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Abstract. We describe the latest version of the SRI-ICSI meeting and lecture
recognition system, as was used in the NIST RT-07 evaluations, highlighting
improvements made over the last year. Changes in the acoustic preprocessing
include updated beamforming software for processing of multiple distant mi-
crophones, and various adjustments to the speech segmenterfor close-talking
microphones. Acoustic models were improved by the combineduse of neural-
net-estimated phone posterior features, discriminative feature transforms trained
with fMPE-MAP, and discriminative Gaussian estimation using MPE-MAP, as
well as model adaptation specifically to nonnative and non-American speakers.
The net effect of these enhancements was a 14-16% relative error reduction on
distant microphones, and a 16-17% error reduction on close-talking microphones.
Also, for the first time, we report results on a new “coffee break” meeting genre,
and on a new NIST metric designed to evaluate combined speechdiarization and
recognition.

1 Introduction

This paper documents the latest in a series of speech recognition systems [1–3] jointly
developed by SRI International and the International Computer Science Institute (ICSI)
for participation in the annual NIST Rich Transcription evaluations focused on meeting
processing (starting with RT-02S in Spring 2002, through RT-07 this year). We give a
self-contained overview of the recognition system, while focusing on new aspects of
the current version, including several improvements made since the evaluation proper.

Since the beginning of our research on meeting recognition,we have based our sys-
tems on existing systems developed for conversational telephone speech (CTS) recog-
nition, by borrowing the decoding architecture and by adapting acoustic models trained
originally on telephone corpora. This year, given increasing amounts of in-domain
meeting training data, we evaluated if such an adaptation strategy is still worthwhile.We
then focused on improvements to the acoustic preprocessing, which aims to minimize
the mismatch between meeting speech and our existing acoustic models. New beam-
forming software for distant microphones and updates to thespeech segmenter used for
close-talking microphones resulted in improvements in their respective conditions.



Next, we applied several techniques to improve the way acoustic models originally
trained on CTS and broadcast news (BN) speech are adapted to the meeting and lecture
domain. One successful approach was the combination of three discriminative modeling
techniques, at the level of features, feature transforms, and Gaussians [4], modified
to work in an adaptive fashion. We also achieved gains by paying special attention
to nonnative and non-American speakers in model adaptation, since those dialects are
underrepresented in our background training corpora whilebeing more pervasive in the
meeting test data.

No significant changes were made to the language models, beyond incorporating
additional training data from the Augmented Multi-party Interaction (AMI) project. As
we will show, this additional data had limited effect, and improved results solely on
AMI meeting test data.

2 Task and Data

2.1 Test data

Evaluation data The RT-07 evaluation data (eval07) was divided into three portions
according to meeting genre: conference meetings (confmtg), lecture meetings (lectmtg),
and coffee breaks (cbreak), the latter being a more interactive variant of the lecture room
setup. The conference data consisted of excerpts from 8 meetings recorded at 4 sites in
the U.S. and Europe (Carnegie Mellon University, Edinburgh, NIST, and VirginiaTech),
totaling 3 hours in duration. The lecture data was collectedat 5 different “Computers
in the Human Interaction Loop” (CHIL) consortium sites and comprised 32 lecture
excerpts totaling 2.7 hours. Coffee break data originated from the same 5 sites and
added up to 0.7 hour.

Separate evaluations were conducted in three acoustic conditions:

MDM multiple distant microphones (primary)
IHM individual headset microphones (required contrast)
SDM single distant microphone (optional)

Lecture and coffee break rooms had more extensive instrumentation and provided the
following additional conditions:

MSLA multiple source localization array microphones (optional)
MM3A multiple Mark-III microphone arrays (optional)
ADM all distant microphones (optional)

Although NIST evaluates recognition error on all speech, including portions where
speakers overlap, our recognition system presently ignores this fact, and was optimized
for non-overlapping speech. Consequently, all results presented here exclude overlap-
ping speech in the distant-microphone conditions, unless noted otherwise.



