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Abstract
Since named entities are often written in different ways, ques-
tion answering (QA) and other language processing tasks stand
to benefit from entity matching. We address the problem of
finding equivalent person names in unstructured text. Our ap-
proach is a generalization of spelling correction: We compare to
candidate matches by applying a set of edits to an input name.
We introduce a novel unsupervised method for learning spelling
edit probabilities which improves overall F-Measure on our own
name-matching task by 12%. Relevance is demonstrated by ap-
plication to the GALE Distillation task.
Index Terms: equivalent names, entity matching, unsupervised
learning

1. Introduction
A typical question answering scenario involves a short question
about a named entity and a set of documents that may contain an
answer. Since proper names appearing in print vary greatly (see
Table 1), robust name matching is important for finding rele-
vant passages. We say that two names are equivalent if, lacking
contextual information, a human would assume they refer to the
same entity. Though there are times when context is available,
allowing us to distinguish Michael Jordan the basketball player
from Michael Jordan the computer scientist, we assume no such
information, leaving the combination of our system with some
cross-document coreference as future work.

Name Variant Edit Type
Abu Musab al-ZarqawiAbu Masab al-Zarwaqitypo
Abu Musab al-Zarqawial-Zarqawi specificity
Abu Musab al-ZarqawiAbu Musab al-Zarkawiphonetic
Abu Musab al-ZarqawiAdu Muhsab Zarqawwicombination

Table 1:Edit varieties

While this problem is often addressed in a database setting
where entities are stored in structured fields (see [1], [2]), we
consider its application to unstructured text. As such, this is
largely a problem of phonetic matching between strings, and
our approach draws inspiration from statistical edit-based spell
checking, developed in [3] and improved in [4]. We compare a
given name to a set of candidates using a generalized edit dis-
tance. Then, rather than treating the edit distance itself as a
score, we assign match probabilities based on learned edit like-
lihoods.

The novelty of our approach is twofold. First, we formulate
a generalized set of structural edits for names (beyond simple
character-level edits). Second, we learn probabilities for edits
without labeled data by exploiting contextual similarities be-
tween structurally similar names in a large corpus.

Section 2 introduces our data, including a test set we have
manually annotated. Section 3 describes our edit model and
how we learn its parameters. Section 4 gives experimental re-
sults on our test set, and section 5 shows results on a practical
application: the GALE information distillation task.

2. Data
For our empirical analysis, we consider two principal data sets.
The first is the English newswire portion of LDC’s Topic Detec-
tion and Tracking corpus TDT5, collected from 8 news sources
from April to September of 2003. The second is a much smaller
set of English newswire and English blog posts collected for the
GALE Year-2 (Y2) evaluation (see [5]). As the Y2 corpus in-
cludes documents from a variety of sources including TDT5,
the overlapping documents have been removed from our TDT5
set. See Table 2 for corpus statistics.

As our algorithms are based on named entities, we prepro-
cess the data with a named entity recognizer. We use New York
University’s JET system described in [6], which performs both
named entity recognition and coreference resolution. We ex-
tract only the first mention of each entity in a document as input
to our system since this is usually the most formal and specific.
Rarely is the first mention a pronoun, which we would hope to
link to the desired name through coreference rather than name
matching.

Corpus Documents Unique PER Names
TDT5 275,473 236,922
Y2 3,395 6,653

Table 2: Datasets: person names (PER) are automatically ex-
tracted from news-related documents

2.1. Human Labels for Equivalent Names

To assess precision and recall for our algorithms, we manu-
ally labeled pairs of non-identical names in the Y2 set. A pair
of names was labeledunmatched, matched, or ambiguous(see
Table 3 for examples). The judgements, particularly between
matchedandambiguous, are subjective. Agreement, however,
between two human labelers was high: the kappa statistic (see
[7]) for inter-annotator agreement was 0.89. Mismatched labels
were reviewed and finalized by the labelers. 803 name pairs are
labeled asmatched, 378 are labeledambiguous, and the remain-
der are labeledunmatchedby default. To make the labeling task
feasible, we started with all pairs of names sharing some mini-
mal similarity. Thus it is possible that there are some name pairs
missing from the final labeled set.1

