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ABSTRACT Transcription paradigm [6], it is proposed that the recognition

process should proceed bottom up through multiple stages.
In an effort to better understand the properties of a mod-
larized system, this paper studies the intrinsic difficoit

This paper explores the error-robustness of phone-to-trand-
duction across a variety of languages. We implement a nois

channel model in which a phonetic input stream is CorrUpteconverting from phones to words. The first stage uses the

by an error model, and then transduced back to words usin . .
. T . gnone set of [7] and associated acoustic models to recover a
the inverse error model and linguistic constraints. By con-

. .. one-best phone sequence. The second stage uses a finite state
trolling the error level, we are able to measure the sensitiv,
ity of different languages to degradation in the phonetizin transducer scheme to recover words from phones. In contrast
y i guag €9 P ! with previous work on multi-stage decoding, our work relies
stream. This anaIyS|s_ is carried further t_o measure themmposolely on an error model in the transduction phase to fogmall
tance of each phone in each language individually. We stud odel the mistakes that are made at the phone recognition
Arabic, Chinese, English, German and Spanish, and find th?t : . .

o L L evel. The error model is an unconstrained model of IID in-
they behave similarly in this paradigm: in each case, a phonseertions; substitutions and deletions, and more geneaal th
error produces abo“?‘* word errors, and frequently incor- thesingl;aerror model of [5]. The adv:;mtage of using the er-
rehcc:r?gg?rzfsmt?tatﬁgjﬂgzgyv\ﬁfj g:re:)nrs;hrgr;illln trr(;i::sm‘nge ror model approach is that it allows us to directly implement
P - . P .a noisy channel model of speech communication, and to pose
use the conditional gntropy of words given phones to exlOlamand answer a number of interesting questions. Specifically,
the observed behavior. we conduct a class of experiments that involves corrupting

Index Terms— Speech recognition, phonetic decoding,a reference phone sequence with a known error model, and

transduction, multilingual, ASR then measuring our ability to recover words. This allows us
to answer several questions that have not been well studied
1. INTRODUCTION before:
1. How easy is it to recover words from a correct but un-
State-of-the-art speech recognition systems currentblyap segmented phone string, and how does this vary across
all the information sources at their disposal simultangous languages?
in the decoding process. These sources consist of the pro- 5 ag the phonetic input stream is corrupted with errors,
nunciation dictionary, the context model or decision tthe, how quickly is our ability to recover words degraded?

language model, and the actual acoustic model or gaussians.  are there threshold effects where a small number of
This consolidation is most complete in decoders based of the phonetic errors can always be detected and recovered

Finite State Transducer paradigm [1, 2] where the dictipnar from? How does this vary across languages?
language model, and decision tree can be fully combined in
advance of any decoding, but it is present in other decoding
architectures as well, for example in the form of language ) s
model lookahead [3]. While this strategy is highly effeetiv 4 How do the computational requirements of the phone-

3. Are errors in some phones more important that errors
in others, and how does this vary across languages?

from the research point-of-view it may be easier to implemen to-word transduction prociss vary as the phonetic input
and test new modeling techniques in a more decoupled frame- 1S Progressively degraded?
work. The remainder of this paper is organized as follows: in

Therefore, there has been a significant amount of work irsection 2 we present the formulation of our method. Section 3
recent years to support modularized recognizers for reBear describes the CallHome dataset, and the phone recognéter th
purposes. In the FLaVoR architecture developed at Leuvewas used for the different languages. Section 4 examines the
University [4, 5], decoding is broken into a two step pro-robustness of the transduction process to phonetic eaods,
cess, the first generating phone lattices and the secong-apppresents an explanation for the observed behavior. Section
ing morpho-phonologicaland morpho-syntactic constsdimt 5 addresses the question of whether some phones are more
produce words. Similarly, in thAutomatic Speech Attribute  important than others. Section 6 offers concluding remarks



2. FORMULATION Intended words | I'm sorry we’ll blame him
Intended phones| almSari:wi:lbleimHIm
In the noisy-channel model we adopt, we assume that the| Corrupted phone$ almSari:wi: DleimHIm
sender begins with a sequence of words he or she intends t0 Recovered words 'm sorry we blame him
communicate, and speaks a phonetic sequence determined b
the pronunciations of those words. A phone recognizer then Table 1. Steps in the noisy channel model
processes the audio and produces an errorful version of the

intended phones. The receiver gets this corrupted phone se-

quence and must decode the likeliest sequences of intended 3. DATABASE AND ACOUSTIC MODELS
words. This can be more precisely stated if weWgtdenote

the intended wordgp; denote the intended phone sequence3.1. CallHome

andp. denote the corrupted phone sequence. The job of the
decoder is then to determine

In order to work with a data set with roughly equal resources
across a variety of languages, we used the CallHome database

argmax P(w|p:) = argmax P(w)P(pc|w) [8]. This database has speech, transcriptions, and lemica i
v Egyptian Arabic, Mandarin Chinese, English, German, Japan
= argmax P(w ZP Pi, Pc|W) and Spanish. The audio data for each language consists of

