that we consider just checks
that every conjunct in the residual predicate of the view appears (syntactically) in
the candidate query. Otherwise, although the view can still subsume the query, no
match is produced.

We simplify the notation of a view in Lyy as (S, T, J, R, Z, G) where S is the set of
columns in the select clause, T is the set of tables, J, R, and Z are the sets of join,

2Consider a table with four integer columns (x,vy, z,n). Checking that predicates « + 1 = = and
z™ + y™ = 2™ An > 2 are equivalent, is essentially the same as proving Fermat’s last theorem. It
took over three hundred years to prove that specific conjecture; expecting such capabilities from
a view matching algorithm is unrealistic.
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range, and residual predicates, respectively, and G is the set of grouping columns.
In this work we restrict the merging operation so that the input views agree on the
set of tables T'. The reason is twofold. On one hand, many top-down optimizers
restrict the view matching operation to queries and views that agree on the input
tables (presumably, if a candidate view contains fewer tables than the input query
q, it should have matched a sub-query of ¢ earlier during optimization). On the
other hand, merging views with different input tables can be done by combining the
reduce operator of Section 3 and the merging operation as defined in this section.
We next define the merging operator in Lyy.

Case 1: No Grouping Columns

Consider merging Vi = (51,7, J1, R1,Z1,0) and Vo = (S3,T, J2, Ra, Z2,0). If the
merging language were expressive enough, we could define V; @ V5 as:

SELECT S1 U Ss
FROM T’
WHERE (J; AND R; AND Zi) OR (J2 AND Rs AND Z5)

which satisfies properties 2 and 4 in Definition 2.1. To satisfy property 1 (i.e.,
rewriting V4 @ V5 in Lyy), we have no option but consider the whole predicate in the
WHERE clause as a single conjunctive residual predicate Z. The problem is that now
the merged view would not be matched whenever V4 or V5 are matched (property
3) because of the simple procedures used during view matching in general and with
respect to residual predicates in particular. We need to obtain the smallest view
Vs that is in Lyy and satisfies property 3. For that purpose, we rewrite the above
“minimal” predicate as follows:

(J1/\R1/\Z1)\/(J2/\R2/\22)E(J1VJ2)/\(R1 \/Rg)/\(Zl\/Zg)/\C

where C is the conjunction of all crossed disjuncts ((J1 VRa) A (R4 VZa) A...). Our
strategy is to relax this expression until we obtain a predicate that can be written
in Lyy and matches any candidate query that is matched by the original views.
Although this procedure seems in general to introduce a lot of redundancy and
result in larger views, we experimentally determined that in real-world scenarios
this is not the case.

We first relax the expression above by removing the conjunct C. The reason is
that it leaves us with three conjuncts (J; V Ja, R1 V Ry, and Z; V Z5), which we next
map into the three groups of predicates in Lyy. First consider J; V J5 and recall
that each J; is a conjunct of equi-join predicates. We cannot simply use J; V J5 in
the resulting view because the language specifies that this must be a conjunction
of simple equi-joins (i.e., no disjunctions are allowed). We rewrite:

IV I = (IABRAZA )V ESATZAA.) = \@TV )
i,j
and relax this predicate as follows: we keep each (i,7) conjunct for which J§ = Jg
and discard (i.e., relax) the remaining ones. We obtain then A jic; ;. J* as the

set of join predicates in the merged view. Note that this predicate can be much
more general than the original J; V Ja, but the view matching procedure would
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match V,,, with respect to the join subsumption test in this case. We use the same
idea for Z; V Zs and therefore the residual predicate for V,, is /\ZkEZ1ﬁZ2 Zk

It turns out that we can do better for range predicates R1V Ry due to their specific
structure. Using the same argument, we first rewrite B1V R» as A\, ;(Ri V R;) where

each R} and Ré are disjunctions of open or closed intervals over some column. As
before, if Rt and R% are defined over different columns, we discard that conjunct.
However, if they are defined over the same column, we keep the predicate even when
R} and R} are not the same, by taking the union of the corresponding intervals
(we denote this operation with the symbol | |). To avoid missing some predicates,
we first add conjuncts —oo < & < oo to one of the range predicates if column x is
only present in the other range predicate (it does not change the semantics of the
input predicates but restricts further the result). Also, if after taking the union
the predicate over some column z becomes —oco < z < 00, we discard this conjunct
from the result. As an example, consider:

Ri= (10<a<20V 30<a<40) A 20<b<30 A <40
Ro= 15<a<35 A 10<b<25 A ¢>30 A 10<d<20

Ri| | Re= 10<a<40 A 10<b<30 A 10<d<20

After obtaining join, range, and residual predicates as described above, we as-
semble the set of columns in the merged view. At a minimum, this set must contain
the union of columns present in both input views. However, this is not enough in
general, as illustrated next. Consider for instance:

Vi = SELECT a Vo = SELECT b
FROM R FROM R
WHERE 10<c<20 WHERE 15<c<30

The candidate merged view V=SELECT a,b FROM R WHERE 10<c<30 does not sat-
isfy property 2 in Definition 2.1 because V; and V2 cannot be obtained from V.
The reason is that we need to apply additional predicates to V (c<20 to obtain
V1 and 15<c to obtain V2), but V' does not expose column c. For that reason, we
need to add to the set of columns in the merged view all the columns that are
used in join, range, and residual predicates that are eliminated in the merged view.
Similarly, if some range predicate changed from the input to the merged view, we
need to add the range column as an output column, or otherwise we would not be
able to reconstruct the original views. To summarize, the merging of two views as
described in this section is as follows:

i=( S T , R1 A ,0)
©Vo=( 5 T, Jo , Ro , Lo ,0)
Vl@‘/gz( S1 U SxU T, JJiNJds ,R1|_|R2 , 1N Zy ,@)
{ required
columns }

We note that all the transformations mentioned above take into account column
equivalence. If both input views contain a join predicate R.x = S.y, then the range
predicates R.x < 10 and S.y < 10 are considered to be the same.

EXaMPLE 2.2. The following example illustrates the ideas described in this sec-
tion. If V1 and V5 are materialized views as described below:
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Vi = SELECT x,y Vo = SELECT y,z
FROM R,S FROM R,S
WHERE R.x=S.y AND WHERE R.x=S.y AND
10<R.a<20 AND 15<R.a<50 AND
R.b<10 AND R.b>5 AND R.c>5 AND
R.x+S.d<8 S.y+S.d<8 AND R.d*R.d=2

the merge of V1 and Vs is:

Vie Vs = SELECT x,y,z,a,b,c,d
FROM R,S
WHERE R.x=S.y AND
10<R.a<50 AND
R.x+S.d<8

Case 2: Grouping Columns

We now consider the case of merging views that involve group-by clauses. Grouping
operators partition the input relation into disjoint subsets and return a representa-
tive tuple and some aggregates from each group. Conceptually, we see a group-by
operator as a post-processing step after the evaluation of the SPJ sub-query. Con-
sider the merged view obtained when the grouping columns are eliminated from the
input views. If the group-by columns in the input views are different, each view par-
titions the input relation in different ways. We then need to partition the merged
view in the coarsest way that still allows us to recreate each input view. For that
purpose, the set of group-by columns in the merged view must be the union of the
group-by columns of the input views. Additionally, each column that is added to
the select clause due to predicate relaxation in the input views must also be added
as a grouping column. Note that we need to handle a special case properly. If one
of the input views contains no group-by clause, the merged view should not contain
any group-by clause either, or else we would compromise correctness (i.e., we im-
plicitly define the union of a set of columns and the empty set as the empty set?).
In these situations, we additionally unfold all original aggregates into base-table
columns so that the original aggregates can be computed from the resulting merged
view. To summarize, we define (Sl, T, J1, Ry, 71, Gl) S5 (SQ, T, J2, Ra, Zs, GQ) as
(SM, T, Jl n JQ, Rl |_| RQ, Z1 n ZQ, GM) where:

- S is the set of columns obtained in the no group-by case, plus the group-by
columns if they are not the same as the input views. If the resulting Ga; = 0, all
aggregates are unfolded into base-table columns.

- Gy = (G1 UG2) Ucolumns added to Sy (note that G =0V Gy =0 = Gy = 0).

ExXaMPLE 2.3. The following example illustrates the ideas in this section. If V1,
Vo, and V3 are materialized views as described below:

3For tables with unique constraints, we can define the set of group-by columns of a query without
a group-by clause as the set of all columns in the table, and thus keep the definition of union
unchanged. However, this is not correct for tables with duplicate values, because a group-by
clause with all columns eliminates duplicate rows and therefore is not equivalent to the query
without the group-by clause.
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Vi= SELECT R.x,SUM(S.y) Va= SELECT R.x,R.z V3= SELECT S.y,SUM(S.z)
FROM R,S FROM R,S FROM R,S
WHERE R.x=S.y AND WHERE R.x=S.y AND WHERE R.x=S.z AND
10<R.a<20 16<R.a<5b0 10<R.a<25
GROUP BY R.x GROUP BY S.y

then the following equalities hold:

Vi@ Vo= SELECT R.x,R.a,S.y,R.z
FROM R,S
WHERE R.x=S.y AND
10<R.a<5b0

Vi @ Va= SELECT R.x,S.y,R.a,SUM(S.y),SUM(S.z)
FROM R,S
WHERE R.x=S.y AND
10<R.a<25
GROUP BY R.a,R.x,S.y

Note that in order to recreate the original views in the presence of general alge-
braic aggregates, we sometimes need to add additional columns in the merged view
(e.g., SUM(c) and COUNT(*) for an original aggregate AVG(c)).

2.3 Indexes over Materialized Views

So far we have discussed the merging operation applied to materialized views, with-
out paying attention to indexes over those materialized views. In reality, each ma-
terialized view is associated with a set of indexes, and those indexes are used during
query processing. Previous work in the literature has considered index merging and
view merging as separate operations. We know describe how we can handle both
structures in a unified manner. For this purpose, we consider all indexes as defined
over some view (base tables are also trivial views, so this definition includes regular
indexes as well). Specifically, for a sequence of columns I and a view V' that con-
tains all I columns in its SELECT clause, we denote I | V' the index with columns I
over the materialized view V. For the special case I = ), we define ) | V to be the
unordered heap containing all the tuples in V' (for simplicity, we use V and 0 | V/
interchangeably).