2.2. Experimental Setup

For the sake of evaluation, we jack-knife the Y2 corpus as fol-
lows: Take the first name as our query and find all its matches in
the remainder of the corpus; then, repeat for each name. In this
way, we attempt to recreate our manually labeled list. While it

1The names and manually labeled matches are available at
http://www.icsi.berkeley.edu/ dgillick/names/index.html. While pairs
of matched names can be found on the internet (e.g. Wikipedia), our
test set is valuable because it allows us to measure precision and recall,
and we welcome other research comparing results with ours.



may make more sense to think of cliques of equivalent names in
a large, mostly disconnected forest, it is easier to evaluate pairs
of names. In evaluation, we ignore ambiguous matches: they
are neither penalized nor rewarded. We compute precision and
recall at a variety of thresholds. F-Measure is calculated as the
equally weighted harmonic mean of precision and recall:

FM =
2 × recall × precision

precision + recall
(1)

Name 1 Name 2 Label
Sergio Viera de Mello Annie de Mello unmatched
Sergio Viera de Mello Sergo de Mello matched
Sergio Veira de Mello de Mello ambiguous

Table 3:Labeling examples

3. Algorithm
Though we are interested in matching names solely on the basis
of their structural similarity, we show here how, in the absence
of training data, we can bootstrap contextual similarity to train
structural probabilities. This section describes each of the algo-
rithmic components and how they fit together.

3.1. Structural Similarity

We preprocess all names by removing non-alphabetic charac-
ters, lowercasing, and splitting into words (”al-Qaeda” becomes
(”al”, ”qaeda”). To compare two names, we find the minimum
edit distance between the longer name,N , consisting of words
(w1, ..., wj) and the shorter name. The available edits are de-
fined as follows (example edits appear in Table 4):

• sub(p, q): Substitute characterq for characterp in ex-
actly 1 word inN . Note that the character alphabet con-
tains the null string∅ so thatsub(p, ∅) is a character
deletion andsub(∅, q) a character insertion. Substitu-
tion edits are only performed on words longer than some
minimum length.

• del(x, y): FromN with x words, deletey possibly non-
contiguous words.

• abbr(x, y): From N with x words of some minimum
length, abbreviatey of them. Abbreviation turns a word
into its first letter. The minimum length restriction is
to avoid abbreviation edits overlapping with letter dele-
tions.

• join(x, y): FromN with x words, joiny pairs of adja-
cent words.

Name 1 Name 2 Edit
noordin top noorden top sub(’i’,’e’ )
noordin mohammed top noordin top del(3, 1)
noordin mohammed top nordin m top abbr(3, 1)
noor din top noordin top join(3, 1)

Table 4:Edit Examples. Note thatsub edits operate at the char-
acter level and the rest at the word level.

While the standard spelling correction framework is based
on proper spellings and misspellings, we have only matched
pairs of names. As a result, insertions and deletions, both at
the character and word level, are the same. Our model does not
permit word level substitutions, however, as this would allow
too much flexibility. Note that Levenshtein edit distance is of-
ten extended to include transposition edits (such as in ”recieve”
and ”receive”), though in our experiments, adding these edits
had a negligible effect.