Development data The NIST RT-06 (eval06), and to a lesser extent, RT-05 (eval05)
evaluation data sets were used as development data. Lecturesystem development used
eval06 only, and confmtg results on eval05 were somewhat discounted since eval05
contains one data source (ICSI) that yields very low error rates and does not occur in
more recent test sets. Several system parameters (such as rescoring weights) had been
optimized on even older NIST evaluation sets, and have not been re-tuned this year.
Also, due to the paucity of lecture development data, those parameters were never tuned
specifically for the genre, and simply copied from the confmtg system.

2.2 Training data

In-domain training data for the conference room consisted of the same meeting record-
ings from AMI, CMU, ICSI and NIST as used in previous years, plus additional data
released by AMI and NIST since RT-06. The total amount of IHM data was about 213
hours after speech/nonspeech segmentation (AMI: 100 meetings, 100h; CMU: 17 meet-
ings, 11h; ICSI: 73 meetings, 74h; NIST: 27 meetings, 28h).

The training data aimed at the lecture domain was unchanged from last year—due to
time constrains we did not make use of some new lecture and coffee break data released
prior to RT-07. As a result, the only lecture-type data used was about 7 hours of CHIL
training data (close-talking microphones only), the CHIL dev06 distant-microphone
development data, and about 9 hours of transcribed lecturesavailable as part of the
Translingual English Database (TED) [5].

As in previous years, we used background models trained on old CTS and BN cor-
pora for adaptation to the meeting and lecture domains. These out-of-domain corpora
included about 2300 hours of telephone speech from the Switchboard, CallHome En-
glish, and Fisher collections, and about 900 hours of BN datafrom the Hub-4 and Topic
Detection and Tracking (TDT) corpora.

3 System Description and Development

3.1 Signal processing and segmentation

Distant microphone processing All distant microphone channels (in both training
and test) were Wiener-filtered for noise reduction using a filter developed for the
Qualcomm-ICSI-OGI Aurora system [6], identical to previous years [2].

Subsequently, for the MDM, MDM, MSLA, and MM3A conditions, adelay-and-
sum beamforming technique was applied to combine all available distant microphone
channels into a single “enhanced” channel. The algorithm used was essentially the same
as last year [7], but used a new implementation that is freelyavailable under the name
BeamformIt (version 2.0) [8].

Once the enhanced signal was generated, speech regions wereidentified using a
speech/nonspeech two-class hidden Markov model (HMM) decoder. Resulting seg-
ments were combined and padded with silence to satisfy certain duration constraints
that had been empirically optimized for recognition accuracy. The algorithm and mod-
els were unchanged from last year [2]. Finally, the segmentswere clustered into acous-
tically homogeneous partitions, which served as pseudo-speaker units for normalization
and adaptation. This aspect was also identical to last year’s system.



Table 1. Comparison of old and new beamforming implementation in terms of word error rates
(WER) using RT-06 recognition models.

eval06 confmtgeval06 lectmtg
MDM MDM ADM

RT-06 beamformer 34.2 55.5 51.0
BeamformIt v2.0 33.9 55.8 46.6

Table 2. Comparison of IHM speech/nonspeech segmentation without and with per-channel en-
ergy normalization for cross-channel feature computation, and for recognition from reference
segments. eval06 results were obtained with the RT-06 recognition system, eval07 results with
the current system.

eval06 eval07
confmtglectmtgconfmtglectmtg

W/o energy norm. 24.0 30.8 25.6 29.5
with energy norm. 22.8 31.7 25.7 30.5
Reference seg. 20.2 29.3 22.8 28.1

To assess the effect of the new beamforming implementation on recognition perfor-
mance, we reprocessed the eval06 data with BeamformIt, and then ran RT-06 confmtg
and lectmtg systems that were otherwise unchanged. Table 1 shows that MDM perfor-
mance is virtually unchanged, but that ADM is much improved.This seems to indicate
that the new implementation is more robust to heterogeneousand/or very large sets of
microphones.

Close-talking microphone processing The IHM input channels are segmented
(without Wiener filtering) into speech and nonspeech regions using an HMM-based
speech/nonspeech segmenter [9]. The segmenter is a two-class HMM decoder with
each class represented by a three-state phone model. The states are modeled by 256-
component multivariate Gaussian mixtures with diagonal covariance matrices. The seg-
mentation proceeds via decoding of the full IHM channel waveform, potentially in a
multi-pass fashion with decreased transition penalty between the speech and nonspeech
classes. This is done so as to generate segments that do not exceed 60 seconds in length.

