
Test Case Comparison and Clustering using Program
Profiles and Static Execution

Vipindeep Vangala
Microsoft Corporation

vipinv@microsoft.com

Jacek Czerwonka
Microsoft Corporation

jacekcz@microsoft.com

Phani Talluri
Microsoft Corporation

phanikt@microsoft.com

ABSTRACT

Selection of diverse test cases and elimination of duplicates are
two major problems in product testing life cycle, especially in
sustained engineering environment. In order to solve these, we
introduce a framework of test case comparison metrics which will

quantitatively describe the distance between any arbitrary test case
pair of an existing test suite, allowing various test case analysis
applications. We combine program profiles from test execution,
static analysis and statistical techniques to capture various aspects
of test execution and compute a specialized test case distance
measurement. Using these distance metrics, we drive a
customized hierarchical test suite clustering algorithm that groups
similar test cases together. We present an industrial strength

framework called SPIRiT that works at binary level,
implementing different metrics in the form of coverage, control,
data, def-use, temporal variances and does test case clustering.
This is step towards integrating runtime analysis, static analysis,
statistical techniques and machine learning to drive new
generation of test suite analysis algorithms.

Keywords

Testing, static analysis, sustained engineering, machine learning

1. INTRODUCTION
Test suites for large software systems like Microsoft Windows
contains millions of test cases that execute various scenarios to

identify defects in the code or verify code compliance. Test suite
development of such big products happen in a distributed
environment. There are various problems that test teams
encounter during maintenance phases which include: test
selection, redundancy elimination and test prioritization. There are
various tools and frameworks designed to perform these tasks
[1,2]. All the industrial strength tools work on obtaining a
minimal test suite that optimizes a specific criterion. And this

criterion has been mostly code coverage which is not good enough
to capture the functionality and deeper runtime aspects exercised
on the tested binaries.

In this work, we have developed a framework which provides us a
mechanism to quantitatively compare any arbitrary pair of test
cases. To achieve this we have created six quantitative test case
comparison metrics, which capture the deeper runtime behavior of
what these tests are executing. We use program profiles, static
analysis and statistical methods to compute these. We started this
work with a single metric of code coverage to measure distance
between two test cases. We learnt that such a simple metric cannot

adequately represent all aspects of test case execution through the
software under test and needed to add better measures of distance
using several available information sources. Each measure
allowed us to become more accurate in assessing the distance and
show better functional diversity between tests.

Figure 1: Architecture

We use program profiles that capture: code coverage information,
number of times blocks/arcs were executed and temporal
information in the form of time slices of execution (record which
blocks are executed in a time interval). Increasing the amount of
data collected at runtime increases the collection overhead and
create timing related problems, hangs, blue screens etc. On the
other hand, static analysis of executables or source code can help
add information over execution profiles without incurring runtime

penalty. We combine static analysis and runtime profiles in our
framework which is called as: SPIRiT.

Our contributions include:

1. Quantitative test case comparison metrics.

2. Use of light weight program profiling, static analysis to
capture the behavior of program being tested.

3. Use of clustering to group similar tests together.

4. Application of test case distance measurement for
various test suite analysis problems.

2. OVERVIEW OF SPIRIT SYSTEM
SPIRiT framework contains 3 phases [Figure 1]. In first phase, we

execute the test cases on instrumented builds of product binaries
to collect program profiles. In the second phase, we simulate static
execution using these test case profiles and calculate distance
between every pair of test cases in test suite. This phase uses
profiles, applies static and statistical analysis to compare all
possible pairs of test cases and forms NxN distance matrix based
on our metric computations. In the last phase, we apply
customized clustering algorithm on the test cases to group similar

test cases together. Clustering can be driven by specific thresholds
to drive various applications like redundancy elimination, test
selection, effectiveness of new test cases etc.

3. TEST CASE COMPARISON - METRICS
The following relationship scenarios are inferred for any test case
pair Ti and Tj in a test suite apart from quantification in distance:

1. Ti is doing same testing as Tj : Ti == Tj

2. Ti is doing testing, which is subset of Tj : Ti ≤ Tj

3. Tj is doing subset of testing of Ti : Tj ≤ Ti

4. Ti and Tj are completely diverse: Ti ≠ Tj

3.1 Quantifiable metrics

Quantitative test case comparison metrics suggest the amount of
similarity between any test case pair, capturing what is being
tested on the target binaries. We capture key aspects of program
execution including: code coverage, counts of execution, data
values, def-use of variables, and execution time among others.
These are the aspects or features which drive our comparison
metrics. We divide the program/binary into parts „P’, depending

on the metric (Ex: control variance has points at control
statements, def-uses on the chains etc). Signatures are calculated
for each part „P‟ based on test execution and these P-signatures
are used for comparing pairs of tests. Identifying program points
where P-signatures can be gathered is independent of test case
and depends on metric and binaries alone. P-signatures are
calculated using standard deviation, variance, and maximal sub
graph techniques that are well known in statistics and algorithms.

Corresponding P-signatures are compared for each test case pair
to compute statistical variance between test pairs over these, and
do a normalized summation for overall metric value. We use static
execution to simulate actual execution from profiles containing
temporal data. Entire execution is divided and captured in the
form of time slices which is cheaper on runtime. We start the
simulation of two tests simultaneously from collected profiles and
compute metrics.

