
 1

A Measurement Study of a Peer-to-Peer Video-on-Demand System

Bin Cheng
*
, Xuezheng Liu

§
, Zheng Zhang

§
, Hai Jin

*

*
Services Computing Technology and System Lab, Cluster and Grid Computing Lab

Huazhong University of Science and Technology, Wuhan, China
§
Microsoft Research Asia, Beijing, China

*
{showersky,hjin}@hust.edu.cn

§
{xueliu,zzhang}@microsoft.com

ABSTRACT
Despite strong interest in P2P video-on-demand (VoD)

services, existing studies are mostly based on

simulation and focus on areas such as overlay

topology. Little is known about the effectiveness of P2P

in VoD systems and the end user experience. In this

paper we present a comprehensive study of these

issues using the two-month logs from a deployed

experimental P2P VoD system over CERNET
1
. Our key

findings are: (1) the key factor is the popularity of

channels and a moderate number of concurrent users

can derive satisfactory user experience. However,

good network bandwidth at peers and adequate server

provisioning are critical. (2) a simple prefetching

algorithm can be effective to improve random seeks.

Overall, we believe that it is feasible to provide a cost-

effective P2P VoD service with acceptable user

experience, and there is a fundamental tradeoff

between good experience and system scalability.

1. INTRODUCTION

Unlike other popular P2P services such as file

downloading [5][10] and live streaming

[7][8][12], the more challenging P2P VoD

(video-on-demand) service is relatively less

understood. This paper reports our initial

empirical study of GridCast, a P2P VoD system

that has been deployed for half a year.

Our initial attempt is to define important

metrics that will guide further improvements; the

current limited scales allow us to perform

extensive instrumentations to identify

optimization opportunities on both server and

client side. Along the way, we gained a few

insights. For instance, even with limited

concurrent users that are spread in various

playback positions, the performance already

approaches that of an ideal system. However, the

benefit only extends to peers that enjoy good

bandwidth and when server stress is less an issue.

Peers with low bandwidth not only have poor user

experience, but can also cause problems to other

well-connected peers. We find that forward seek

dominates backward seek with a 7:3 split, and

that around 80% of seeks are within short

distance. We also find that a simple prefetching

algorithm is effective to improve random seeks,

but further optimizations are necessary.

We give a brief description of GridCast in

Section 2. Section 3 explains our experiment

methodology and the collected dataset. Section 4

presents an in-depth analysis of the overall system

performance and user experience. We discuss

related work in Section 5 and conclude in

Section 6.

2. SYSTEM OVERVIEW
Just like other P2P content distribution systems,

GridCast uses a set of source servers to release

media files to participating peers, who

asynchronously play the files while exchanging

data among themselves. Unlike file downloading

and live streaming, a peer is more “selfish” in the

sense that it only cares about contents after its

current playing position, which is often different

from other peers. Most of the time, a peer’s

downloading targets are those whose playback

positions are ahead, and it can only help those

that are behind. However, a peer can also change

its playing position at any time. These

characteristics make a VoD system harder to

optimize, rendering globally optimal strategies

such as “rarest first” as employed in BitTorrent[5]

inapplicable.

To cope with the above problem, a GridCast

peer maintains a routing table consisting of some

peers that are placed in a set of concentric rings

with power law radii, distanced using relative

playback positions (Fig.1), and uses gossips to

keep the routing table up-to-date. This

architecture allows a peer to find a new group of

position-close partners in logarithmic steps after it

seeks to a new playing position. The tracker can

1
China Education Network

This work was supported by NSFC grant No.60433040.

 2

be considered as a stationary peer whose

playback position stays fixed at time zero. The

tracker’s only job is to keep track of its

membership view, which bootstraps any new

peers.