Last year we had introduced a combination of single- and cross-channel features
designed to allow discrimination of foreground speech fromcross-talk (which should
not be recognized). The single-channel features consist of12th-order Mel-frequency
cepstral coefficients (MFCCs), log-energy, and first and second differences. The cross-
channel features are maximum and minimum log-energy differences. The log-energy
difference represents the log of the ratio of the short-timeenergy between a given target
channel and a nontarget channel. The maximum and minimum values are selected to
obtain a fixed number of feature components, given that the number of channels varies
between meetings. All features are computed over a window of25 ms advanced by
20 ms.

Following RT-06, we modified these features by normalizing the log-energies per
channel prior to computing cross-channel features, with the goal of accounting for dif-
ferences in noise floors and gains. This technique gave excellent results on conference
meetings, eliminating cross-talk even from speakers for whom only distant-microphone
recordings were available [9]. However, when we evaluated this new feature (per-



Table 3. Effect of adjusting speech/nonspeech prior probabilities. All results obtained with RT-07
recognition systems (hence eval06 results differ from Table 2).

eval06 eval07
confmtgconfmtglectmtgcbreak

Old priors 21.9 25.7 30.5 31.2
New priors 20.2 24.0 29.5 30.6
Reference seg. 19.1 22.8 28.1 29.5

channel energy normalization) on lecture data and current test sets, a mixed picture
emerged, as shown in Table 2. It seems that the energy normalization does not improve
the result on eval07 confmtg data, and in fact degrades accuracy on lecture data by
about 1% absolute. Further investigation is needed to understand the reasons for this
inconsistent behavior.

We also observed that there is still a considerable word error rate (WER) gap (1.5-
3% absolute) between automatic and reference segmentation, largely because of a high
deletion error rate. Running our confmtg recognizer on the AMI system’s segmenter
output gave a marked improvement, from 25.7% to 24.0% WER. Ina post-evaluation
experiment we tuned the speech/nonspeech prior probability used by the segmenter on
eval06 confmtg data, and were able to obtain the same improvement. Furthermore, as
shown in Table 3, the prior adjustment resulted in recognition improvements across all
meeting genres.

No speaker clustering was performed on the IHM channels, since it was assumed
that each IHM channel corresponds to exactly one speaker.

3.2 Acoustic modeling and adaptation

Decoding architecture To motivate the choice of acoustic models, we first describe
the decoding architecture, which is unchanged from last year, depicted in Figure 1.
An “upper” (in the figure) tier of decoding steps is based on MFCC features; a parallel
“lower” tier of decoding steps uses perceptual linear prediction (PLP) features. The out-
puts from these two tiers are combined twice using word confusion networks (denoted
by crossed ovals in the figure). Except for the initial decodings, the acoustic models
are cross-adapted to the output of a previous step from the respective other tier using
maximum likelihood linear regression (MLLR). Lattices aregenerated initially to speed
up subsequent decoding steps. The lattices are regeneratedonce later to improve their
accuracy, after adapting to the outputs of the first combination step. The lattice gen-
eration steps use noncrossword (nonCW) triphone models, and decoding from lattices
uses crossword (CW) models. Each decoding step generates either lattices or N-best
lists, both of which are rescored with a 4-gram language model (LM); N-best output is
also rescored with duration models for phones and pauses [10].

The final output is the result of a three-way system combination of MFCC-nonCW,
MFCC-CW, and PLP-CW decoding branches. The entire system runs in under 20 times
real time (20xRT).4

4 Runtimes given assume operation with Gaussian shortlists.Since RT-07 did not impose a run-
time limit we ran the system without shortlists, in about 25xRT.



Fig. 1. SRI CTS recognition system. Rectangles represent decodingsteps. Parallelograms repre-
sent decoding output (lattices or 1-best hypotheses). Solid arrows denote passing of hypotheses
for adaptation or output. Dashed lines denote generation oruse of word lattices for decoding.
Crossed ovals denote confusion network system combinationsteps.