Unified Merging Operator

We now define the merging of two arbitrary indexes over views. In this section
we overload the operator ¢ to operate over indexes, views, or indexes over views
(we explicitly state which case we are referring to when this is not clear from the
context). Consider the simplest case of merging two indexes defined over the same
view. In this case:

(L[ V)e (| V)=(hol)|V

where I @ I is the traditional index-merging operation as defined in [Bruno and
Chaudhuri 2005; Chaudhuri and Narasayya 1999]. That is, Iy @ I = Ip; where
Iy contains all columns in [; followed by all columns in Is — I; As an example,
we have that ([a,b,c] | V) @ ([b,a,d] | V) = [a,b,¢,d] | V. Index merging is very

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



Physical Design Refinement: The “Merge-Reduce” Approach . 11

effective when the input indexes share a common prefix. If this is not the case (e.g.,
[a,b] @ [c] = [a, b, c]), the penalty of replacing usages of the second input index with
the merged index is more pronounced. However, the merged index is still better
than the alternative of using the primary index or heap by enabling a narrower
scan over the relevant data (e.g., if index [c] was used to evaluate a non-sargable
predicate on column ¢, the merged index [a, b, ¢] would still be effective, specially if
the underlying table contains many columns).

To address the general case, we need to first introduce the notion of index pro-
motion. Consider an index I | V and suppose that Vi =V @V’ for some view V.
Promoting I over V to Vs (denoted I T Vi) results in an index over V), that can
be used (with some compensating action) whenever I | V' is used. This promoted
index contains all columns in the original index followed by every column that was
added to the select clause in Vj;*. For instance, consider:

Vi = SELECT x,y Vo= SELECT y,z
FROM R FROM R
WHERE 10<a<20 WHERE 15<a<30

and the merged view:

Vi® Ve = SELECT a,x,y,z
FROM R
WHERE 10<a<30

We then have that [z] T (Vi @ Va)=[z,a]. Using index promotion, we now define
the merging of two indexes over views as follows:

(L V)&l | V)= (nLeh)(VieW)|(iehk)

That is, we first obtain the merged index I1 @ I, then the view V; & V5, and finally
we promote the merged index to the merged view.

3. REDUCTION OPERATION

In the previous section we described a mechanism to decrease the amount of re-
dundancy between a pair of indexes over views. The idea was to merge them into
a new index over a view that might be smaller than the combined inputs, but at
the same time less efficient to answer queries. In this section we present a second
operator that works over a single input.

Specifically, we exploit the fact that when the query optimizer attempts to match
a query expression ¢, it will consider not only views that subsume ¢ completely,
but also views that subsume some of the sub-expressions of ¢q. As a simple example
suppose that the optimizer is matching the following query expression:

q=Ng.a,rb5c(ORa=15(R Xpgo=sy 5))

In this case, the view matching engine would consider all available views V that
subsume query expression g. If some view V' matches ¢, the expression is rewritten
using V' and compensating actions (e.g., ¢=0pr.q=15(V) for V=R g =5, S5).
However, query optimizers would also consider views that match sub-expressions of

40ther column orderings are possible, but we omit these details for simplicity.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



12 . Nicolas Bruno and Surajit Chaudhuri

g, such as for example views that subsume the following sub-expression of ¢ (which
omits table S but additionally projects column R.x so that a compensating join
can be applied):

¢ =Ug.a,rbR2(0Ra=15(R))

Since ¢ = Uy q,¢.6,5.c(¢" Mg 2=s.y S), we can recreate ¢ from any view V' that
matches ¢’ by additionally performing a join with the primary index of S. In
general, we can restrict an index over a view with some of its sub-expressions, and
then apply compensating actions to recreate the original structure. We call this
operation reduction and denote it with the symbol p.

3.1 Formal Model

To formalize the view reduction operation, we again consider three query languages.
Let £; be the language that defines input views, Lr the language that defines
reduced views, and L¢ the language that defines compensating actions to re-create
the original views in terms of the reduced view.

Definition 3.1. Given V from L;, we denote Vg = p(V') a reduction of V' when
the following properties hold:

(1) Vg belongs to Lg.
(2) C(Vg) =V for some C(Vg) in Lc.

(3) If the view matching algorithm matches V' for a query expression ¢, it will
attempt (and succeed) matching Vg for a sub-query of g.

We next address the reduction operation in detail when both £; and L are the
Lyy language (see Section 2.2) and for commonly used view matching engines.

3.2 Reduction in the Lyy Language

For efficiency purposes, query optimizers restrict the sub-queries that are considered
for view matching for a given query expression q. Most often, these optimizers only
consider sub-expressions ¢’ with fewer joins than g, but containing all applicable
predicates in ¢ that affect the tables in the sub-expression ¢’. In these common
scenarios, the reduction operation takes an index on a view IV € Lyy, a set of
tables T" and a set of columns K’ as inputs, and returns a new index p(IV,T’, K').
For an index I | V, where V = (S,T,J,R,Z,G), the operational semantics of
p((I'| V), T',K') are given in three steps as follows:

(1) If T/ ¢ T, the reduction is ill-defined and we stop. Otherwise, we obtain
the reduced version of V that only references tables T’, defined as V' =
(8", 7", J,R',Z',G"), where:

—J' CJ, R CR,and Z' C Z, where each base-table column referenced in .J/,
R’ and Z’ refers exclusively to tables in T".

—S8’ contains the subset of columns in S that belong to tables in T” plus all
columns in T” referenced in J — J', R— R and Z — Z'.

—If G # 0, G’ contains all the columns in G that belong to tables in T” plus
all columns in S’-S. Otherwise, G'=G=0.
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If V'’ contains cartesian products we consider the reduction invalid and we stop
(a cartesian product does not provide any efficiency advantage and it is always
much larger than the input relations).

(2) We obtain I’ from I by first removing all columns that do not belong to tables
in 77, and then adding all columns in S’ (this step is similar to I T V).

, the reduction is 1ll-defined and we stop. therwise, we define
3) If K' I, th ducti is ill-defined and Otherwi defi
p((I V), TK')=K"| V.

ExXaMPLE 3.2. The following example illustrates the ideas described in this sec-
tion. If V is the view defined below:

V = SELECT R.c, S.c
FROM R, S
WHERE R.x=S.y AND
10<R.a<50 AND
20<S.a<30 AND
R.b+S.b<10
GROUP BY R.c, S.c

then p([R.c,S.c] | V.{R},{R.c,R.z}) = ([R.c, R.x] | V'), where

V' = SELECT R.c, R.b, R.x
FROM R
WHERE 10<R.a<50
GROUP BY R.c, R.b, R.x )

4. PHYSICAL DESIGN REFINEMENT

We now formally define the physical design refinement problem motivated in the
introduction, using merging and reduction as the basic building blocks. Consider
a physical database configuration C' = {I | V4,..., I, | V,,} composed of indexes
over views (recall that all base-table indexes are defined over trivial views). We
assume that C' was obtained by tuning the DBMS for a typical workload by either
a skilled DBA or some automated tool (e.g., [Agrawal et al. 2004; Dageville et al.
2004; Zilio et al. 2004]). The size of a configuration C is the combined size of all
indexes in C' plus the size of heaps for indexes on views that do not have a primary
index in C' (we need a primary index or heap for each view):

size(C) = Zsize(Ij | Vi) + > size(() | Vi)

Vi without primary index in C

Now suppose that after some time the database grows, or the DBA manually adds
additional indexes (see Section 1), and size(C') becomes larger than the allocated
space. We would like to obtain a configuration that fits in the storage constraint
without compromising the quality of the original configuration C' (we measure the
quality of C as the impact C has on a “representative” workload, as explained in the
next section). Instead of considering every possible index for the new configuration,
we restrict our search to those that are either in the initial configuration or can be
derived from it via a series of merging and reduction operations. The rationale
is that in this way we can succinctly explain the refinement process and analyze
the impact of the physical changes more easily. Moreover, this alternative allows
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to locally adapt each original execution plan with local compensating actions so
that it uses the views in the new configuration. To understand this, consider the
query execution plan at the left of Figure 3. The highlighted sub-plan in the figure
seeks an index I=(a,b,c | V) using predicate a < 10 and outputs columns b and
¢ upwards in the tree. Now suppose that we reduce index I into I’ = (a,b | V).
Clearly, we cannot simply replace I with I’ in plan P, because I’ does not contain
the required column c¢. However, we can construct an alternative sub-plan using
a compensating action (in this case, a record-id lookup into the primary index of
the view V') and replace the original sub-plan that uses index I in P with the new
sub-plan that uses I’ but gives equivalent results. The resulting plan P’ (shown at
the right of Figure 3) is valid and equivalent to P, but uses the reduced index I’
instead of the original I. Therefore, if a DBA was used to the original execution
plan P, a change in the physical design from I to I’ would present only limited
changes to the query execution plan. (We note, however, that DBAs can always
re-optimize the query and obtain the optimal plan under the new configuration).

I=(a,b,c)
reduced to
i (a b)

r\d \ookup
I=(a,b,c)
Seek (a<10) =(a,b)
Project(b,c) Seek (a<10;

Fig. 3. A local transformation to reuse a query plan with a reduced index.

4.1 Problem Statement

Before introducing the physical design refinement problem, we define the search
space by introducing the closure of a configuration under the merging and reduction
operations:

Definition 4.1. Let C be a configuration and let C; (i > 0) be defined as follows
(see Sections 2 and 3 for the formal definition of operators @ and p):

—Cy=C
—Ciy1 = C; U {IVq @ IV, for each compatible IV, IV, € C;}
U {p(IV, T, K) for each IV € C; and valid choices of T and K}

We define closure(C)=C}, where k is the smallest integer that satisfies Cp=Cl1.

In words, the closure of a configuration C' is the set of all indexes over views that
are either in C' or can be derived from elements of C' through a series of merging and
reduction operations. Our goal is to obtain a subset of this closure that fits in the
available storage and is as efficient as possible for a given representative workload.

Definition 4.2 Physical Design Refinement (PDR) Problem. Given a configura-
tion C = {I; | Vi,...,I, | Vu}, a representative workload W, and a storage

5A representative workload can be produced by a skilled DBA based on a broad knowledge of the
DBMS usage. If this is not possible, Section 4.2 explores different alternatives to automatically
generate representative workloads.
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constraint B, we define PDR(C, W, B) as the refined configuration C’ such that:

(1) C" C closure(C).