3.2 Metrics: Test case pair comparison
Here we show how two test cases are compared to calculate
distance between them and mention about few of our metrics.

3.2.1 Coverage Commonality
This metric is based on code coverage data, focusing on
difference between any two test cases – T1 and T2.

Coverage Commonality =
𝐶𝑜𝑚𝑚𝑜𝑛 𝑏𝑙𝑜𝑐𝑘𝑠 /𝑎𝑟𝑐𝑠 𝑓𝑜𝑟 𝑇1 𝑎𝑛𝑑 𝑇2

𝑇𝑜𝑡𝑎𝑙 𝑏𝑙𝑜𝑐𝑘𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑇1 𝑎𝑛𝑑 𝑇2
 * 100

3.2.2 Control variance
This metrics computes the distance between test cases based on
the difference in control statement executions. We record counts
of block/arc execution in the binaries tested. Computation of this
metric is illustrated in Figure 2.

3.2.3 Temporal variance
This metric computes the quantitative similarity in the time space
for the test cases using available temporal information. We form a
P-signature from temporal togetherness for every pair of blocks in
the binary for every test case. We then derive a variance on these
P-signatures across the two test cases being compared similar to
Figure 2. In another variant we try to find out the variance
between the number blocks that are temporally occurring in a time
interval, across the two tests.

3.2.4 Def-use commonality
This metric captures the difference in the two test cases w.r.to the
way they exercise different def-use pairs (d-u) of variables.

For each test case ‘t’

 For each program point ‘b’ IN

 {branches}

 If ('b' has follower and target)

 𝑚𝑒𝑎𝑛 =
𝑡𝑎𝑘𝑒𝑛 +𝑛𝑜𝑡 _𝑡𝑎𝑘𝑒𝑛

2

 X = taken–mean;

 Y = not_taken– mean

 Deviation =
 𝑋 + |𝑌|

𝑡𝑎𝑘𝑒𝑛 +𝑛𝑜𝑡 _𝑡𝑎𝑘𝑒𝑛

 P-Signature(t,b) = Deviation;

 End If

 End For

End For

Calculation of P-Signatures

For each test case pair (ti, tj)

 For each program point ‘p’ in

 {Program points=branches}

 Mean={P-Signature(ti,p)+

 P-Signature(tj,p)} /2

 Vaiance+={Square(Mean-

 P-Signature(ti,p))+

 Square(Mean-P-Signatur(tj,p))}/2

 End For

 Return variance;

End For

Calculation of Metric value

Figure 2: Control variance

D-U Commonality =
𝐶𝑜𝑚𝑚𝑜𝑛 𝑑−𝑢 𝑝𝑎𝑖𝑟𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑖𝑛 𝑇1 𝑎𝑛𝑑 𝑇2

𝑇𝑜𝑡𝑎𝑙 𝑑−𝑢 𝑝𝑎𝑖𝑟𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑖𝑛 𝑇1 𝑎𝑛𝑑 𝑇2
 * 100

3.2.5 Other metrics
We compute other metrics like- data variance: which captures the

data values as proportional to the number of times the control
statements are executed, execution time, type of test cases etc.
Qualitative values are used to identify better test case when
compared to another. This can be used for selecting good test
when clustering is applied.

3.3 Combining metrics
From individual metrics for each test case pair, we form an
aggregate quantifiable metric that shows comprehensive distance

between test cases:

Dist (Ti, Tj) =
𝑊𝑘∗𝐷𝑖𝑠𝑡 𝑘(𝑇𝑖 ,𝑇𝑗)

𝑚

𝑚
𝑘=1

Where Distk(Ti, Tj) represents the value of kth metric

Wk represents the weight for the kth metric that can be varied for

practical purposes or learned as system evolves.

4. RESULTS AND CONCLUSION
We used our test comparison metrics to drive clustering algorithm
with aggressive thresholds for redundancy detection on some
legacy test suites of Microsoft Windows and some open source
software. Sizes of test suites we used for evaluation varied from
hundreds of tests to thousands for diverse products. On an

average, we identified 10-20% of redundant test cases with high
accuracy of around 70%. We were able to use SPIRiT to select
variable subset of diverse test cases that would suit in time
constrained scenarios and trained optimizations. Our metrics gives
around half the false positives compared to code coverage based
methods in redundancy detection. Our experimental data shows
that we can indeed combine various methodologies to create a
powerful classification system for test suite to find redundancy,

help prioritization among various other applications. This
approach is indeed better than traditional code coverage methods
giving lesser false positives, preserve the failure inducing cases
and guaranteeing the diversity in subset selection. Our approach
can be applied to find effectiveness of new test, find failure
variants, change analysis and other test suite analysis problems.

5. REFERENCES
[1] A. Srivastava, J. Thiagarajan, " Effectively Prioritizing Tests

in Development Environment", ISSTA 2002.
[2] M. J. Harrold, “Testing Evolving Software”, Journal of

Systems and Software, vol. 47, , pp. 173-181, Jul.1999.
[3] A. Srivastava, A. Edwards, and H. Vo, “Vulcan: Binary
 transformation in a Distributed Environment”, Microsoft
 Research Technical Report, MSR-TR-2001