Baseline models and test-time adaptation The MFCC recognition models were de-
rived from gender-dependent CTS models in the RT-04F system, which had been trained
with the minimum phone error (MPE) criterion [11] on about 1400 hours of data. (All
available native Fisher speakers were used, but to save training time, statistics were
collected from every other utterance only.) The MFCC modelsused 12 cepstral coef-
ficients, energy, first-, second-, and third-order differences features, and2 � 5 voicing
features over a 5-frame window [12]. Cepstral features werecomputed with vocal tract
length normalization (VTLN) and zero-mean and unit variance per speaker/cluster. The
62-component raw feature vector was reduced to 39 dimensions using heteroscedas-
tic linear discriminant analysis (HLDA) [13]. After HLDA, a25-dimensional Tan-
dem/HATs feature vector estimated by multilayer perceptrons (MLPs) [14, 15] was
appended. Both within-word and crossword triphone models were trained, for lattice
generation and decoding from lattices, respectively. PLP models were based on full-
bandwidth analysis, producing 12 coefficients, energy, first-, second- and third-order
differences, and then reduced to 39 dimensions using HLDA. (No voicing or MLP fea-
tures were used in this case.) These models were originally trained on about 900 hours
of broadcast news data from the Hub4, TDT2, and TDT4 collections. PLP models are
gender independent. All models were trained using decision-tree-based state tying.

In testing, all models undergo unsupervised adaptation to the test speaker or cluster,
using MLLR with multiple, data-induced regression class trees. The first MFCC and
PLP adaptation passes used a phone-loop reference model; later passes adapted to prior
recognition output. In addition, all but the first decoding used constrained MLLR in
feature space, which was also employed in training (speakeradaptive training) [16].

MLP feature adaptation As in past years, we adapted the MLPs for Tandem and
HATs feature computation to the meeting domain by running additional MLP training



Table 4. Meeting recognition results using CTS training data, usingMFCC maximum likelihood
models and a simplified, 1-pass recognition system.

Training data eval05 IHM confmtg

Fisher 400h 34.0
Confmtg 100h, 8kHz 33.4
Confmtg 100h, 16kHz 31.7
Fisher + confmtg, 8kHz (pooled) 31.9
Fisher + confmtg, 8kHz (MAP) 31.5

iterations on meeting data, starting with the CTS-trained MLPs. We showed previously
that this type of adaptation yields about the same improvements as MAP adaptation of
Gaussians alone [17]. In fact, as an expedient we used the adapted MLPs from last year,
that is, without taking advantage of the new acoustic training data and using conference
meeting data only. For distant-microphone recognition, the MLPs were adapted to both
distant and close microphone recordings, whereas MLPs for IHM recognition were
trained on close-talking microphones only.

Acoustic model adaptation In preparation for this year’s evaluation, we conducted
several experiments to determine the best training strategy. First and foremost, we
wanted to confirm that adapting CTS models to the meeting domain was still a prof-
itable approach. It entails downsampling meeting data to 8 kHz, raising the question of
whether or not the attendant loss of information was more than compensated for by the
added data. Table 4 summarizes some relevant results.

Models were trained on 400 hours of Fisher CTS data, as well ason the 100 hours
of meeting speech available for RT-06, and tested on eval05 confmtg. We found that
the downsampling of meeting data indeed incurs a significant, 6% relative error rate
increase. However, this was almost made up for by simply pooling the CTS and (down-
sampled) meeting data. By using MAP adaptation, which givescontrol over the weight-
ing of the in-domain versus background data, we were able to do slightly better than
the meeting-only broadband models (31.5% versus 31.7% WER). Considering that the
actual amount of CTS background data available is 5 times the400 hours used in this
experiment, we concluded that it was a safe bet to continue the MAP-adaptation strat-
egy.

The next issue we addressed was the high percentage of nonnative and non-
American speakers in the meeting and lecture data. Spot-checking the eval06 lecture
data, for example, we found that almost all of it involved speakers with various Euro-
pean accents, most of them nonnative. The mismatch to our CTSbackground data was
exacerbated by the fact that nonnative and non-American speakers had been excluded
from our CTS training set (in accordance with past CTS evaluation sets). We therefore
collected this previously excluded CTS data in a separate adaptation training set, com-
prising 220 hours in 1324 conversation sides, and performedtests on eval06 lectmtg
data, summarized in Table 5.