(2) size(C') < B.

(3) ZqieW (ai - cost(qi, C')) is minimized, where cost(q,C) is the optimizer esti-
mated cost of query ¢ under configuration C, and «; is an optional weight
associated to query g;.

Unfortunately, the PDR problem is NP-hard, as we prove in Appendix A.

4.2 Obtaining a Representative Workload

The optimizing function in the PDR problem described above is a measure of quality
of each candidate configuration C', which in turn is defined as the expected cost
of a representative workload under C. In this section we present three approaches
to generate such representative workload when not explicitly provided, and discuss
their relative benefits and costs.

Inferred Workload

This alternative is the cheapest to obtain and can be used in any situation. The
insight is to note that the current configuration was obtained as the result of a
tuning session either by a DBA or an automated tool. It is then expected that all
indexes over views in the current configuration are somehow useful in answering
queries in the actual workload. We then propose to infer a hypothetical workload
with queries that mimic the functionality of each index that is present in the current
configuration. We assume that if a new configuration can efficiently process such
hypothetical workload, the benefits of the original indexes would be preserved. An
index can be used in one of three ways: (i) to scan a vertical fragment of a view,
(i) to scan a sorted vertical fragment of a view, and (iii) to seek tuples from a
view based on a sargable condition on its key columns. We then associate each
index IV=I | (S,T,R,J,Z,G) in C with a set of queries, called queries(IV ), and
define the inferred workload inferredW(C) = Uryecqueries(IV). Each query in
queries(IV ) stresses a different kind of index usage for IV, as shown below:

Scan Ordered Scan Seek®

SELECT I SELECT I SELECT I

FROM T FROM T FROM T

WHERE R AND J AND Z WHERE R AND J AND Z WHERE R AND J AND Z

GROUP BY G GROUP BY G [ AND “o(prefix I)” ]
ORDER BY I GROUP BY G

[ HAVING “o(prefix I)” 1]

The inferred workload described above is very convenient. First, it is very simple to
implement and does not require server changes. Also, it only depends on the current
configuration and therefore can be used in absence of any additional knowledge on
the DBMS usage. Finally, as we show experimentally, it is competitive in a variety of

6The We use a HAVING clause if G # (}, and a WHERE clause otherwise. In both cases, the expression
“o(prefix I)” refers to a sargable predicate over a prefix of the index columns.
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scenarios. We should point out that, although inferred workloads are an attractive
approach, in some situations the resulting workloads are not quite representative,
as illustrated in the following example.

ExampLE 4.3. Consider a workload consisting of ny occurrences of query q1 and
ngy occurrences of query g, where:

q1 = SELECT a FROM R WHERE a<10
q2 = SELECT b FROM S WHERE b<10

In this situation, the optimal configuration that might be obtained by a DBA or
automated tool is C = {I1,I2} where I = (R.a) and I = (S.b). Now suppose that
the space taken by C is too large and we decide to refine C'. The inferred workload,
inferredW(C'), consists of the following queries:

inferredW(C') = { SELECT a FROM R,
SELECT a FROM R ORDER BY a,
SELECT a FROM R where o(a),
SELECT b FROM S,
SELECT b FROM S ORDER BY b,
SELECT b FROM S where o(b) }

Further assume that tables R and S are of the same size, and columns a and b are
of the same width. In this case, the inferred workload inferredW(C) is symmet-
ric, and PDR(C,inferredW (C), B) would arbitrarily choose to keep either I or
Iy (there is no possibility of index merging or reduction, so C = closure(C) in this
situation). Suppose, without loss of generality, that PDR results in a new config-
uration C'={I;} (independently of the relative frequencies n1 and ny). Then, by
making ns >> n1, we can get an arbitrarily suboptimal C' compared to the alterna-
tiwe configuration {Ia}. The reason is that the inferred workload does not account
for the relative importance of each index in the original configuration.

Profiled Workload

In the previous section we argued that unless we track the frequency of queries in
the actual workload and the different types of index usages, we might not be able to
infer representative workloads. To address this drawback, we propose to track, with
very small overhead, the optimization and execution of queries in the database. In
this way, we are able to obtain accurate weights to refine the queries in the inferred
workload inferred W. Specifically, each time a query is optimized, we traverse the
resulting execution plan and identify each index usage (i.e., scan, sorted scan, or
seek). Additionally, for “seek usages” we obtain the (expected) number of tuples
that are sought by the index. Then, during normal query execution, we maintain
four counters attached to each index in the database using the information gathered
during optimization: total_scan_usages, total_sorted_scan_usages, total_seek_usages,
and total_sought_tuples. At any time that we need a profiled workload, we first
obtain the inferred workload as before and use the maintained index counters to
assign weights «; to each inferred query. For the “o(prefix I)” predicates, we
generate a conjunctive predicate whose cardinality equals the average number of
sought tuples total_sought_tuples/total_seek_usages.

Profiled workloads require slightly more overhead at runtime than inferred ones,
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since we need to analyze each query during optimization and maintain some coun-
ters as queries are executed. At the same time, the resulting workloads are more
representative as we show in the experimental evaluation. In fact, profiled work-
loads can better handle scenarios on which the workload changes compared to the
workload that was used to obtain the initial configuration.

PROPERTY 4.4. Let W be a workload, and W), be the profiled workload generated
after W was processed in the DBMS. If we are only able to optimize queries based
on local transformations, PDR(C,W,B) = PDR(C,W,,B) (i.e., W and W, are
indistinguishable for the purposes of refinement).

The crucial assumption in the property above is that the optimizer, faced with
different configurations, can only locally transform the plan that was optimized
under the original configuration (see Figure 3). Specifically, we do not allow join
reordering, group-by pushing, or other complex transformations. Instead, all the
optimizer can do is finding the best access plan for each base-table (or view) pred-
icate in the execution plan. If that is the case, the difference in cost of a query
plan under two configurations is only affected by the choice of a fixed set of access
path requests (see [Bruno and Chaudhuri 2006b; 2005] for more details). But W,
encodes such requests, and therefore captures the variable portion of the execution
plans in W. The difference in cost between two configurations would therefore be
the same whether we use W or W,,, and thus PDR would result in the same answer.
Of course, in reality query optimization goes beyond local transformations. Nev-
ertheless, the property illustrates that profiled workloads have stronger guarantees
than inferred ones for the purposes of physical design refinement.

Fully Logged Workload

Naturally, the most accurate way of generating a representative workload is to fully
log the queries that are executed by the DBMS, as it is done in the context of
traditional physical design tools. This technique results in more overhead than the
previous two because we need to log all the queries that are executed in the DBMS”,
but obviously is the most accurate way to generate a representative workload.

For simplicity, in the rest of this section we use the inferred workload, inferred W,
as the default input to PDR (the results are analogous for other input workloads as
well). Since the workload inferredW(C') is automatically generated from the initial
configuration C, we use PDR(C, B) as a shorthand of PDR(C, inferredW(C), B).

4.3 Pruning the Search Space

We now present some properties that are useful in defining heuristics for travers-
ing the search space and approximating PDR (see proofs in Appendix A). For a
configuration C' and an index I'V €closure(C), we define base(IV') to be the set of
original indexes in C which are part of a derivation that uses merging and reduction
to produce IV.

"We can use sampling and its stratified variants [Chaudhuri et al. 2002; K&nig and Nabar 2006]
to reduce the logging overhead at expense of loss in representability.
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PROPERTY 4.5. Let C be a configuration, IVy and IVa be indezes in closure(C),
and IV =IVy @ IV,. If IV & closure(C — base(IV'1)), then PDR(C, B) cannot
include both IV, and IVy;.

Property 4.5 shows that if we merge two indexes IV} and IV5, in some cases the
optimal solution cannot contain both the merged index and any of its inputs. We
next show that sometimes certain indexes cannot be part of the optimal solution.

PROPERTY 4.6. Let C be a configuration, IVy and IVa be indezes in closure(C),
and IVy=IVy @ IV, If (i) size(IVar) > size(IViy)+size(IVz), and (i) for each
IV, € closure(C) such that IVy=IVy @ IV, it still holds that size(IVy) >
size(IVy) +size(IVa) +size(IVy), then IVy & PDR(C, B).

Analogous properties for the reduction operator do exist and are shown below
(we omit the proofs, however, since these are very similar to those of the properties
above).

PROPERTY 4.7. Let C be a configuration, IV be an index in closure(C), and
IVr=p(IV,T, K) for some tables T and columns K. If IVr ¢ closure(C—base(IV)),
then PDR(C, B) cannot include both IV and IVg.

PROPERTY 4.8. Let C be a configuration, IV be an index in closure(C), and
IVg = p(IV,T,K) for some tables T and columns K. If (i) size(IVg) > size(IV),
and (i) for each IVj € closure(C') such that IVR=IVg @ IV} it still holds that
size(IVg) >size(IV;) +size(IVa)+size(IVy,), then IVr & PDR(C, B).

In the next section we exploit the above properties to heuristically speed up our
solution to the PDR problem.

4.4 A Heuristic Approach to Approximate PDR

In this section we introduce a heuristic approach to solve PDR that is inspired on
the greedy solution to the fractional knapsack problem [Brassard and Bratley 1996].
In the fractional knapsack problem, we are given an integer capacity B and a set
of objects o;, each one with value a; and volume b;. The output is a set of fractions
0 < fi <1 (one per object) such that the combined volume ), f;b; is no larger than
B and the value ), f;a; is maximized (we can see the traditional “0/1” knapsack
formulation as restricting the fractional knapsack so that each f; is either zero or
one). To solve the fractional knapsack problem, we first sort the input objects o;
in ascending order of the value-volume ratio a;/b; and then remove objects from
this sequence until either the remaining objects fill completely the capacity B, or
the last removed object oy exceeds B. In the latter case, we add back a fraction
of o} so that the total volume is exactly the input B capacity®. This assignment
is optimal for the fractional knapsack problem. In the 0/1 case (i.e., no fractional
objects are allowed), this heuristic performs very well in practice and a very simple
refinement guarantees a factor-2 approximation to the optimal solution [Brassard
and Bratley 1996].