3.2. Contextual Similarity

Taking a step back from our context-free problem for a mo-
ment, we make the observation that besides structural similar-
ities, equivalent names tend to appear in similar contexts. To
decide, given some context, whether two names are similar, we
take a standard IR approach: For a nameN , we construct a
”document” consisting of all the sentences in the corpus that
containN . To measure the distance between two names,N1

andN2, we compute the semantic distance between their con-
text documents as follows:

1. Compute the TFIDF2 values for each stemmed word in
the context document forN1.

2. Create a vectorC of the largestk values.

3. L2-normalizeC to get C1. That is, the sum of the
squared TFIDF values should be 1.

4. Repeat steps 1-3 to getC2 from N2.

5. Take the inner productC1·C2 to get a similarity score
between 0 and 1.

This method gives the distance between two vectors as the
cosine of the angle between them. This particular implementa-
tion is inspired by [8], but has been simplified for our purposes3.
A more sophisticated similarity measure based on Latent Se-
mantic Analysis (LSA) as described in [9], which maps words
to a semantic feature space, would likely improve these results.

3.3. Learning Edit Probabilities

Returning now to our question answering setup, we would like
to learn the probability that two names are equivalent given the
edits used to turn one into the other. If we had labeled data, that
is, pairs of names differing by one edit labeled as matched or
unmatched, the estimation would be straightforward.

We defineNi ≡ Nj as nameNi equivalent to nameNj .
Let E be any of the edits described in section 3.1. We could es-
timate the likelihood of an editP (E|Ni ≡ Nj), along with the
prior P (Ni ≡ Nj) from our training data via maximum likeli-
hood. Note that we can separate the estimation of each edit type
since we never allow two edit types to produce the same match.
For example, there is no way to apply the character substitution
edit toNi to getNj if we can getNj from Ni via a word dele-
tion edit. By application of Bayes Rule, we can compute the
desired posteriors,P (Ni ≡ Nj |E), for new potential matches
as:

P (Ni ≡ Nj)P (E|Ni ≡ Nj)

P (Ni ≡ Nj)P (E|Ni ≡ Nj) + P (Ni 6≡ Nj)P (E|Ni 6≡ Nj)
(2)

Then, assuming independence between edits, we can compute
posterior probabilities for matches that differ by multiple edits
by taking the product over individual likelihoods.

This all sounds nice, but unfortunately we have no such la-
beled data. Instead, consider the following bootstrap procedure:

1. Search for matches in a large data set that differ by ex-
actly one edit as in section 3.1.

2. Score each of these candidate matches using the context
algorithm of section 3.2.

3. Consider any score greater than some thresholdt1 a pos-
itive example, and any score less thant2 a negative ex-
ample.

4. Estimate edit likelihoods as described above.

2Term Frequency Inverse Document Frequency approximates the
importance of a term based on its frequency in this document, normal-
ized by its frequency in a large and varied corpus.

3Following [8], we usek = 50.



Why might this work? The answer is twofold: First, the
context scores are positively correlated with the true labels.
Second, whatever errors the context algorithm makes, they are
likely independent of the structural errors. This technique draws
inspiration from two-stage regression as described in [10]. The
correlation means we have a chance to learn something better
than random guessing. This is demonstrably true. The indepen-
dence means that what we learn will not be biased by the par-
ticular matches in the training set. This is an assumption which
is not entirely true: two Arabic names are more likely to have
matching contexts than an Arabic name and a Chinese name,
suggesting that contextual similarity might be correlated with
structural similarity in some cases. If the correlation is minimal
however, things might work out anyway.

3.4. Training Details

As mentioned above, we train by assigning a negative label to
low context scores and a positive label to large context scores.
In practice, a significant proportion of matches have context
score 0. These we assign to the negative class. For the posi-
tive class we tried two variants: (1) All non-zero matches are
assigned to the positive class, and (2) all non-zero matches are
assigned to the positive class, weighted by their context score.
If the context scores themselves have some meaning beyond the
zero/non-zero distinction, (2) ought to give better estimates, and
it does. The maximum FM for (1) is some 3% absolute worse
than (2).