The results are quite dramatic, in that adapting the background models to
nonnative/non-American CTS data yields better performance than adapting to confmtg
data. This clearly indicates that nativeness is one of the major factors of mismatch
between the CTS and meeting data. As is to be expected, combining confmtg and



Table 5. Meeting recognition results using adaptation to nonnativeand non-American CTS speak-
ers, using MFCC ML-MAP models based on native-English Fisher data and a simplified, 1-pass
recognition system.

MAP adaptation data eval06 IHM lectmtg

confmtg 100h 41.9
Fisher nonnative/non-American 220h 40.5
confmtg + Fisher nonnat./non-Am. 40.0

Table 6. Results with different MAP adaptation criteria using complete recognition systems.

(a)
eval06 IHM

Adaptation method confmtglectmtg

ML-MAP 22.8 34.1
MMI-MAP n/a 29.8
fMPE-MAP 22.3 28.7
fMPE-MAP+MPE-MAP 22.2 26.3

(b)
eval06 MDM

Adaptation method confmtglectmtg

ML-MAP 33.7 58.3
fMPE-MAP+MPE-MAP 30.9 48.6
+ML-MAP(lect-dev06) n/a 47.8

nonnative/non-American CTS data in adaptation yields the best results. As a result of
these experiments, we added the previously excluded Fisherspeakers to our meeting
adaptation data for MFCC model training. Note that this datawas not added to the BN-
based PLP model training data, both because of the bandwidthmismatch and because
BN data is already more heterogeneous in its dialectal makeup.

fMPE-MAP In addition to MLP feature adaptation and MAP adaptation of the Gaus-
sian models, we employed a discriminative feature transform known as fMPE (feature
MPE) [18]. A sparse high-dimensional feature vector generated by Gaussian posteri-
ors is mapped to the standard low-dimensional feature spacevia a transform trained
using the minimum phone frame error (MPFE) [11,19] criterion, and combined ad-
ditively with the standard features. However, we used a novel variant of fMPE called
fMPE-MAP, in which the transform is estimated only on adaptation data, based on
a pretrained non-fMPE reference model (our CTS and BN background models). We
found that fMPE-MAP gave better results than fMPE on the combined background and
in-domain data, while taking much less training time [20]. The Gaussian posteriors in-
put to the fMPE transform were based on PLP features from a 5-frame window, for both
the MFCC and PLP fMPE-MAP models.

Table 6(a) compares results with ML-MAP, MMI-MAP (the method used last year),
fMPE-MAP, and fMPE-MAP followed by MPE-MAP for IHM recognition, using com-
plete recognition systems in which both MFCC and PLP models had been trained us-
ing the respective estimation criteria. The discriminative methods yield small gains on
confmtg data, but substantial gains on lectmtg data. Recallthat almost all the adapta-
tion data is from the confmtg domain, highlighting the fact that discriminative training
greatly enhances the generalization of acoustic models. Also note that MPE-MAP still
gives substantial gains on top of fMPE-MAP in the case of lectmtg test data. The com-
bined WER reduction is by 2.6% relative on confmtg and by 23% relative on lectmtg.

Adaptation for distant microphone recognition Models for recognition from distant
microphones were obtained by pooling all close-talking anddistant-microphone data



Table 7. Effect of language model update on recognition performance, differentiated by test data
source

eval06 confmtg
LM IHM MDM

AMI non-AMI AMI non-AMI

2006 20.1 23.2 28.9 32.9
2007 19.6 23.1 26.9 33.4

for adaptation purposes (similar to MLP adaptation). Table6(b) shows ML-MAP and
fMPE-MAP+MPE-MAP results for MDM recognition. The gains from discriminative
adaptation are again substantial: 8.3% for confmtg and 17% for lectmtg. However, since
the adaptation set contained only a very small amount of in-domain MDM lecture data
(the dev06 set), we felt that the models for that domain mightbe improved further by
giving extra weight to the matched data. This was accomplished by a final ML-MAP
step using lectmtg-dev06 data only. As shown in the last row of Table 6(b), this indeed
yielded a further 1.6% relative error reduction. The resulting models were used in both
lecture and coffee break recognition (since both were recorded under the same acoustic
conditions).