81n reality, we sort objects in reverse order and keep a prefix of the sequence. This is equivalent
to the solution described above, which leads more easily to our adaptation.
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Note that we can adapt the knapsack problem to our scenario. Our initial set
consists of all the indexes in the closure of the original configuration. We define the
volume of an index as the size it uses in the DBMS, and the value of an index as
cost of the workload when the index is present minus the cost of the workload when
the index is not present. In this case, a straightforward adaptation of the greedy
solution described above would first generate the closure of the input configuration
C, and then progressively remove from this configuration the index with the smallest
“value-volume” ratio until the remaining ones satisfy the storage constraint. This
approach has the following problems:

—The size of closure(C) can be in the worst case exponential in the number of
original indexes. At the same time, intuitively the best views are either the
original ones, or obtained via a short sequence of operations (recall that each
operation degrades the performance of the workload). Most of the indexes in
closure(C') are not present in the optimal configuration.

—The size (volume) of an index is not constant but depends on the configuration
it belongs to. The reason is that we need to account for a primary index or heap
associated with each different view definition. If many indexes share their view
definition, we need a single primary index or heap for them.

—The impact (value) that each index has on the expected workload cost also de-
pends on the configuration. We cannot assign a constant “value” to each index
because of complex interactions inside the optimizer. An index that is not used
to answer some query might become useful in conjunction with another index
(e.g., for merge-join plans). Also, an index that is not very useful can become so
if some other index is eliminated from the configuration.

—The greedy solution to the fractional knapsack problem does not exploit the
domain-specific properties of Section 4.3 for pruning the search space.

To address these issues, we propose a progressive variation of the solution to
the fractional knapsack problem. A simplified pseudo-code is shown in Figure 4.
Essentially, we start with the original configuration (line 1) and progressively refine
it into new configurations that are smaller and slightly more expensive. While
the current configuration C'F' is too large to fit in the available space (line 2), we
identify a set of transformations to refine C'F (lines 3-5) pick the most promising
one (line 6), and apply it to CF (line 7) to obtain the next configuration. When
we obtain a configuration that is within the storage constraint, we return it in line
8. One class of transformations (line 3) is the same as in the greedy solution to
the fractional knapsack problem (i.e., we remove indexes). However, the other two
transformations (lines 4-5) explore the augmented search space (i.e., the closure of
the original configuration) on demand by replacing one or two indexes with either
a merged or reduced index.

In the remainder of this section we discuss some details of algorithm GreedyPDR:

—We consider the following transformations in lines 3-5: (i) deletion of each index
in the current configuration CF, (ii) merging of each pair of compatible indexes
in CF, and (iii) reductions of each index in C'F. Specifically, for (iii) we consider
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GreedyPDR (C:configuration, W:workload, B:storage bound)

01 CF =¢C

02 while (size(CF) > B)

03 TR = { delete IV for each IV € CF }

04 TR = TR U { IVi1 & IV; for each valid [V4,IV> € CF }

05 TR = TR U { p(IV,T,K) for each valid T, K, and IV € CF }

06 select transformation T € TR with smallest penalty

o7 CF = CF - "T’s antecedents" U "T’s consequent"
// Merge: antecedent are input views, consequent is merged view
// Reduction: antecedent is input view, consequent is reduced view
// Deletion: antecedent is view, consequent is empty

08 return CF

Fig. 4. Progressive knapsack for the physical design refinement problem.

reductions p(IV, T, K) so that K are prefixes of the columns in the resulting
index, and T are subsets of tables that match another view in C'F.

We use a heuristic derived from Properties 4.5 and 4.7 in line 4 and remove the
input indexes whenever we introduce a transformed (merged or reduced) index in
CF. Note that we do not check whether the transformed index can be generated
by other derivations (see Properties 4.5 and 4.7) so there might be false negatives.

‘We use a heuristic derived from Properties 4.6 and 4.8 in line 3 and not consider
transformations (merges and reductions) whose result is (14«) times larger than
the combined sizes of their inputs, for a small value of a. This heuristic avoids
considering merged views with cartesian products that originate from disjoint
sets of join predicates. However, in general this heuristic might also result in
false negatives.

Rather than assigning a constant “value” and “volume” to each index, we use a
dynamic approach that considers the interactions with the optimizer. For a given
configuration C', we define the penalty of a transformation (i.e., deletion, merging,
reduction) as Acost/Aspace, Where Agost is an estimate of the degradation in cost
that we would expect if we applied the transformation, and Agpqce is the amount
of space that we would save by applying the transformation. Penalty values are
then a measure of units of time that we lose per unit of space that we gain for
a given transformation. We obtain Agpgee and Ayme values as in [Bruno and
Chaudhuri 2005], and use penalties as the dynamic version of the value-volume
ratio in the original knapsack formulation.

To avoid incremental errors in estimation, we re-optimize the inferred workload
under the new configuration C'F' after each transformation. We minimize opti-
mization calls by only re-optimizing the queries in the workload that used an
index that got removed from CF®. The rationale is that we keep replacing in-
dexes with coarser alternatives, so any query that did not use, say, IV} in a given
configuration, should not use I'V; @ IV, or p(IV4, T, K) if they became addition-
ally available. This heuristic saves significant time and almost never degrades
the quality of the final configurations.

9We handle triggers by considering the cascading queries along with the triggering query in a
single atomic block, and therefore consider all the relevant indexes altogether.
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A Note on Update Queries

So far we implicitly focused on workloads composed entirely of SELECT queries. In
reality, most workloads consist of a mixture of “select” and “update” queries. The
main impact of an update query is that indexes defined over the updated table (or
dependent views) might also be updated as a side effect. Similarly to [Bruno and
Chaudhuri 2005], we conceptually separate each update query into two components:
a pure select query (which we process as before), and a small update shell. For
instance, the following query:

UPDATE T
SET a=b+1, c=2*c
WHERE a<10 AND d<20

is seen as a pure select query (S) and an update shell (U):

S = SELECT b+1, 2*c U = UPDATE TOP(k) T
FROM T SET a=a, c=c
WHERE a<10 and d<20

where k is the estimated cardinality of the select query (S). In the presence of
updates, penalty values Acost/Aspace for certain transformations might be negative
(e.g., a transformation that removes an index I can actually decrease the total
execution time if I has a large update overhead and relatively smaller benefits for
query processing). For that reason, when updates are present we can transform a
configuration into another that is both smaller and more efficient. Thus, we should
not exit the loop in lines 2-7 after a configuration fits in the available storage since
a later configuration might be even more efficient while still satisfying the storage
constraint. To handle these scenarios, we relax the condition in line 2 of Figure 4
as follows:

02 while (size(CF) > B) or (last_transformation_penalty < 0)

To simplify the presentation of the algorithms in the next section, we keep as-
suming select-only workloads, understanding that the concepts in this section are
still applicable in the resulting algorithms.

4.5 Discussion: Why Merge and Reduce?

The closure of an input configuration under the merge and reduction operators
induces a restricted search space of configurations. We now explain why the merge
and reduction operators in fact cover the set of relevant indexes over views for the
physical design problem described in this paper, in the context of typical query
optimizers.

Consider a sub-query ¢; that exactly matches a view Vi (i.e., ¢1 and V; are
semantically equivalent). Then, the whole ¢; can be matched and answered by
either V; or some generalization V' of V; (e.g., V' is obtained by adding to V;
additional group-by columns or relaxing its selection predicates). By definition, V’
is larger than V; and therefore less effective in answering sub-query ¢;. Why should
we then consider V' in our search space, since it is both larger and less efficient
for ¢; than the original V17 The only reasonable answer is that g; is not the only
query in the workload. Instead, there might be some other sub-query ¢o (which is
matched perfectly by V3), for which V” can also be used. In this scenario, having V"’
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instead of the original Vi and V5 might be beneficial, since the space for V'’ might
be smaller than the combined sizes of V4 and Va2 (albeit being less efficient for
answering ¢; and ¢2). We should then consider V' in our search space, noting that
V' must be a generalization of both V; and V5. Now, the merging of V; & V5 seems
the most appropriate choice for V', since it results in the most specific view that
generalizes both V; and V5 (other generalizations are both larger and less efficient
than V4 @ V). We conclude that the merge operation covers all the “interesting”
views that can be used to answer query expressions originally matched by the input
set, of views.

Let us now consider sub-expressions. In fact, a view Vr which is not a general-
ization of a query ¢ can still be used to rewrite and answer ¢ (see Section 3). It
would also make sense, then, to consider in our search space such sub-expressions of
q that can be used to speed up its processing. In general, the “reductions” that we
look for are somewhat dependent on the view matching engine itself. View match-
ing engines typically restrict the space of transformations and matching rules for
efficiency purposes. Specifically, usually the only sub-queries that can be matched
and compensated with a restricted view contain fewer joins. But this is how the re-
duction operator is defined (i.e., eliminating joins from the original view). However,
in principle, if the view matching engine is capable of union-ing several horizontal
fragments of a single template expression to answer a given sub-query, we should
certainly consider range partitioning over a column as a potential primitive opera-
tor in contrast to the definition p(IV,T’, K') as defined in Section 3.2. Thus, the
reduction operator in its generality (as in Definition 3.1) covers all the “interesting”
views that can be used to rewrite queries originally matched by the input set of
views (we note that any generalization of a reduced view can also be used but this
is covered, again, by the merge operator).

Putting all together, we believe that the merge and reduction operators are the
primitive building blocks capable of generating a wide class interesting views to
consider (as the expressive power of typical view matching engines expands, it
would translate into more richer versions of the merge and reduction operations).