Peers

Tracker Server Web Portal Source Servers

1

2

16:00

12:00

20:00 30:00

38:00

25:00

8:00

3:00

5:00

18:00

Fig. 1 Architecture overview

The peer caches played content onto its local

disk. These data are served to other peers, or to

itself in case of backward seeks. The media file is

divided into chunks. Each chunk has one second

play time. A peer exchanges chunks with its (up

to 25) partners, starting from those in the

innermost ring and then outwards, or from the

source server otherwise. The peer fetches the next

10 seconds first; the playback stalls if these data

are not fetched in time. Next, it tries to fetch the

next 200 seconds. If bandwidth allows, the peer

also tries to fetch anchors. As Fig. 2 shows,

anchors are segments each consisting of 10

continuous seconds, and are distributed

throughout the media file with fixed interval (e.g.

300 seconds). When a seek occurs, we adjust the

playback position to the beginning of the closest

anchor if the anchor has been already

downloaded. Thus, the seeking is satisfied

instantly and the playing time of that anchor

overlaps with the time needed for the peer to

establish partners at the new position. Anchor

prefetching is a new addition to the system, and

other details can be found in [2].

3. EXPERIMENT METHODOLOGY

3.1 Deployment

GridCast is deployed since May 2006 and has

attracted more than twenty thousand users and

supported up to hundreds of concurrent users at

the peak time with one source server, which has

100Mb bandwidth, 2GB Memory and 1TB disk.

During the popular 2006 FIFA WORLD CUP

event, it provided VoD service for users in 6

provinces in China. A majority of users are

students with Internet services supplied by

CERNET. There are also users from other ISPs

in China. The video programs typically have

bitrate from 400 Kbps to 600 Kbps (with a few

channels exceeding 800 Kbps), and are either

Window Media Video (WMV) or Real Video

(RMVB) file format. The contents are classified

into 9 subsections, including Sports, Science,

Cinema, Leisure and others. Each published

media file is called a channel, and a client’s

playback activity is termed as a session.

Although the current scale is still limited, the

mixed network environment and the detailed logs

enable us to perform an in-depth analysis of a

running P2P VoD system.

anchor

Forward Seek
Backward Seek

current

t (sec.)

101010

anchor anchor

300300

10

anchor

300

adjust

Fig. 2 Anchor distribution

3.2 Data Collected

A GridCast client is instrumented to collect logs

that are turned on during playing time, and the

logs are uploaded to the tracker periodically.

These session logs keep the most important

information on seek operations, buffer maps, jitter

and anchor usage. We record the snapshots taken

at all peers with a 30-second granularity. The

source server keeps other statistics such as total

bytes served. Table 1 gives an overview of the

collected dataset.
Table 1 Log statistics

Log duration ~ two months

Number of visited users ~ 20,000

Percent of CERNET users 98%

Percent of non-CERNET users Netcom: 1% Unicom: 0.6%

Telecom: 0.4%

Pair-wise peer bandwidth CERNET: >100KB/s

Non-CERNET: 20~50KB/s

CERNET to non-CERNET: 4~5KB/s

Percent of NAT users 22.8%

Maximal online users ~ 360

Number of sessions ~ 250,000

Number of videos ~ 1,200 channels

Average Code rate 500~600kbps

Movie length on average about an hour

Total served from the source server 11,420GB

Total played by clients 15,083GB

To evaluate the effectiveness of the anchor

prefetch algorithm, in Sep. and Oct. 2006, we ran

two experiments, with and without the anchor

prefetch, and each lasted one month. The switch

is made by directing client code to different

 3

codepaths when the user joins. As the CERNET

users generally have good network bandwidth

(>100KB/s), non-CERNET users are much lower

and have asymmetric uplink/downlink

bandwidths. The pipe between CERNET and the

commercial ISPs is much narrower, at around

4~5KB/s.

4. EXPERIMENTAL RESULTS

4.1 Overall System Performance

In Fig. 3, the top curve represents the total

contents played during a typical day, normalized

to the peak which occurred around 1:00PM. This

curve, labeled cs, represents the stress of a

traditional client/server model where all data are

streamed from the source. The bottom curve,

labeled ideal, is the total amount of data served

by the source if it serves only one user with the

bit-rate of the file per channel. This is the

minimum possible stress, bringing it down further

would require the peers themselves to register as

sources in the system. The middle curve is what

our source server actually serves.