3.3 Language models

Language models (LMs) for the RT-07 system had the same structure as in previous
years, consisting of an interpolation of various genre-specific LMs, including confer-
ence transcripts, lectures, CTS, BN, web data, and conference proceedings [21]. LMs
specific to confmtg and lectmtg genres were obtained by finding perplexity-minimizing
interpolation weights on held-out data of the respective type.

The only change for this year’s system was the addition of newAMI and NIST con-
ference meeting transcripts. While this almost doubled theamount of in-domain LM
data, we found only small gains in overall recognition accuracy, as shown in Table 7.
Since most of the new data came from the AMI data collection, we broke eval06 recog-
nition results down according to whether or not the test meeting came from an AMI site
(Edinburgh or TNO). It becomes evident that the additional training data helps signifi-
cantly on AMI test data, but not on other data. We attribute this to the special scenario-
driven character of the AMI meetings. Still, since the RT-07test set was expected to
contain AMI sources as well, we incorporated the updated LM into our confmtg sys-
tem. On lectmtg tests, however, the new LM data made no impactwhatsoever, so we
simply kept last year’s lectmtg LM. The lecture LM was also used in coffee break recog-
nition. We again note that, because of time constraints, none of the CHIL lecture data
released since RT-06 was used in LM training.

3.4 Speaker clustering revisited

As mentioned, our distant-microphone recognition system groups waveform segments
into pseudo-speaker clusters for feature normalization and model adaptation purposes.
However, we had found in previous years that this clusteringslightly degrades perfor-
mance on lecture data, presumably because the lecture is dominated by a single speaker
and the clustering algorithm is not accurate enough to identify small sets of non-lecturer



Table 8. Effect of acoustic clustering parameters on MDM recognition accuracy. Values chosen
in the RT-07 evaluation system appear in boldface.

eval06 MDM eval07 MDM
Clusteringconfmtglectmtgconfmtglectmtgcbreak

1 cluster 47.8 44.6 44.0
4 clusters 30.3 26.2 44.7
Unlimited 30.2 48.1 26.5 44.7
Combined 29.4 46.9 25.8 43.7 43.5

speech. Therefore, the RT-07 system again used only a singlecluster for lecture recog-
nition.

Post-evaluation we revisited this decision and checked theeffect of different clus-
tering parameters for all genres. Three configurations weretried: 1 cluster (the default
for lectmtg), 4 clusters (the default for confmtg, close to the average number of meet-
ing participants, and optimized on old evaluation data), and an unlimited number of
clusters (constrained only by a minimum amount of data per cluster). The results are
summarized in Table 8.

First, we can note that the (blind) choices made for eval07 confmtg and lectmtg
turned out to be optimal. The alternative clusterings resulted in minimal degradation
only. For coffee break recognition, we had made a poor choice(4 clusters) based on the
assumption that they would be more like conference meetings; a single cluster worked
best here, too. Most interesting, the error patterns (substitution/insertion/deletion rates)
resulting from alternate clusterings were quite different. This suggested combining the
different systems by merging the confusion networks produced in their final stages. As
shown in the last row of Table 8, this indeed yielded considerable reductions in error
over the single best system, of between 0.4% and 1.0% absolute. (Of course, this gain
comes at the price of doubled runtime.)

4 Overall Results

4.1 Conference Meetings

Table 9(a) compares results on last year’s and this year’s evaluation sets for the con-
ference room condition. For last year’s test data we also include results from last
year’s (RT-06) system, thereby allowing us to assess overall progress made. Further-
more, we list results with both the submitted RT-07 system and the improvements made
post-evaluation (the retuned priors for IHM recognition and the cluster combination
for MDM). On eval06, the progress on MDM data was about 11.4% relative (14.0%
post-evaluation), and 8.8% on IHM data (15.8% post-evaluation). We also note that the
MDM word error rate on non-overlapped speech is within 8% of IHM performance on
eval07, although this looks like an artifact of this particular test set as (eval07 is easier
than eval06 on MDM, but harder for IHM recognition).