A second issue is the estimation of prior probabilities.
While we can estimate priors from the training corpus, these
are very poor estimates for the much smaller test set. To under-
stand why, recall that our training sample space consists of pairs
of names that differ by one edit. All the probabilities we learn
are in essence conditional on this fact. The prior probability,
which we have referred to asP (Ni ≡ Nj), is really condi-
tional onNi andNj differing by one edit. In the large training
set, the number of names differing by one edit as a fraction of
the total number of names is significantly greater than in the
smaller test set. This is because the larger set is ”denser” than
the smaller set, and as a result, the priors estimated from the
training set likely under-estimate the true priors in the test set.
Instead, we simply use uniform priors. A cheating experiment
using the true test set priors yields no improvement.

3.5. The Metaphone Algorithm

Training sets for spelling correction show that some 98% of
misspelled words are within two characters edits of the intended
word. Names, however, are longer and more variable, so two
character edits are often insufficient. Further, the matching
problem is largely phonetic and English letters are only rough
approximations of phonetic content.

Thus, we map each name to a phonetic space using the
Metaphone Algorithm [11]: a simple rule-based method that
essentially converts a string into a series of consonant sounds.
”Mohammed”, ”Mohamed”, and ”Mohammad” all map to the
same Metaphone string ”MHMT”4. While there is certainly in-
formation in the vowels, they are the primary source of variabil-
ity, so the distance between Metaphone mappings of names is
substantially reduced. Future work involves higher quality pho-
netic mapping and extension to n-best mappings and lattices.

4. Experiments
Before examining results, let us clarify our experimental proce-
dure.

1. Train structural parameters

(a) Search for potential name matches in a large train-
ing set differing by one structural edit.

4We indicate metaphone symbols with capital letters

(b) Use context algorithm to score each match.

(c) Treating low scores as negative examples and high
scores as positive examples, train structural param-
eters.

2. Simulate QA problems for evaluation

(a) Extract named entities from a corpus, keeping only
the first mention of each name in a document.

(b) Clean names and split into words. Map each word
to its Metaphone representation.

(c) For each name, find all matches within k edits,
then score with edit posteriors computed from
learned parameters.

4.1. Structural Edits

We begin with an analysis of our edits. Table 5 shows results
on our test set using single edits. Recall, which cannot be im-
proved by learned parameters or the addition of context infor-
mation, is at most 85%. What have we missed? Of the 123
missed matches, 38 differ by adel and asub and 31 differ
by two sub edits. Including these deeper edits, however, gives
much poorer overall performance, though the learned parame-
ters manage to improve FM from 0.22 to 0.49. The remaining
missed matches fall mostly into two categories: word substi-
tutions (”Alexandros Yiotopoulos”≡ ”French-born Yiotopou-
los”) and nicknames (”Richard Gephardt”≡ ”Dick Gephardt”).
Simply including a list of 80 common nicknames improves re-
call by 5% absolute. For clarity, we do not include nicknames
in this section’s results, though they are included when we gen-
erate equivalent names for applications in the following section.

Edit Untrained Trained (Best) FM gainprecision recall precision recall
sub 0.51 0.46 0.74 0.42 +12%
del 0.75 0.37 0.79 0.36 +1%
join 0.90 0.01 0.90 0.01 +0%
abbr 0.90 0.01 0.90 0.01 +0%
All 0.60 0.85 0.76 0.80 +12%

Table 5: Structural edit results on the Y2 test set. Results are
shown at the maximum FM. Overall FM is 0.70 and improves
to 0.78 with trained probabilities.

4.2. Learned Edits

The learned parameters clearly improve performance, espe-
cially thesub edit parameters. What exactly have we learned?
The table shows, for example, that deleting a ’B’ is nearly four
times more costly than deleting an ’H’. Substituting an ’M’ for
an ’N’ is much less costly than substituting ’K’ for ’N’. Such
results make good sense: ’N’ and ’M’ are phonetically much
closer than ’N’ and ’K’. Similarly, more deleted words results in
lower match certainty. The posteriorP (N1 ≡ N2|abbr(2, 2))
is so small because two-letter abbreviations do not contain
enough information: ’Nathan Young’6≡ ’N.Y.’.