5. VARIATIONS OF THE ORIGINAL PDR PROBLEM

In this section we introduce important variations and extensions to the original
PDR problem discussed in the previous section. We start by discussing a geometric
interpretation of the PDR problem and the greedy solution of Section 4.4. Figure 5
shows a two-dimensional scatter plot to illustrate the main ideas. Each point in the
plot corresponds to a configuration. The y-axis represents the size of the configura-
tion and the x-axis represents the expected cost for evaluating the input workload
under the given configuration. We can see that the initial configuration has a large
size but small cost. Also, the base configuration (that is, the configuration that
contains only mandatory indexes) has the smallest possible size, but a high cost
due to lack of additional indexes. The dotted horizontal line that crosses B de-
limits the feasibility region for PDR (any configuration above that line is too large
to be valid). We can see that the initial configuration is unfeasible (otherwise the
problem is trivial) and the base configuration is feasible (otherwise the problem has
no solution). The goal of PDR is to find a configuration in the feasible region that
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is as efficient as possible (i.e., towards the left of the plot). Each transformation
(i.e., deletion, merging, or reduction operations) transforms a given configuration
into another one that is smaller but less efficient (i.e., moves the configuration in
the down-right direction). The figure graphically shows three candidate transfor-
mations and their expected effect on the initial configuration. The heuristic used
in Section 4.4 chooses the transformation that minimizes the value Acost/Agpace-
Graphically, this transformation corresponds to the one with the angle closest to the
vertical line (i.e., the one that descends the steepest towards the feasible region).

A Size

Initial configuration

Ndidate Transformations

B Unfeasible Configurations

®
Base configuration

Cost
Fig. 5. Geometric interpretation of the PDR problem.

This geometric interpretation is useful in understanding some of the extensions
discussed next. Specifically, In Section 5.1 we study a more comprehensive way
to explore the search space. in Section 5.2 we introduce the dual of the basic
PDR problem. Finally, in Section 5.3 we present a constrained version of the PDR
problem that disallows configurations that are too different from the original one.

5.1 Adding Backtracking to GreedyPDR

Looking at Figure 5 we observe that our objective is to proceed along the steepest
descent until we get into the feasible region. The main difficulty is that, at each
iteration, we do not know the true value of Agost/Agpace; but we have just an
estimate. For that reason, we are bound to making some mistakes and choosing
the wrong transformation (due to the greedy nature of our algorithm, we even risk
getting “cornered” in a bad sub-space of solutions). Moreover, it is not guaranteed
that a single sequence of transformations results in all the configurations in the
“cost/space skyline”, because these might only be obtained from taking different
paths. To illustrate this point, we first ran GreedyPDR using a TPC-H database
and workload (see Section 7 for more details on the experimental setting) and
obtained the configurations that are connected by lines in Figure 6. Then, we
ran GreedyPDR multiple times, but at each iteration we chose, instead of lowest-
penalty transformation, a random transformation among the top five. The figure
shows all the configurations that we discovered in this way, and illustrates that the
configurations in the skyline are not necessarily the ones obtained by GreedyPDR.

To mitigate this problem, we propose a variation of the GreedyPDR algorithm
that more comprehensively searches the space of configurations. Specifically, we al-
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Fig. 6. GreedyPDR does not discover all the configuration in the cost/space skyline.

low multiple invocations of the original GreedyPDR solution starting from different
initial points and using different transformations. Figure 8 shows a pseudocode of
GreedyPDR-BT that implements this idea (we note that other backtracking choices
are also possible). Lines 4-9 are almost the same as in the original GreedyPDR.
A key difference is that in line 8 we select the best unused transformation for the
current configuration (because the same configuration might be considered multiple
times). After each iteration of lines 4-9 in GreedyPDR-BT, we obtain a new feasi-
ble configuration, and in line 10 we maintain the best overall configuration across
iterations. Line 3 selects the initial configuration for each iteration (i.e., imple-
ments the backtracking mechanism). The first time, we start with the input initial
configuration as in the original GreedyPDR. In subsequent iterations, we consider
as candidate starting points the set of ancestors of the best configuration found
so far (i.e., the configurations that were iteratively transformed from the initial to
the current best configuration). Among these, we pick the one that resulted in the
largest error when estimating the penalty value (see Figure 7, where dotted arrows
represent the estimated penalty values and plain arrows the actual ones). The
rationale is that by restarting from such configuration and choosing some other
transformation, we might be able to “correct” previous mistakes. The function
pickConfiguration in Figure 8 selects the initial configuration for each new iteration
of the main algorithm. When calling pickConfiguration, we already evaluated all
the ancestors of the current best configuration, and therefore we have the actual
values of Acost and Agpgee, which we use to obtain the “actual” penalty value and
thus the error in its estimation. Finally, line 2 in GreedyPDR-BT controls the over-
all time we spend in the algorithm. The timeOut function can be implemented in
different ways. For instance, we can give a wall-clock limit to GreedyPDR-BT, or
bound the number of iterations of the inner loop of lines 4-9.

5.2 Dual-PDR Problem

We now introduce the Dual-PDR problem, which is an interesting variation on
physical design refinement. Rather than putting a constraint on the size of the
resulting configuration, we require a configuration whose cost is no worse than
a certain percentage of that of the current configuration, and has the minimum
possible size. When DBAs are interested in removing redundancy from manually
tuned configurations, the Dual-PDR problem is an attractive approach. We next
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Fig. 7. Backtracking to the configuration with the largest estimated penalty error.

GreedyPDR-BT (C:configuration, W:workload, B:storage bound)
01 CBest = CBase // CBase is the base configuration

02 while (not timeOut())

03 CF = (CBest=CBase) ? C : pickConfiguration(CBest)

04 while (size(CF) > B)

05 TR = { delete IV for each IV € CF }

06 TR = TR U { IVi1 &IV, for each valid [V4,IV> € CF }

07 TR = TR U { p(IV,T,K) for each valid T, K, and IV € CF }
08 select unused transformation T € TR with smallest penalty
09 CF = CF - "T’s antecedents" U "T’s consequent"

10 if (cost(CF,W)<cost(CBest,W)) CBest=CF
11 return CBest

pickConfiguration (C:configuration)
01 CS = { CP : CP is an ancestor of C }

// CP is ancestor of C if C was obtained from CP using transformations
03 return C € CS with the maximum value of score(C), where

score(C) = "expected-penalty - actual-penalty" for C

Fig. 8. Backtracking in the configuration space to obtain better solutions.

define the Dual-PDR problem formally.

Definition 5.1 Dual Physical Design Refinement (Dual-PDR) Problem. Given a
configuration C' = {I; | V4,..., L, | V,}, a representative workload W, and a cost
constraint maxzCost, we define Dual-PDR(C, W, maxCost) as the refined configu-
ration C’ such that:

(1) C'" C closure(C).
(2) X, ew (ai- cost(qi, C")) < mazCost.
(3) size(C’) is minimized.

Figure 9 shows the graphical interpretation of the Dual-PDR problem. In the
Dual-PDR problem, the feasibility region is a vertical line that crosses mazCost. In
contrast to PDR, the initial configuration is feasible (otherwise the problem has no
solution) and generally the base configuration is unfeasible (otherwise the problem
is trivial). To address this new scenario, we stratify the penalty function so that
all transformations that are expected to result in configurations in the unfeasible
region (cost-wise) are ranked lower than the transformations that result in “valid”
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Fig. 9. Geometric interpretation of the Dual PDR problem.

configurations. Nonetheless, the refinement heuristic used for PDR is still very
much applicable for the Dual-PDR, problem and we can reuse it. The remaining
difference in the Dual-PDR, problem is the stopping criterion and the fact that
after stopping we return the previous configuration (since the current one is by
definition unfeasible). Figure 10 shows a pseudocode for the Dual-PDR problem
slightly adapted from the greedy solution of Figure 4.

GreedyDualPDR (C:configuration, W:workload, MC:cost bound)
01 CF = C; CP = NULL

02 while (cost(CF) < MC)

03 CP = CF

04 TR = { delete IV for each IV € CF }
05 TR = TR U { IVi® IV, for each valid IVi,IV: € CF }
06 TR = TR U { p(IV,T,K) for each valid T, K, and IV € CF }

o7 select transformation T € TR with smallest penalty
08 CF = CF - "T’s antecedents" U "T’s consequent"
09 return CP

Fig. 10. A solution for the dual physical design refinement problem.

We can add backtracking capabilities to GreedyDualPDR analogously to what we
do in Figure 8 for GreedyPDR. To keep the presentation short, however, we omit
such details.

5.3 CPDR: Constraining the Number of Transformations

Physical design refinement restricts the exploration of physical structures in the
closure of the original configuration, and thus ensures only incremental changes to
the original design. Therefore, we can easily explain how we obtained the resulting
refined configuration by detailing the sequence of transformations required to arrive
to the final configuration. So far, this “small number of changes” objective was
implicit in the formulation of our problem, but we had no way of bounding how
different the final configuration could be from the original one. In this section, we
generalize the PDR problem so that it can also take constraints on the number
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of allowed transformations!® (deletion, merging, and reduction) to obtain the final

configuration from the initial one. We next formally define the constrained PDR
problem (or CPDR).

Definition 5.2 Constrained-PDR (CPDR) Problem. Given a configuration C' =
{I | Vi, ..., I, | V,}, a representative workload W, a storage constraint B, and an
integer bound MT, we define CPDR(C, W, B, MT) as the refined configuration C’
such that:

(1) C" C closure(C).

(2) size(C') < B.

(3) C" =t1(t2(... (t(C))...)), where t; are valid transformations and k < MT.
(4) X ew (e - cost(g;, C")) is minimized.

In other words, CPDR extends the classic PDR problem by imposing an addi-
tional constraint on the number of changes from the original configuration that
are allowed in the result. By introducing this additional constraint, we signif-
icantly change the space of solutions. In particular, some CPDR problems are
over-constrained and thus unfeasible, which did not happen for the original PDR
or Dual-PDR problems (recall that either the base configuration or the initial one
were always solutions to the corresponding problems except for the trivial excep-
tions). Additionally, the new constraint on the number of allowed transformations
makes the exploration of the search space more difficult. The reason is that the
smaller the number of allowed transformations, the more difficult it is to reach a
configuration in the feasible region.

GreedyCPDR (C:configuration, W:workload, B:storage bound,
MT:transformation bound)

01 CF =¢C

02 while (size(CF) > B and ancestorCount(CF) < MT)

03 TR = { delete IV for each IV € CF }

04 TR = TR U { IVi ® IV, for each valid IV;,IV> € CF }

05 TR = TR U { p({IV,T,K) for each valid 7', K, and IV € CF }

06 select transformation T € TR with smallest penalty

07 CF = CF - "T’s antecedents" U "T’s consequent"

08 if (size(CF) > B) CF=NULL // No solution found

09 return CF

Fig. 11. Constrained physical design problem.