Unsurprisingly, there is a clear pattern that the

stress follows users’ daily activity schedule. The

stress in hot time (when user population is large,

e.g., 12:00PM to 1:00PM) sees 3.2 and 4.6 times

increases compared to that of the cold time (when

population is small, e.g., 9:00AM to 10:30 AM),

for ideal and cs, respectively. The fact that during

hot hour(s) the number of active channels

increases has a consequence to both server load

and user experience, as we will explain later.

The stress at the source follows closely to the

ideal curve, demonstrating that the system works

fairly effectively at this scale. The gap between

the two curves is due to a number of factors: the

source needs to provide the data anytime when

the peer can not obtain data from other peers.

This happens more frequently when the user joins

the system or seeks a new playing position, or

when its partners don’t have enough data or

bandwidth. To understand the issues further, we

define the utilization of a channel to be the ratio

of data served from peers to the total fetched

data. The higher the utilization, the better the

peers are helping each other. In the ideal model,

the utilization of a channel with n concurrent

users is (n-1)/n because only the foremost peer is

required to fetch data from the source server.

Fig. 4 plots the utilization against channel

popularity (i.e. concurrent users). Evidently, the

utilization quickly approaches the ideal one with

more peers. Fig. 5 examines in finer details why

the gap exists. Our log includes the snapshots of

the availability of downloaded chunks of all

joined peers and the amount of data retrieved

from the source and from local partners every 30

seconds. A peer will retrieve from the server if 1)

the content exists only in the source server, 2) the

content does not exist in its local partners but

exists in disconnected peers because of NAT and

3) its partners do not have sufficient bandwidth to

meet the demand. All of these problems will

contribute to lower utilization, but they become

progressively less severe with more peers. With

limited peers, missing content (most likely due to

seek operations) and NAT are the two primary

reasons. Interestingly, there are points where the

utilization is even better than the ideal case. This

is mostly due to paused peers or finished peers

that still stay online, which act as a temporary

source server.

4.2 User Experience

Good user experience is critical for VoD services.

The metrics that we examine are startup latency,

seek latency, and jitter.

A. Startup and Seek Latency

After a peer joins a channel, it starts to play only

after receiving 10 seconds worth of content. The

same goes for seeks. These data come from the

2 3 4 5 6 7 8

10

20

30

40

50

60

70

80

90

100

110

2 4 6 8 10 12 14 16 18 20 22

10

20

30

40

50

60

70

80

90

100

6:0022:0013:006:00

87.585.7
83.3

80
75

66.6

d
a

ta
 p

e
rc

e
n

t(
%

)

popularity

 GridCast

 limited bandwidth

 NAT

 missing content

50

0

10

20

30

40

50

60

70

80

90

100

n
o

rm
a

liz
e

d
 s

tr
e

ss

time (hour)

 cs

 p2p

 ideal

u
til

iz
a

tio
n

(%
)

popularity

 ideal

 GridCast

Fig. 3 Bandwidth consumption over time

during a typical day

Fig. 4 Utilization vs. popularity Fig. 5 Reasons for the gap between GridCast

and the ideal model

 4

source server if the peer is the only one in the

channel, or up to ten most content-close peers as

recommended by the tracker. Like an ordinary

peer, the tracker also maintains a list of peers on

a set of concentric rings. These two latencies are

qualitatively the same since the user jumps to

certain playing point.

Fig. 6 provides the cumulative distribution

functions (CDF) of startup latency and seek

latency of all sessions. Although the startup

latency has a wide distribution up to 60 seconds,

more than 70% and 90% of sessions have lower

than 5 and 10 seconds, respectively. Seek latency

is smaller, more than 70% and 90% of the

sessions have lower than 3.5 and 8 seconds,

respectively. There are two reasons why seek

latencies are better. First, startup latency

encounters a 2-second connection delay as the

user establishes the initial partners if there are

any (and that’s the reason the two are equal when

there are no partners). Second, as we will explain

in Section 4.3, many seeks are forward and short

seeks. These seeks would find data readily

prefeched from its partners.