120 telephone conversations of up to 30 minutes each (100

= arg maxP ZP (pilw)P(pc|Pi, W)  conversations for German). Eighty of the conversations are

marked as training data and 20 each for development and test,

arg max P(w)P (Pz|W) (Pe|pi) except for German which has development data only. Since
the experiments did not involve parameter tuning, and a test

The factors involved in the maximization each have sim-set is absent for German, all results are reported on the de-
ple interpretations:P(w) is given by the language model; velopment set. Due to a high out-of-vocabulary rate for the

P(p;|w) is given by the pronunciation model; aftip.|p:;) ~ Japanese lexicon, we did not use the Japanese language data.
is given by the phone-level error model. In all the experitaen

described subsequently, we use a first-order error model W|t3 2 The UPR

insertion and deletion probabilities for every phone, auat s

stitution probabilities for all pairs of phones. Table it  To conduct our experiments, we need a phone-level error mode

trates an example of our noisy channel model. for each language, reflecting realistic error patterns. Fo o
There is a simple representation of this model in terms ofain these error models, we decoded the training data with

finite state transducer operations. Denote the intended womcoustic models based on a universal phone recognizer (UPR)

sequence byV, the pronunciation dictionary b, the lan-  provided by the Department of Defense [7]. This recognizer

guage model by., the error model by, the process of sam- uses 259 phones based on the International Phonetic Alphabe

pling a random path through a finite state acceptordiyple,  (IPA), and represents an effort similar to that pioneereith wi

and the process of finding the likeliest pathbleytpath. Then  the GlobalPhone project and others [9, 10].

Q

the received (corrupted) phone sequefhtis given byR = The UPR system was built using the HTK Recognizer,
sample(W o P o E). The operation of decoding can be rep- version 3.3 and was trained iteratively, starting with datt
resented aestpath(Ro E~1o P~1o L), was transcribed at the phone level, and later incorporating

Given this formulation, it is possible to explore the ques-data that was transcribed at the word level. In the first stage
tions raised in section 1. To find the intrinsic difficulty @-r of training the UPR, phonetically transcribed data wasnake
covering words from phones in the error-free case, we implefrom the Phonetic Switchboard Corpus [11, 12] in English,
ment the noisy channel model with an “identity” error modeland the OGI-MLTS Corpus [13] in English, German, Hindi,
that never inserts or deletes, and always replaces a phone bgpanese, Mandarin Chinese, and Spanish. Word-level tran-
itself. To study the sensitivity of the decoding process toscriptions were later used to incorporate data from LDC data
phone errors, we construct error models with various errosets (e.g. CallHome and CallFriend) in a variety of langgage
rates, and then computestpath(sample(WoPoE)o(E~'o  The total amount of acoustic training data used in the five lan
P~1oL)). Finally, it is possible to explore the importance of guages studied here varied from abbfihours in German to
single phones. LekE, be the original error model, except 88 hours in English. The overall training process was de-
that errors involving phong are adjusted to have zero prob- signed to ensure that sounds represented by a given phone are
ability. Then measuring the difference between usihgnd  consistent across languages and that important phonesaic di
E, in the round-trip process gives an indication of the impor-inctions in one language are annotated in all languages.
tance ofp. We have explored the use of this methodology in  The UPR acoustic models have diphone acoustic context,
five of the CallHome languages and using an acoustic mod&lith 17 gaussians per state. The acoustic features were 39-
that uses a universal phone set. The database and acoustimensional, consisting of cepstra, deltas and doubl&slel
model are described next. and decoding was performed at the speaker-independehtleve
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Phone-to-word WER Entropy: bits
Egyptian | 0.6% 0.0020
German | 0.9 0.029
English 2.3 0.080
Spanish | 5.0 0.18
Mandarin| 8.9 (CER) 0.44
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Table 2. Conditional entropy of words given phones

would have little or no impact on word error rate. In terms
of runtime, we have found that whereas the word error rate
scales linearly with phone error rate, the runtime increase
ponentially from less than one-two thousandth realtiméén t
absence of error to one-tenth realtime with about 50% phone

error rate. Again, this is similar across the languagesetiid
All experiments were run with a fixed beam such that there

) was little accuracy loss at high phone error rates.
The UPR makes use of n-gram phonotactic language mod-

els trained on transcripts of LDC data as well as data found 5> Conditional E - Explaining the v-i
on the Web. Language-specific phonotactic bigram IanguagAé - Conditional Entropy: Explaining the y-intercept

models were built for all the languages used in our experiThe transduced word error rate achieved in the absence of
ments. Further details of the UPR phone set, acoustic modedny phone errors is not zero, and differs by over a factor of
and phonotactic language models can be found in [7]. ten from 0.6% to 8.8% across the different languages. To
The UPR can be run using either a truly universal modetnderstand the observed differences in the y-intercepgxwe
or using language-specific models. We used language-specifimine the conditional entropy of words given phones, which
models to decode the CallHome training data and create tf@" b€ computed as the entropy of the words less the mutual
error models. The phone-error rates on the test data vari%ﬁ;g:mgggﬂ gztt\vl\\’;;i?] %Tl%?]e;s?nd dvz\(/):rj;é Egggf;ﬂztgﬁon;gmal
from 56.4% in English to 63.0% in German. sequence for utterancein the database. Ldf be the word
sequence. Note that sums oveare thus over the observed
data segments. La® and L be phone-sequence and word-
sequence variables respectively that take specific valuds s
asrg andls. Then