Figure 11 shows a straightforward mechanism to extend the GreedyPDR algo-
rithm of Section 5.1. The changes are: (i) the additional condition in line 2 to pro-
cess only feasible configurations, ancestorCount (CF)<MT, (where ancestorCount (C) is
the number of transformations from the initial one to C'), and (ii) the final checking
in line 8 to avoid returning an unfeasible configuration.

10Note that we constrain the number of applications of transformations, and not the types of
transformations themselves.
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These changes ensure that we only consider feasible configurations, and therefore
the resulting algorithm is sound. Unfortunately, in the presence of both space con-
straints and a small number of transformations, in many situations the algorithm
might fail to produce any feasible solution (specially for small values of MT). Adding
backtracking as we did for the previous algorithms helps ameliorating this issue,
but the search is still ineffective. To address this problem, we need to modify our
ranking of candidate transformations, which focus the search strategy toward fea-
sible solutions in the constrained search space. Specifically, we stratify the ranking
function as discussed bellow.

Stratification. The original penalty function only uses the ratio Acost/Aspace
without considering the absolute length of the “step”. When the number of allowed
transformations is small, a transformation with a great penalty value that minimally
decreases the configuration size is not very useful (in the extreme, if there is only one
remaining transformation, the only transformations that are useful are those that
reduce the configuration size below the storage bound B). To handle this issue, we
stratify the ranking function. Specifically, we identify a subset of transformations
as useful, and we rank all useful transformations ahead of the remaining ones (we
still consider the remaining transformations because, after all, penalty values are
just approximations and we do not want to erroneously prune the search space).
Consider a configuration C' with cost ¢ and space b that was obtained after applying
t transformations to the original configuration. In this case, we still need to diminish
the size of C' by at least (B — b) using at most (M7 — t) transformations. In that
case, we proceed as follows:

(1) Sort the candidate transformations for C' in descending order of Agpgce.

(2) Calculate maxRest = Zi]\i:f_t_l Agpace (i-e., we sum the top MT —t—1 trans-
formations sorted by Agpgee). This is an indication on the maximum amount
of space that we would be able to reduce after applying the current transfor-
mation. Note that this is only an indication because in future configurations
the transformations might change due to interactions among transformations.

(3) Label each transformation ¢ € TR as useful if its value Agpsce > B —mazRest.

In other words, we consider first all transformations that, at least in an estimated
sense, have the opportunity of transitioning the configuration in the feasible region
within the bounded number of transformations.

The Dual-CPDR Problem

Similarly to Section 5.2, we can define the dual of the constrained PDR prob-
lem, or Dual-CPDR. In the Dual-CPDR problem, we try to minimize the size of
the resulting configuration while not exceeding a certain cost and a given number
of transformations. When adapting the penalty function to this new scenario, a
complication —analogous to that of the CPDR problem— arises. In this situation,
however, we risk obtaining suboptimal configurations when we bound the number
of allowed transformations. In fact, since we already start in the feasible region (see
Figure 9), we might not be aggressive enough in choosing transformations when we
get closer to the last alternatives. As an example, suppose that we have a single
remaining transformation to apply. In this case we should not choose the one that
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minimizes Acost/Aspace, but the one that simply maximizes Agpgee (i.€., minimizes
1/Aspace) among the feasible ones (recall that in the Dual-CPDR problem we try
to minimize the configuration size). In other words, when (MT — t) is still large,
we would like to proceed as in the original solution. However, as we get fewer
and fewer remaining transformations to apply, we would like to give less relative
weight to Acpst values. For this purpose, we bias the definition of penalty values for
transformations as follows. Consider a configuration C with cost ¢ and space b that
was obtained after applying ¢ transformations to the original one. In that case, we
still need to minimize the size of the C' without incurring (M C — ¢) additional cost
and using at most (MT — t) additional transformations. We define the penalty of
a transformation as:
D
Beost)” e p=MT—t—1
Aspace MT

Thus, initially when ¢t << MT, D is close to one and we behave as in the original
Dual-PDR problem. As the number of remaining transformations decreases (i.e.,
t tends to MT), the value of D tends to zero and we smoothly transition to the
alternative 1/Agpgce.

6. PHYSICAL DESIGN SCHEDULING

At the end of a physical design refinement session, DBAs are required to implement
and deploy the recommended configuration. Of course, this problem is no different
from the analogous case after a regular tuning session takes place. Surprisingly,
this problem has not been addressed before in the literature. In this section we
formalize this task and show that it can be cast as a search problem (our goal is
not to provide a full treatment of the problem, since that would probably require
a separate article).

Let Cy be the current configuration and Cy be the desired configuration to
deploy (Cy might have been obtained after a regular tuning session, or perhaps
as the answer to a PDR problem). A physical schedule consists of a sequence
of index-creation and index-drop statements that starts in configuration Cy and
ends in configuration C'y. The physical design scheduling problem consists of
finding the minimum cost schedule using no more than B storage, where B >
max (size(Cy), size(Cp)) (we might need more than size(Cy) space to accommo-
date intermediate results while creating indexes in Cy). As an example, consider
the following configurations over a database with a single table R:

Co = {(Cv d)v (6)}

Cy = {(a,0), (a,c),(c), (e)}
A naive schedule would first remove all indexes in (Cy — C) and then create the
indexes in (Cy — Cp), that is:

[drop(c,d), create(a,b), create(a,c), create(c)]

To create an index, say, (¢), we require to sort a vertical fragment of the table
(or view) on column c. It is important to note that we can speed up the creation
of (¢) by using existing indexes. Specifically, if an index with leading column ¢
already exists in the database, we can build (¢) without sorting, by just scanning
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such index. Therefore the following schedule could be better than the original one
(assuming that the indexes at each intermediate step fit in the storage constraint):

[create(c), drop(c,d), create(a,b), create(a,c)]

In this case, we use (c,d) to avoid sorting table R in ¢ order to create (c), thus
saving time. However, to realize the above saving we need to be able to store (c)
and (¢, d) simultaneously. In fact, there might be more efficient schedules which
create additional intermediate structures outside (Cy — Cy). Consider the following
schedule:

[create(c), drop(c,d), create(a,b,c), create(a,b), create(a,c), drop(a,b,c)]

In this situation, we create a temporary index (a, b, ¢) = (a, b)®(a, ¢) before creating
(a,b) and (a,c). Therefore, we need to sort (a,b,c) only once, and then (a,b) and
(a,¢) can be built with only a minor-sort on the secondary columns, which is much
more efficient than the full alternative (e.g., if a is a key, no sorting is required for
(a,b) and (a,c¢)). This schedule might be more efficient than the previous one, but
at the same time requires additional storage for intermediate results. The general
problem can be defined as follows.

Definition 6.1 Physical Design Scheduling (PDS) Problem. Given configurations
Cy and Cy and a space constraint B, obtain a physical schedule PDS(Cy, Cy, B) =
(s1,82,...,8n) that transforms Cy into C such that:

(1) Each s; drops an existing index or creates a new index in closure(Cy).

(2) The size of each intermediate configuration plus the required temporary space
by the corresponding s; is bounded by B.

(3) The cost of implementing (s1, S2,. .., Sy) is minimized.

The two main challenges of the PDS problem are (i) a explosion in the search
space due to the ability to add elements in the closure of C, and (ii) the space
constraint, which invalidates obvious approaches based on topological orders. Be-
low we introduce a property that connects the PDS problem with a shortest path
algorithm in an induced graph.

PRrROPERTY 6.2. Consider an instance of the physical design scheduling problem
PDS(Co,Cy¢, B), and let G = (V, E) be an induced graph defined as follows:

- V ={vlv € (Cy U closure(Cy)) A size(v) < B}.

- There is a directed edge e = (v1,v2) in E if the symmetric difference between vy
and vy has a single element (i.e., |(v1 —va) U (va —v1)| = 1). The weight of e is
equal to the cost of creating the index in vo — vy starting in configuration vy (if
vy C va), or the cost of dropping the index in v1 — ve (if va C v1). The label of
edge e is the corresponding create or drop action.

In that case, the solution of PDS(Co,Cy,B) is the sequence of labels of the
shortest path between Co and Cy in the induced graph as defined above.

While this property does not directly lead to an efficient algorithm (i.e., the
induced graph has an exponential number of nodes in the worst case), it can be
used as a starting point to define search strategies. For instance, we could use an
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A*|Nilsson 1971] algorithm that progressively explores the search space by generat-
ing the induced graph on demand. Details of such strategies, however, are outside
the scope of this work.

7. EXPERIMENTAL EVALUATION

In this section we report experimental results on an evaluation of the techniques
introduced in this work.

Experimental Setting

We implemented the various PDR algorithms of Sections 4 and 5 as a client appli-
cation in C++ and used Microsoft SQL Server 2005 as the DBMS. In our experi-
ments we used a TPC-H database and workloads generated using the dbgen utility
(http://www.tpc.org/tpch/default.asp). In Section 7.1 we evaluate the original
PDR algorithm of Section 4. Then, in Section 7.2 we analyze the impact of the
backtracking extensions of Section 5.1. Finally, in Section 7.3 we report an eval-
uation of the constrained PDR problem as defined in Section 5.3. To keep the
presentation short, we only report results on the original PDR problem and omit
those for the Dual-PDR problem, which are similar.

7.1 Original PDR Problem

The goal in this section is to compare the PDR algorithm of Section 4 against state-
of-the-art physical design tools [Agrawal et al. 2004] regarding the quality of refined
configurations and the time it takes to obtain them. For this purpose, we proceeded
as follows. First, we took a workload W and tuned it with a physical database
design tool for B maximum storage, obtaining a configuration C%°°!. Second, we
refined C5°°! using our PDR implementation with a stricter storage constraint of
B'<B and the inferred inferred W workload, obtaining configuration C5P%. Third,
we re-tuned W from scratch using B’ as the new storage constraint, obtaining
configuration CL7°!. Finally, we evaluated the cost of the original workload W
under both CEPE and CL°, and also the time it took to produce each alternative
configuration.
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Fig. 12. Refining configurations vs. producing new configurations from scratch.
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Figure 12 shows the results on a 1GB TPC-H database with an initial storage
constraint of B = 3GB and a 20-query TPC-H workload W (we obtained the
20-query workload by running the dbgen tool and removing the last two queries
from its output). We then used several values of B’ ranging from 2.8GB (very
little refinement) down to 1.3GB (very aggressive refinement). In the figure we
measure the cost of W under a given configuration as a fraction of its cost under
the base configuration that only contains primary indexes. We see in Figure 12(a)
that in all cases, the refined configuration obtained by PDR is only of slightly less
quality than the alternative obtained from scratch with the tuning tool. In fact,
the cost difference for the original workload between both configurations is below
10% in all cases. Additionally, Figure 12(b) shows that the time it takes to refine
a configuration can be orders of magnitude smaller than that to produce a new
configuration from scratch (note the logarithmic scale in Figure 12(b)).