These results are not surprising given that a

majority of the users are within CERNET, up to

98%. We break down the startup and seek

latency according to whether the user is in the

same campus, not in the same campus but still on

CERNET, and those that are from elsewhere

(Fig.7). In contrast to other CERNET users, the

campus users enjoy shorter latency due to their

better network locality. However, the non-

CERNET users encounter poor latency because

they have lower network capacity (4~5KB/s).

These data suggests that if the non-CERNET

users increase in the future, optimizing their

latency is critical since those users are seeing a

delay close to 1 minute.

More peers will definitely help, as the needed

contents can be downloaded in parallel (Fig. 8).

Both curves drop quickly with more peers, with

startup latency elevated by the 2-second initial

connection delay. Ideally they should drop in

reverse proportion to number of peers. However,

this is not true especially for startup latency, and

the difference lies in the heterogeneity in peers’

networking capability. This can be seen more

clearly in Fig. 9, which is a scatter plot of startup

latencies of the on-campus users. While the

startup latency generally drops with more initial

peers, there are always outliers that suffer from

longer startup latencies. A close look at these

data points reveals that, inevitably, there are non-

CERNET users in the initial peers. Our current

algorithm is such that the initial content is evenly

partitioned and downloaded from those peers, and

the slowest one determines the startup latency. A

future improvement will be to be more network-

aware when selecting the initial peers.

0 2 4 6 8 10
0

4

8

12

16

20

s
ta

rt
u

p
 l
a

te
n

c
y
 (

s
e

c
.)

initial partner number for campus peers
Fig. 9 Startup latency distribution of campus users

B. Jitter

We use the number of delayed chunks and their

percentage to analyze the jitter of playback.

Similar to the latency of seek and startup, jitter is

related to the network capacity of peers. The non-

CERNET users always encounter serious jitters

because their available bandwidths with the

source server are too limited (4~5KB/s) and there

are not enough non-CERNET partners to help

them. CERNET users do far better, as shown in

Fig. 10. There are 72.3% and 40.6% sessions

without any jitters for 5 minutes and 40 minutes

durations, respectively. The sessions with jitter

0 4 8 12 16 20 24 28

0

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10

1

2

3

4

5

6

7

8

52.6

5.2 4.6

60.2

3.6 3.4

C
D

F
(%

)

latency (sec.)

 seek

 startup

a
ve

ra
g

e
 la

te
n

cy
 (

se
c.

)

initial partner number

 startup

 seek

Non-CERNET CERNET Campus

0

10

20

30

40

50

60

70

a
ve

ra
g

e
 la

te
n

cy
 (

se
c.

)

network type

 startup

 seek

Fig. 6 CDF of startup latency for all sessions

Fig. 7 Startup latency for users in different networks Fig. 8 Average latency vs. partner number

 5

encounter 3~4% delayed data for sessions that

last more than 20 minutes. Again, GridCast works

fairly well for users with good network

connectivity.

0

20

40

60

80

100

120

140

160

72.3

54.7
49.7 47.8

43.2 41.7 42.0
44.9

40.6

7.4 6.2 4.3 5.0 3.8 3.5 3.4 3.0 3.2
9

26
32

52 50
57

66 67

124

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 >40
0

10

20

30

40

50

60

70

80

90

100

%

duration(minutes)

 no jitter percent

 average delayed data percent

 average delayed chunks number

d
e

la
y
e

d
 c

h
u

n
k
s
 n

u
m

b
e

r

Fig. 10 Jitters vs. duration (CERNET users)

However, even CERNET users can have poor

user experiences. Fig. 11 presents the normalized

unacceptable seek (defined as latency >10

seconds) and jitter (defined as longer than 100

seconds duration) of an entire week, aligned on

hours. It is obvious that the fluctuations have a

strong correlation with the stress at the source

server. In GridCast as well as in a number of

proposed systems, the source is to provide data

whenever a peer is unable to obtain them from its

partners.

Server stress peeks when there are more users

in the system. But the amount of users is not the

reason for server stress increase. During the hot

time, the number of active channels is about 3

times of that in cold time, and this causes high

server stress that results in poor user experience.