4.2 Lectures and coffee breaks

Table 9(b) similarly summarizes all the results for the lecture room task, as well as
for the new coffee break genre. For eval06 lectures, MDM worderror was reduced



Table 9. Results on RT-06 and RT-07 test data summarized.

(a)

System
MDM SDM IHM
eval06 confmtg

RT-06 34.2 41.2 24.0
RT-07 30.3 40.6 21.9
Post-eval 29.4 20.2

eval07 confmtg
RT-07 26.2 33.1 25.7
Post-eval 25.8 24.0

(b)

System
MDM ADM MM3A SDM IHM

eval06 lectmtg
RT-06 55.5 51.0 56.5 57.3 31.0
RT-07 47.8 39.3 49.6 26.3
Post-eval 46.9 25.7

eval07 lectmtg
RT-07 44.6 42.1 54.0 50.6 30.5
Post-eval 43.6 29.5

eval07 cbreak
RT-07 44.7 41.1 51.0 50.0 31.2
Post-eval 43.5 30.6

13.9% relative (15.5% post-evaluation), and IHM error 15.2% relative (17.1% post-
evaluation). The ADM condition saw an even greater improvement of 22.9% relative,
largely because of improved beamforming. Comparing acrosstest sets, we find that
IHM became harder this year, whereas MDM became easier, similar to what we saw
with conference data.

Finally, we observe that the RT-07 coffee break data shows errors across conditions
that are remarkably similar to the corresponding lectmtg results. This, together with
the earlier observations about speaker clustering and the fact than these results were
obtained with lecture-tuned language model, led us to conclude that, for recognition
purposes, the coffee break data is presently not significantly different from lecture data.

4.3 Speaker-attributed speech-to-text

This year NIST introduced a new “speaker-attributed speech-to-text” (SASTT) task,
combining diarization and speech recognition (speech-to-text, STT). Systems label each
recognized word with speaker tags, and the scoring program counts a word as correct
only if both the spelling and the speaker label agree with thereference (speaker labels
are treated as arbitrary and only significant to the extent that they indicate identity or
nonidentity of speakers). The SASTT task is defined only for distant-microphone con-
ditions.

We had not originally planned to develop a system for this task, but after the sub-
mission deadline we decided to generate SASTT output by a simple merging of our
speech recognition output with ICSI’s diarization output [22]. Each recognized word
was labeled with the speaker label that has the longest time overlap with the word. Ta-
ble 10 summarizes the results, which turned out to be highly competitive even without
having performed any joint optimization on the diarizationand STT systems.

We also tested a simple model that predicts SASTT error from the error rates and
types of the underlying STT and diarization systems. If we assume that diarization
errors occur independently of STT errors, we would predict that incorrect speaker labels
cause about MESPKR + SESPKR correct STT words to be SASTT-incorrect, where
MESPKR and SESPKR are the diarization miss and speaker error rates, respectively.
Therefore, we predict the SASTT WER error to be

WERSATT = WERSTT + CorRSTT � (MESPKR + SESPKR)



Table 10. Actual and predicted SASTT error rates obtained by a combination of the SRI-ICSI
recognizer with the ICSI diarization system. The error rates of the component diarization and
recognition systems are also given. Unlike elsewhere in this paper, the scoring here was per-
formed with as many as three overlapping speakers.

Task
eval07 confmtgeval07 lectmtg
MDM SDM MDM

SASTT (actual) 40.3 51.7 56.9
SASTT (predicted)41.9 55.2 58.6
STT 37.4 43.6 49.3
diarization 8.5 21.7 23.3

with CorRSTT being the STT word-correct rate. As the second row of Table 10shows,
this prediction is only a slight overestimate for the MDM condition. However, for the
SDM condition, the formula overestimates SASTT error substantially, probably be-
cause under poor acoustic conditions, STT and diarization errors will be more highly
correlated.