Analyzing Configurations

We next take a closer look at the resulting configurations from both PDR and the
tuning tool. For that purpose, we took the 20-query workload defined before and
tuned the TPC-H database with the tuning tool so that it recommends indexes
over base tables fitting in 3.1GB (we denote such configuration CT9% ). We then
ran PDR with a space bound of 2.8GB, obtaining C4' &%, and re-ran the tuning
tool also with a space bound of 2.8GB, obtaining C19%,. Table I summarizes
the cost of the original workload in the three configurations as well as the time it
took to obtain such configurations. While both configurations at 2.8GB are less
effective than the original one at 3.1GB, running an automatic tool from scratch
results in a slight improvement compared to using PDR (confirming the results
in the previous section for the case of configurations with index over base tables
only). However, the difference is not that large, and the refined configuration has
additional benefits. First, it took only 22 seconds to obtain the refined configu-
ration against over 800 seconds for running the tuning tool again from scratch.
Also, it is rather difficult to “understand” what changed from CT¢%, to CT92,
short of doing a manual analysis of both sets of indexes (and even in this case

we find several indexes in C7 3% that have no obvious relationship with those in

CTool.). In contrast, we can easily explain what changed while doing the refine-
ment, and which queries are being affected by which changes. Specifically, we steps
in PDR were: (1) Delete paRT(size, partkey, mfgr, type), (2) Delete ORDERS (custkey), (3)
Merge LINEITEM(orderkey, partkey, suppkey, quantity, extendedprice, discount, returnflag) and
LINEITEM(partkey, orderkey, linenumber, quantity, extendedprice, suppkey, discount), (4) Delete
PART (brand, container, size, partkey), and (5) Merge LINEITEM(shipdate, suppkey, extendedprice,
orderkey, discount, partkey, quantity, commitdate, receiptdate) and LINEITEM(shipdate, discount,
quantity, extendedprice, suppkey, partkey). This is better appreciated while comparing
the execution plans of the queries in the workload for the different configurations.
As an example, consider the first query in the workload:

SELECT returnflag, linestatus, SUM(quantity), "other aggregates"
FROM LINEITEM

WHERE shipdate <= ’1998/6/03’

GROUP BY returnflag, linestatus

ORDER BY returnflag, linestatus
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| Configuration | Fraction of Cost of Base Conf | Time to obtain configuration |

cToel, 23.74 % 843 secs.
CTeol, 26.04 % 809 secs.
CcPhR, 27.25 % 22 secs.

Table I. Fraction of cost after refining a configuration versus creating a new one from scratch.

Figure 13 shows the execution plans under the three configurations under consid-
eration. We can see than for CT92 , (see Figure 13(a)), we first seek on a covering
index for the tuples satisfying the condition on shipdate, and then do a group-by
plus aggregation using a hash-based algorithm. Finally, we sort the intermediate
results (since the hash-based alternative does not necessarily output tuples in the
right order). When optimizing under C2 2%, (see Figure 13(b)), we see that the
plan is almost the same, with the covering index replaced by the merged alterna-
tive described above. The resulting plan, while less efficient, is very similar to the
original plan. In contrast, when optimizing under C73%, (see Figure 13(c)) the
resulting plan scans a covering index with (returnflag, linestatus) key and fil-
ters on the fly the tuples according to the shipdate predicate. Finally, the resulting
tuples are grouped and aggregated using a sort-based alternative, since they are
already in the right order.

In conclusion, while C7 3%, results in slightly better performance than C1 {4, for
the input workload, it usually takes much longer to produce and results in execution
plans that are very different from the original ones, which might not be desirable

to DBAs.

SORT
(returnflag,
linestatus)

SORT
(returnflag,
linestatus)

GB+Aggregates
SORT-based

Filter on
(shipdate<’1998/06/03')

Ordered Scanon I3
returnflag, linestatus)

(
(a) C3T.(1)OGLB (b) CESDGRB (c) CzTgOGLB

GB+Aggregates
HASH-based

Seek on 1
(shipdate<’1998/06/03'")

GB+Aggregates
HASH-based

Seek on 2
(shipdate<’1998/06/03')

Fig. 13. Plans produced for the first query in the workload for different configurations.

Varying Workloads

In the previous experiments we assumed that the workload W used to initially
tune the database did not change, and therefore we used the same workload W to
evaluate the resulting refined configurations. In real scenarios, however, workloads
tend to drift, if not in the actual queries themselves, at least in their frequency
distribution. To evaluate such scenarios, we conducted the following experiment.
Initially, as before, we took the same workload W and tuned it with a design tool
for B = 3G B storage, obtaining the initial configuration. Second, we evaluated a
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slightly different workload W’ in the DBMS. The new workload W’ was generated as
follows: (i) we changed the frequency distribution of queries from uniform to Zipfian
(2=0.5), (ii) we removed the two queries with the smallest frequency from W', and
(iii) we added the two queries produced by dbgen that we initially excluded from W.
After evaluating W', we refined the current configuration using the three workload
generating alternatives of Section 4.2 and stricter storage constraints B’ between
1.5GB and 2.5GB. As before, we also re-tuned W' from scratch using the new
storage constraint, and evaluated the new W’ under all the resulting configurations.

80%

OinferredW
M profiledW
60% -+ - OloggedwW

70%

O Tuning Tool

50% -

40% -

30% -

Base Configuration

20% +

10% +

Fraction of Execution Cost of the

0% -

2.5 2 15
New Storage Constraint (B') in GB

Fig. 14. Refining configurations when the underlying workload drifts.

We can see in Figure 14 that the inferred workload inferred W performs worse
than before, since the information it exploits is not up-to-date anymore. However,
we note that the resulting configurations are still considerably better than the base
configuration. When using the profiled workload profiled W the results improve,
because we can extract additional information based on the execution of the new
workload W’ and thus assign more representative weights to the queries in the
generated workload profiledW. Finally, using the fully logged workload logged W =
W' is the best alternative, and the results are similar to those of Figure 12. The
gap between using PDR with the original workload W’ and tuning the DBMS from
scratch are due to two reasons. First, although logged W has access to the original
workload W', the refinement starts from the original configuration that did not
have any physical structures tuned specifically for queries in (W’-W). Second, the
quick refinement of PDR is always suboptimal compared to the full tuning of the
physical design tool.

7.2 Effect of Backtracking

In this section we evaluate the effect of backtracking on the quality of the resulting
configurations. We generated a new 22-query TPC-H workload with dbgen and
tuned the DBMS for optimal performance using a physical design tool (we obtained
a 2.7GB configuration). We then initiated a PDR session (using GreedyPDR-BT)
with a storage constraint of 2GB and a time limit of 5 minutes.

Figure 15(a) shows the expected cost of the current best configuration after each
new configuration is evaluated by GreedyPDR-BT. Before one minute, after evalu-
ating close to 50 configurations, GreedyPDR-BT found the first solution, with an
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Fig. 15. Exploiting backtracking to obtain better configurations with GreedyPDR-BT.

expected cost of 500 units (this would have been the final solution of the origi-
nal algorithm GreedyPDR). After that, GreedyPDR-BT started the backtracking
process and the best configuration kept improving down to 205 units at the end.
Figure 15(b) shows each evaluated configuration and the cost/space skyline. We
note that all the configurations in the skyline do not belong to the same refine-

ment sequence, but are instead taken from different iterations of the inner loop of
GreedyPDR-BT.

7.3 Constrained PDR Problem

In this section we evaluate the constrained PDR (CPDR) problem defined in Sec-
tion 5.3. For that purpose, we generated an optimal 4GB configuration using a
physical tool for a 44-query workload generated by concatenating two different ex-
ecutions of dbgen. We then generated CPDR instances with a storage constraint of
2.5G B and different bounds on the number of allowed transformations.
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(a) Effect of stratified ranking function. (b) Configurations explored by CPDR.

Fig. 16. Evaluating the constrained physical design problem CPDR.

Figure 16(a) shows the fraction of cost of each resulting configuration with respect
to the base one, both when using the original penalty function and the modification
of Section 5.3. We see that the larger the number of allowed transformations maxT,
the better the resulting configurations. For maxzT < 16, the CPDR algorithm with
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the original penalty function failed to obtain any solution (we then show the cor-
responding bar at 100%). In contrast, by using the modified penalty function,
algorithm GreedyCPDR is able to find feasible solutions even for mazT = 4. The
reason is that GreedyCPDR effectively biases the search strategy toward feasible
configurations in the constrained space. To complement the analysis, Figure 16(b)
shows a typical sequence of configurations explored during the execution of Greedy-
CPDR for varying values of mazT.

8. RELATED WORK

In recent years there has been considerable research on automated physical design
in DBMSs. Several pieces of work (e.g., [Agrawal et al. 2000; Chaudhuri and
Narasayya 1997; 1999; Valentin et al. 2000; Zilio et al. 2004; Agrawal et al. 2006])
detail solutions that consider different physical structures, and some of these ideas
were later transferred to commercial products (e.g., [Agrawal et al. 2004; Dageville
et al. 2004; Zilio et al. 2004]). This line of work, while successful, fails to address the
common scenarios discussed in the introduction (which we collectively refer to as
physical design refinement). In contrast to previous references, this work presents
a new and complementary paradigm that considers the current physical database
design and evolves it to meet new requirements.

Previous work in the literature adopted an ad-hoc approach regarding the trans-
formations that can be exploited for physical database design. Reference [Chaud-
huri and Narasayya 1999] introduces a concept of index merging that is similar to
what we define in this work, but does not generalize this notion to indexes over
views. Similarly, reference [Agrawal et al. 2000] exploits a few transformations to
combine the information in materialized views without giving a formal and com-
plete framework. Reference [Goldstein and Larson 2001] presents an overview of
related work on view matching, which shares some of the technical details with our
work, specifically with respect to view merging. We believe our work is the first to
consider a unified approach of primitive operations over indexes and materialized
views that can form the basis of physical design tools.