In Fig. 12, we see that in cold time both hot

channels and cold channels deliver good user

experience, with only 3.5% unacceptable jitter

and 2.5% unacceptable seek, respectively. This is

in sharp contrast to the hot time. However, user

experience is heavily influenced by content

popularity. With more concurrent users, each peer

relies less on the source server but more upon

each other, thus their experience steadily

improves.

One solution to reduce server load is to let

peers to register as sources in the system.

However, it is not necessarily the only long term

solution. We believe that to deal with unexpected

demand fluctuations, a hybrid VoD system such

as GridCast must have proper QoS policies

implemented on the server side. This can range

from delisting to giving lower priority to the less

popular contents during hot hours.

4.3. Optimization

We start this section by analyzing seeking

behaviors that we have observed (Table 2). There

is a 7:3 split of forward versus backward seek.

Furthermore, short distance seeks dominate:

about 80% of seeks in either direction are within

300 seconds. This suggests that prefetching the

next anchor relative to the current play position

can be effective. The seeking behavior also has a

strong correlation with the popularity. As Fig. 13

shows, there are fewer seeks in more popular

contents, which generally also have longer

sessions.
Table 2 Statistics of seek operations

Forward 72%
Short (<300 sec.) 81%

Long (>300 sec.) 19%

Backward 28%
Short (<300 sec.) 76%

Long (>300 sec.) 24%

As mentioned earlier, we have implemented an

anchor prefetching mechanism as a way to deal

with random seeks. Fig. 14 compares the

distribution of seek latency with and without

anchors, collected from two different experiments.

It is obvious that the anchor prefetching is

effective. The fact that backward seeks see less

benefit is not surprising because there are less

backward seeks to begin with, resulting in less

“holes” behind the current playing position. In

the forward directions, the number of seeks that

finish within one second jumps from 33% to 63%.

Consider that about 80% of seeks are within 300

seconds, there is obviously more room to improve.

Prefeching the next anchor is statistically optimal

0 2 4 6 8 10 12

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

1500

2000

2500

3000

3500

4000

0 2 4 6 8 10

0

4

8

12

16

20

24

28

32

7 9 11 13 15 17 19 21 23 1 3 5

0

20

40

60

80

100

120

a
ve

ra
g

e
 s

e
e

ki
n

g
 n

u
m

b
e

r

popularity

 d
u

ra
tio

n
(s

e
co

n
d

s)seeking number

session duration

u
n

a
cc

e
p

ta
b

le
 p

e
rc

e
n

ta
g

e
(%

)

popularity

 unacceptable jitter(in hot time)

 unacceptable seeking(in hot time)

 unacceptable jitter(in cold time)

 unacceptable seeking(in cold time)

n
o

rm
a
liz

e
d

 v
a
lu

e

time(hour)

 server stress(bandwidth)

 unacceptable jitter

 unacceptable seeking

Fig. 11 Unacceptable jitter and seeking

latency vs. server stress

Fig. 12 User experience comparison

at hot time and cold time

Fig. 13 Average seeking number & duration

vs. popularity

 6

from the individual user’s point of view. On the

other hand, “rarest-first” as currently employed is

globally optimal in reducing the source server’s

load as it releases the rarest content from the

source into the peers. Thus, the best strategy

needs to consider both to reach the optimal

tradeoff. Furthermore, past sessions can provide

guidance: the parts that were played more are

obvious candidates for prefetching, as proposed in

[11]. These options will be evaluated for the next

release of GridCast.

The prefetching mechanism must be cost-

effective, meaning that in addition to the

reduction of seek latency, we need to understand

their utilization. The metric anchor utilization is

the ratio of the amount of played versus fetched

anchors, shown in Fig. 15. Utilization rises with

session duration as well as more seek operations.

For all sessions, the utilization averages to 70%,

we believe further optimization is still possible to

improve the efficiency.

5. RELATED WORK
Most of existing work about P2P VoD [3][4][6]

systems was concentrated on the protocol design

of topology and the analysis of simulation results,

including our previous work [2]. Different from

them, our study provides real world results that

can be used to validate simulation scenarios.