5 Conclusions and Future Work

We have made further progress in the recognition of conference and lecture meetings,
with first results on “coffee break” data that are comparableto those on lectures. The
most significant contributions this year came from a combination of discriminative
techniques in acoustic modeling, including a new method, fMPE-MAP, that showed
the most substantial error reductions on the “hard” tasks, namely, distant microphone
recognition in general and lecture recognition in particular. Additional acoustic model-
ing gains came from adaptation to nonnative and non-American English telephone data.
Acoustic preprocessing was improved by using a new beamforming implementation
(for distant microphones) and retuning the speech/nonspeech priors (for close-talking
microphones). We found a simple way to improve distant microphone recognition in
combining multiple recognition systems differing only in their speaker clustering con-
straints. Finally, we constructed a first, yet competitive SASTT system by a straightfor-
ward merging of our STT system with ICSI’s diarization output.
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SRI Spring 2006 meeting recognition system. In Renals, S., Bengio, S., Fiscus, J., eds.:
Machine Learning for Multimodal Interaction: Third International Workshop, MLMI 2006.
Volume 4299 of Lecture Notes in Computer Science., Springer(2006) 444–456

4. Zheng, J., Cetin, O., Hwang, M.Y., Lei, X., Stolcke, A., Morgan, N.: Combining discrim-
inative feature, transform, and model training for large vocabulary speech recognition. In:
Proc. ICASSP. Volume 4., Honolulu (2007) 633–636

5. Lamel, L., Schiel, F., Fourcin, A., Mariani, J., Tillman,H.: The translingual English database
(TED). In: Proc. ICSLP, Yokohama (1994) 1795–1798

6. Adami, A., Burget, L., Dupont, S., Garudadri, H., Grezl, F., Hermansky, H., Jain, P., Ka-
jarekar, S., Morgan, N., Sivadas, S.: Qualcomm-ICSI-OGI features for ASR. In Hansen,
J.H.L., Pellom, B., eds.: Proc. ICSLP. Volume 1., Denver (2002) 4–7

7. Anguera, X., Wooters, C., Pardo, J.M.: Robust speaker diarization for meetings: ICSI-SRI
RT-06S meetings evaluation system. In Renals, S., Bengio, S., Fiscus, J., eds.: Machine
Learning for Multimodal Interaction: Third InternationalWorkshop, MLMI 2006. Lecture
Notes in Computer Science. Springer (2007)

8. Anguera, X.: Beamformit (the fast and robust acoustic beamformer).
http://www.icsi.berkeley.edu/˜xanguera/beamformit/ (2006)

9. Boakye, K., Stolcke, A.: Improved speech activity detection using cross-channel features for
recognition of multiparty meetings. In: Proc. ICSLP, Pittsburgh, PA (2006) 1962–1965

10. Vergyri, D., Stolcke, A., Gadde, V.R.R., Ferrer, L., Shriberg, E.: Prosodic knowledge sources
for automatic speech recognition. In: Proc. ICASSP. Volume1., Hong Kong (2003) 208–211

11. Povey, D., Woodland, P.C.: Minimum phone error and I-smoothing for improved discrimi-
native training. In: Proc. ICASSP. Volume 1., Orlando, FL (2002) 105–108

12. Graciarena, M., Franco, H., Zheng, J., Vergyri, D., Stolcke, A.: Voicing feature integration
in SRI’s Decipher LVCSR system. In: Proc. ICASSP. Volume 1.,Montreal (2004) 921–924

13. Kumar, N.: Investigation of Silicon-Auditory Models and Generalization of Linear Discrim-
inant Analysis for Improved Speech Recognition. PhD thesis, Johns Hopkins University,
Baltimore (1997)

14. Morgan, N., Chen, B.Y., Zhu, Q., Stolcke, A.: TRAPping conversational speech: Ex-
tending TRAP/Tandem approaches to conversational telephone speech recognition. In:
Proc. ICASSP. Volume 1., Montreal (2004) 536–539

15. Zhu, Q., Stolcke, A., Chen, B.Y., Morgan, N.: Using MLP features in SRI’s conversational
speech recognition system. In: Proc. Interspeech, Lisbon (2005) 2141–2144

16. Jin, H., Matsoukas,S., Schwartz, R., Kubala, F.: Fast robust inverse transform SAT and multi-
stage adaptation. In: Proceedings DARPA Broadcast News Transcription and Understanding
Workshop, Lansdowne, VA, Morgan Kaufmann (1998) 105–109
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