Some of the ideas in this work are inspired by [Bruno and Chaudhuri 2005],
which presents a relaxation-based approach for physical design tuning. This ref-
erence introduces the concept of relaxation to transform an optimal configuration
obtained by intercepting optimization calls to another one that fits in the available
storage. Unlike this work, the main focus in [Bruno and Chaudhuri 2005] is to ob-
tain an optimal design from scratch for a given workload and therefore the notion
of transformations was of secondary importance. Specifically, reference [Bruno and
Chaudhuri 2005] considers transformations for indexes and materialized views as
different entities, and does not provide a unifying framework.

More recently, references [Bruno and Chaudhuri 2006b; 2007] use the notion
of merging indexes while investigating new directions in physical design tuning.
Specifically, reference [Bruno and Chaudhuri 2006b] provides quick lower and up-
per bounds on the expected benefit of a comprehensive tuning tool, and considers
merging indexes as a crucial component in the main algorithm. On the other hand,
reference [Bruno and Chaudhuri 2007] proposes an alternative approach to the phys-
ical design problem. Specifically, it introduces algorithms that are always-on and
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continuously modify the current physical design reacting to changes in the query
workload. Specifically, these techniques analyze the workload and maintain benefit
and penalty values for current and hypothetical indexes (including merged indexes)
and modify the current configuration in response to changes in the query workload.

This paper extends the work in [Bruno and Chaudhuri 2006a]. In addition to an
expanded treatment of items in the original submission, this work addresses several
new issues. First, we identified a novel approach (i.e., profiled workloads) to obtain
knowledge on usage of the database that balance the accuracy of the resulting phys-
ical configuration and the required overhead (Section 4.2). In Section 5 we discussed
a geometric interpretation of the PDR problem and our original solution that offers
a different perspective to the PDR problem. Based on this interpretation, we ex-
plored a new search alternative using backtracking for the original PDR problem in
Section 5.1. We then introduced two alternative problem formulations to the PDR
problem. Specifically, in Section 5.2 we introduced the Dual-PDR Problem (which
minimizes the space used by the final configuration while not exceeding a bound in
cost), and in Section 5.3 we introduced the constrained-PDR problem (which limits
the number of transformations that may be applied to the original configuration).
Finally, we formally defined the Physical Design Scheduling problem, an essential
step in implementing physical design changes in Section 6.

The literature on query optimization is vast, and sometimes addresses problems
that implicitly use the merge/reduce building blocks described in this paper. For
instance, the multi-query optimization problem has a long history (see, e.g., [Finkel-
stein 1982; Park and Segev 1988; Sellis 1988; Roy et al. 2000]). The objective is
to exploit common subexpressions across queries to reduce the overall evaluation
cost (even though some queries in isolation might execute sub-optimally). While
detecting exact matches is already an improvement, many techniques extend exact
matches with subsumed expressions. In other words, for a given pair of expres-
sions e; and ey, these techniques try to obtain the most specific expression that
can be used to evaluate both e; and es. While the main issues in these references
revolve around matching efficiency and greedy techniques to incorporate common
sub-expressions into regular query optimization, the problem statement can be eas-
ily reworded in terms of view merging and reduction. As another example, refer-
ences [Ross et al. 1996; Mistry et al. 2001] address the problem of materialized view
maintenance. This work shows how to find an efficient plan for the maintenance
of a set of materialized views. Specifically, they exploit common sub-expressions
among the views and reach an analogous conclusion to that of Section 6: creating
additional materialized views can reduce the total maintenance cost. In contrast to
the physical design scheduling problem of Section 6, these references are concerned
with the cost of maintaining the set of materialized views, where we pay attention
to the complementary issue of how to transition between a given configuration and
a new one. In any case, the work in [Ross et al. 1996; Mistry et al. 2001] can
be rephrased in the context of merging and reduction operations and the search
conducted on the closure of the original set of views.

Finally, the PDS problem of Section 6 is similar to the register allocation problem
studied in the compiler literature [Chaitin et al. 1981]. The register allocation
problem consists of allocating a large number of program variables into a small
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number of CPU registers in order to keep as many operands as possible in registers
and thus maximize the performance of compiled programs. In both problems we
have to schedule the use of scarce resources (disk vs. CPU registers) to minimize
the execution cost of some program (physical restructuring vs. arbitrary compiled
code). However, there are significant differences between both problems. First, the
structures that we need to allocate in PDS can be of vastly different sizes while
on the register allocation problem the size of the registers is fixed. Also, PDS
allows more flexible schedules since we only are concerned with the initial and final
configuration, but we can change the order of intermediate operations arbitrarily.
Finally, in PDS we might have to consider additional temporary structures that are
not part of either the initial or final configuration to maximize performance. Thus,
the solutions for the register allocation problem are not directly applicable to PDS,
but there might be opportunities for further research for a better understanding of
the relationship between the two problems.

9. CONCLUSIONS

In this work we introduce and study in-depth several variants of the physical design
refinement problem, which fills an important gap in the functionality of known
physical design tools. Rather than building new configurations from scratch when
some requirements change, we enable the progressive refinement of the current
configuration into a new one that satisfies storage and update constraints. We do
so by exploiting two new operators (merging and reduction) that balance space and
efficiency. The configurations obtained via physical design refinement are also easily
explained to the DBAs. We believe that this new functionality is an important
addition to the repertoire of automated physical design tools, giving DBAs more
flexibility to cope with evolving data distributions and workloads.

A. PROOFS

THEOREM A.l. The PDR problem is NP-hard.

Proof: We provide a reduction from knapsack. The knapsack problem takes as
inputs an integer capacity B and a set of objects o;, each one with value a; and
volume b;. The output is a subset of 0; whose combined volume fits in B and sum
of values is maximized. Consider an arbitrary knapsack problem with capacity B
and elements {o1,...,0,}. We create a PDR(C, W, B) instance as follows. First,
we associate each o; with the view V; = SELECT x FROM T; WHERE x=0, where T; is
a single column table that contains b; tuples with value zero and a; tuples with
value one. We then define the initial configuration C' = {V;} and the representative
workload also as W = {V;}. Since all views refer to different tables, there is
no possibility of merging views. Additionally, each index is defined over a single
column, so no reduction is possible either. The PDR(C, W, B) problem then reduces
to finding the best subset of the original indexes over views. Now, If V; is not present
in the final configuration, we have to scan the base table T; to obtain the zero-valued
tuples and answer ¢;. Base table T; is a; 4+ b; units of size, which is a; units larger
than the view size (there are only b; tuples in T; that satisfy z = 0). Assuming
that scan costs are linear, the value of having V; in the result (i.e., the time we save
by having such an index) is a; and its size is b;. After solving this PDR(C, W, B)
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base(IV,) Cu

Fig. 17. Pruning indexes over views from the PDR search space.

problem, we generate the knapsack solution by mapping the subset of views in the
result to the original objects o;.

PrOPERTY 4.4. Let C be a configuration, IVy and IV be indezes in closure(C),
and IV =IVy @ IV,. If IV & closure(C — base(IV'1)), then PDR(C, B) cannot
include both IV, and IVy;.

Proof: Suppose that both IV; and IVj; belong to PDR(C, B). Consider the
indexes in C whose inferred queries are evaluated using IV (we call this set Cyy
in Figure 17). For each index IV € C)y, it must be the case that IV, matches
either IV or some reduction of IV. Let us define the set ', as composed of the
indexes in C)yy (or their corresponding reductions) that are matched by I'Vj;. Now
consider replacing IVy; in PDR(C, B) by IV;, = @®rvec;, IV. We next show that
this alternative configuration, denoted PDR’(C, B), is better than PDR(C, B). We
first show that PDR’(C, B) is not larger than PDR(C, B). For that purpose, we note
that IV}, is obtained by merging elements in C,, which are all subsumed by IVj,.
Therefore, IVa @IV, = IVas (the merged IVy cannot incorporate anything that is
not already captured by IVas). Additionally, by our hypothesis, IV}, # IVas. The
reason is that indexes in base(IV;) do not belong to Cis (the optimizer should have
found better execution plans by replacing usages of IV); with better alternatives
that use I'Vy). Therefore, IV}, € closure(Cir) C closure(C — base(IV7)) and cannot
be equal to IVy;. We then have that IV}, & IVy = IVy and IV], # IVa.
Consequently, IV}, is strictly smaller than IVj; and thus PDR’(C, B) is smaller
than PDR(C, B). All queries inferred from indexes in (C' — Cj) cannot execute
slower in PDR’(C, B) because all supporting indexes are present. Queries inferred
from indexes in Cps would execute faster in PDR’(C, B) because the optimizer
would replace usages of I'V)s in the execution plans with more efficient alternatives
that use the smaller IV},. PDR’(C, B) is also more efficient than PDR(C, B), which
proves the property.

PrROPERTY 4.5. Let C be a configuration, IVy and IVa be indexes in closure(C),
and IVy=IVy & IV,. If (i) size(IVy) > size(IVh)+size(IVz2), and (i) for each
1Vi, € closure(C) such that IVy=IVy @© IV, it still holds that size(IVyr) >
size(IV1)+size(IVa) +size(IVy), then IVy & PDR(C, B).

Proof: Suppose that V), belongs to PDR(C, B) configuration but both (i) and
(ii) do not hold. Since (i) does not hold, replacing IVy; by both IV and IV;
results in a smaller configuration. Additionally, every query inferred from an in-
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dex in base(IVy)Ubase(IVz) can be answered more efficiently by either IV; or IV,
than it is by IVy;. There might be, however, some query inferred from an index
IV}, that is not in base(IV;)Ubase(IVa), and IV, might greatly benefit from IV,
(see Figure 17). If that is the case, there is an IV} reduced from IVj such that
IVy &1V = IVyy. Since (ii) does not hold, we have that the combined size of IV;,
IV, and IVj is smaller than that of I'V),, so we can replace IVy; by all IV, and
obtain a better configuration. In conclusion, IVj; cannot belong to PDR(C, B) if
(i) and (ii) do not hold.
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