Fig. 1. Output word error rate vs. input phone error rate

4. ROBUSTNESS TO PHONETIC ERRORS

This section reports on the sensitivity of the transdugtian

cess to the overall error level in the input phone stream. The P(L,R)
experiments all use a base error model that is obtained by de- M(L;R) = » P(L,R)log WI;(R)
coding the CallHome training data with the UPR, aligning it LR

to the reference phoneme strings, and computing the various ~ Zlog _P(rs,ls)
substitution, insertion and deletion probabilities. Tikidone s P(rs)P(L)
separately for each language. To obtain error models ai-a var P(rs|ls)

ety of absolute error levels, we then scale this matrix doyn b - Z log >w Plrs|w)P(w)

moving probability mass from insertions, deletions and-non
identity substitutions to identity substitutions. By agoting  P(w) is given by the language moddP(rs|w) is the prob-
the reference phones with the various error matrices amd thebility of an observed phone string given a word string. It is
measuring our ability to recover the correct words, we detergiven by the sum over all the alignmentsgtfto the phones in
mine the sensitivity of the decoding process to input errors w of the probability of the substitutions, insertions andedel
tions in the alignment, and can be computed using dynamic
programming.

The quantityM (L; R) is a measure of how much infor-
Figure 1 plots transduced word error rate (WER) as a funcmation the phones provide about the words. If weHéL ) be
tion of the input phone error rate (PER). To a first approxithe entropy of the language, théh(L; R) — H(L) provides
mation, the two are related BY ER = 1.4PER + €4ny. @ measure of the excess information that is available when in
The slope in all cases is approximately 1.4, and there is-a larfierring words from phones, and its negative is in fact the en-
guage dependent y-intercept. These results show no eddentropy of the language conditioned on knowledge of the phone
of redundancy — if redundancy were present, one would exstrings. In general)M (L; R) is difficult to compute since it
pect a threshold effect in which very low phone-error ratesnvolves summing over all possible word sequences in the de-

4.1. Accuracy and Speed
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Fig. 2. Sensitivity to individual phones

6. DISCUSSION

This paper has examined the robustness of phone-to-word
transduction in a variety of languages and over a range of
error rates. We find that the introduction of a phone error
on average creates abautt word errors, and this is seen to
be constant across the five languages studied, and across a
| wide range of absolute error levels. At the level of indiatiu

v phones, the sensitivity to errors is almost linear as weit, b

P seems to be optimized in the sense that frequently mislead-
o " 1 ing phones have slightly less impact per error than theiremor
reliable counterparts.
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nominator. To simplify the computation, we have approxi-
mated the sum over all data segments by a sum over the words
in the lexicon weighted by their unigram frequency. Essen- [1]
tially this uses a notional data set consisting of the wonds i
the lexicon. Table 2 shows the conditional entropy alongpwit
the round trip word word error rates. It can be seen that there:[j
is a good correlation between this entropy and the observe
word error rate.

[3]

5. SENSITIVITY TO INDIVIDUAL PHONES

By using our noisy channel model, we have been able to study4]
the sensitivity of word error rate to individual phones irotw
ways. The first uses the corruption process described in sec-
tion 2. Insertions, deletions and substitutions are made ac|[5]
cording to the empirically derived error model, with one ex-
ception: all errors involving a particular phone are exeldd  [6]
The corruption process is run separately for each phone, and
the resulting strings are transduced to words. The trarstuc
word error rate is then computed, and we compute the de{7]
crease in error rate over the baseline where no errors are ex-
cluded. To normalize against frequency effects, we alsatcou
the number of phone errors that have been excluded from theg;
input. This allows us to create a scatterplot of the number of[g]
word errors corrected after transduction against the numbe
of phone errors corrected on the input side. This is shown in
Figure 2 for each phone in each of the languages studied. [10]
The second method of computing sensitivity to individ-
ual phones avoids the artificial corruption process. This is
done by aligning the phone-level UPR output to the referenCﬁl]
phone string. Then, for a particular phone, we fix all the er-
rors involving the phone. The remaining steps are identical
the first method, and we obtain another scatterplot. This pl(hz]
is similar to that of Figure 2 with somewhat greater disper-
sion. The fact that Figure 2 is on a log-log scale with a slope
of about0.9, indicates that there is a slight tendency such thaflS]
phones which are frequently involved in errors are relétive
downweighted.
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