Recently, Yu et al [9] presented an in-depth

understanding of access patterns and user

behaviors in a centralized VoD system. Zheng et

al [11] proposed a distributed prefetching scheme

for random seek support in P2P streaming

application through the analysis of user behaviors

log obtained from a traditional VoD system.

Compared with them, our study provides insights

for user experience and overall performance

systems through the analysis of the trace obtained

from a real P2P VoD system.

6. CONCLUSIONS
In this paper we presented a measurement study

of a P2P VoD system deployed over CERNET,

called GridCast. Our study demonstrates that

peer-to-peer is capable of providing a cost-

effective VoD service with acceptable user

experience, even with moderate number of

cooperative peers. We also found that simple

prefetching algorithm can greatly reduce seek

latency. We also identified a number of problems.

For instance, more concurrent users can drive up

number of active channels, leading to server

stress growth and degrading user experience for

peers with fewer partners. Also, peers with poor

network connectivity are not well supported.

These insights are helpful to improve future

design of P2P VoD systems.

REFERENCES
[1] http://grid.hust.edu.cn/gridcast

[2] B. Cheng, H. Jin, and X.F. Liao, “RINDY: A Ring Based Overlay Network

for Peer-to-Peer on-Demand Streaming”, Proceedings of Ubiquitous

Intelligence and Computing, Wuhan, 2006.

[3] T. Do, K. A. Hua, and M. Tantaoui, “P2VoD: providing fault tolerant video-

on-demand streaming in peer-to-peer environment”, ICC’04, 2004.

[4] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “A peer-to-peer on-demand

streaming service and its performance evaluation”, Proceedings of

ICME’03, Jul. 2003.

[5] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measurements,

Analysis, and Modeling of BitTorrent-like Systems”, Proceedings of ACM

IMC’2005, Berkeley, CA, USA, Oct. 2005.

[6] C.S. Liao, W.H. Sun, C.T. King, and H.C. Hsiao, “OBN: Peering for

Finding Suppliers in P2P On-demand Streaming Systems”, Proceedings of

the Twelfth International Conference on Parallel and Distributed Systems

(ICPADS’06), Jul. 2006.

[7] X. F. Liao, H. Jin, Y. H. Liu, Lionel M. Ni, and D. F. Deng, “AnySee: Peer-

to-Peer Live Streaming”, Proceedings of INFOCOM’06,. 2006.

[8] N. Magharei, R. Rejaie, “Understanding Mesh-based Peer-to-Peer

Streaming”, Proceedings of NOSSDAV’06, Rhode Island, May 2006.

[9] H.L. Yu, D.D. Zheng, B. Y. Zhao, W.M. Zheng. “Understanding User

Behavior in Large-Scale Video-on-Demand Systems”, Proceedings of

Eurosys’06, Belgium, 2006.

[10] M. Yang, Z. Zhang, X.M. Li, and Y.F. Dai, “An Empirical Study of Free-

Riding Behavior in the Maze P2P File-Sharing System”, Proceedings of

IPTPS’05, New York, USA, Feb. 2005.

[11] C.X. Zheng, G.B. Shen, S.P. Li, “Distributed prefetching scheme for

random seek support in peer-to-peer streaming applications”, Proceedings

of the ACM workshop on Advances in peer-to-peer multimedia streaming,

Hilton, Singapore, 2005.

[12] X.Y. Zhang, J. Liu, B. Li, and T.S. P. Yum, “CoolStreaming/DONet: a

data-driven overlay network for peer-to-peer live media streaming”,

Proceedings of IEEE INFOCOM’05, Mar. 2005.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

50

60

70

80

90

100

2

4

6

8

10 0

500

1000

1500

200010

20

30

40

50

60

70

80

90

a
n

ch
o

r
u

til
iz

a
tio

n
(%

)

dura
tio

n(seconds)

vcr(n)

C
D

F
(%

)

a) forward seek latency (seconds)

 with anchor

 without anchor

C
D

F
(%

)

b) backward seek latency (seconds)

 with anchor

 without anchor

Fig. 14 Seeking latency comparison between with anchor and without anchor Fig. 15 Anchor utilization