Edit φ(Ni ≡ Nj) Edit φ(Ni ≡ Nj)
sub(’B’ , ∅) 0.08 sub(’H’ , ∅) 0.31
sub(’N’ ,’K’ ) 0.17 sub(’N’ ,’M’ ) 0.42
del(4, 1) 0.78 del(4, 2) 0.41
join(3, 1) 0.42 join(4, 1) 0.94
abbr(3, 1) 0.78 abbr(2, 2) 0.03

Table 6:Posterior probabilitiesφ for some example edits.



5. Application to Distillation
Matching equivalent names has many potential applications. To
directly demonstrate the utility of this work, we show how we
can improve the performance of an information distillation en-
gine. The task can be summarized as follows: Retrieve sen-
tences or phrases in a large corpus (including text and audio
sources in multiple languages) relevant to a given templated
query (see Table 7). Typically, audio is transcribed using auto-
matic speech recognition and non-English documents are trans-
lated into English via machine translation. For each template,
there are 15-30 problems, and the results reported here are av-
erages over these.

The distillation system described in [12] trains a classifier
to identify a sentence as relevant or irrelevant based on layers of
sentence-level features. Some of the most salient features per-
tain to the template slots, which are often filled with named enti-
ties. As a result, robust name matching is very important: a user
who fills a query slot with “Al Qaeda” is most likely interested
in results pertaining to the alternate spelling “al-Qaida”. Our
lists of names are used to make these matches, and the resulting
slot features are weighted by the scores we provide. While this
paper is primarily concerned with person names, our named en-
tity software labels organizations and locations as well. Using
all of the parameters from our experiments with person names,
we enumerate matches for these classes of entities as well.

We run the system with and without equivalent names for
each of five templates using word-bigram and slot features. Ta-
ble 7 shows the specific queries and table 8 shows our results.
The most significant improvement is in template 12, which
specifically contains a person name in its slot. Some of the other
templates involve more complex entities like events or crimes,
which may include named entities. Template 16, for example, is
focused on locations, which are likely less variable than person
names.

# Query Text
1 List facts about event: [EVENT]
8 Describe the prosecution of [PERSON] for [CRIME]
12 Provide a biography of [PERSON]
15 Identify persons arrested from [ORGANIZATION]

and give their name and role in the organization
and time and location of arrest

16 Describe attacks in [LOCATION] giving location,
date and number of dead and injured

Table 7:Query templates used in evaluation. This is a subset of
all the GALE Distillation templates.

# Max F-Measure Rel. Gain
Without Names With Names

1 0.42 0.42 +0%
8 0.46 0.50 +9%
12 0.36 0.44 +22%
15 0.43 0.44 +2%
16 0.47 0.46 -2%

Table 8:Effect of equivalent names lists on Distillation

6. Conclusion
We have described a system for identifying equivalent names
given an input name and a list of possible matches, and speci-
fied a model for assigning probabilities to matches that we can
train using unlabeled data. On our own labeled test set, we can
achieve F-Measure 0.78, and can select thresholds allowing ei-
ther high precision or high recall without significant loss in per-
formance, depending on the application. We have also shown

how equivalent names can improve performance in Information
Distillation.

Throughout, we hinted at a few promising future directions.
First, LSA can be used to improve the context scores, which
ought to improve the estimated likelihoods. Second, the Meta-
phone algorithm is a very rough attempt at a phonetic mapping.
A statistical algorithm, perhaps with a lattice output, would be
better, and could help in adapting these methods to ASR output.
Along these lines, we do not actually need a named entity rec-
ognizer – in fact, looking for potential matches in unstructured
text is more robust, especially when the text is ASR output.

Lastly, the unsupervised method for learning edit probabili-
ties proved quite successful. We are interested in studying other
problems with independent sources of information to see if we
can learn parameters in a similar unsupervised fashion.
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