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ABSTRACT 

Selection of diverse test cases and elimination of duplicates are 
two major problems in product testing life cycle, especially in 
sustained engineering environment. In order to solve these, we 
introduce a framework of test case comparison metrics which will 

quantitatively describe the distance between any arbitrary test case 
pair of an existing test suite, allowing various test case analysis 
applications. We combine program profiles from test execution, 
static analysis and statistical techniques to capture various aspects 
of test execution and compute a specialized test case distance 
measurement. Using these distance metrics, we drive a 
customized hierarchical test suite clustering algorithm that groups 
similar test cases together. We present an industrial strength 

framework called SPIRiT that works at binary level, 
implementing different metrics in the form of coverage, control, 
data, def-use, temporal variances and does test case clustering. 
This is step towards integrating runtime analysis, static analysis, 
statistical techniques and machine learning to drive new 
generation of test suite analysis algorithms. 
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1. INTRODUCTION 
Test suites for large software systems like Microsoft Windows 
contains millions of test cases that execute various scenarios to 

identify defects in the code or verify code compliance. Test suite 
development of such big products happen in a distributed 
environment. There are various problems that test teams 
encounter during maintenance phases which include: test 
selection, redundancy elimination and test prioritization. There are 
various tools and frameworks designed to perform these tasks 
[1,2]. All the industrial strength tools work on obtaining a 
minimal test suite that optimizes a specific criterion. And this 

criterion has been mostly code coverage which is not good enough 
to capture the functionality and deeper runtime aspects exercised 
on the tested binaries.  

In this work, we have developed a framework which provides us a 
mechanism to quantitatively compare any arbitrary pair of test 
cases. To achieve this we have created six quantitative test case 
comparison metrics, which capture the deeper runtime behavior of 
what these tests are executing. We use program profiles, static 
analysis and statistical methods to compute these. We started this 
work with a single metric of code coverage to measure distance 
between two test cases. We learnt that such a simple metric cannot 

adequately represent all aspects of test case execution through the 
software under test and needed to add better measures of distance 
using several available information sources. Each measure 
allowed us to become more accurate in assessing the distance and 
show better functional diversity between tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Architecture 

We use program profiles that capture: code coverage information, 
number of times blocks/arcs were executed and temporal 
information in the form of time slices of execution (record which 
blocks are executed in a time interval). Increasing the amount of 
data collected at runtime increases the collection overhead and 
create timing related problems, hangs, blue screens etc. On the 
other hand, static analysis of executables or source code can help 
add information over execution profiles without incurring runtime 

penalty. We combine static analysis and runtime profiles in our 
framework which is called as: SPIRiT. 

Our contributions include: 

1. Quantitative test case comparison metrics. 

2. Use of light weight program profiling, static analysis to 
capture the behavior of program being tested.  

3. Use of clustering to group similar tests together. 

4. Application of test case distance measurement for 
various test suite analysis problems. 

2. OVERVIEW OF SPIRIT SYSTEM 
SPIRiT framework contains 3 phases [Figure 1]. In first phase, we 

execute the test cases on instrumented builds of product binaries 
to collect program profiles. In the second phase, we simulate static 
execution using these test case profiles and calculate distance 
between every pair of test cases in test suite. This phase uses 
profiles, applies static and statistical analysis to compare all 
possible pairs of test cases and forms NxN distance matrix based 
on our metric computations. In the last phase, we apply 
customized clustering algorithm on the test cases to group similar 

test cases together. Clustering can be driven by specific thresholds 
to drive various applications like redundancy elimination, test 
selection, effectiveness of new test cases etc. 

 



3. TEST CASE COMPARISON - METRICS 
The following relationship scenarios are inferred for any test case 
pair Ti and Tj in a test suite apart from quantification in distance: 

1. Ti is doing same testing as Tj : Ti == Tj 

2. Ti is doing testing, which is subset of Tj : Ti ≤ Tj 

3. Tj is doing subset of testing of Ti : Tj ≤ Ti 

4. Ti and Tj are completely diverse: Ti ≠ Tj 

3.1 Quantifiable metrics 

Quantitative test case comparison metrics suggest the amount of 
similarity between any test case pair, capturing what is being 
tested on the target binaries. We capture key aspects of program 
execution including: code coverage, counts of execution, data 
values, def-use of variables, and execution time among others. 
These are the aspects or features which drive our comparison 
metrics. We divide the program/binary into parts „P’, depending 

on the metric (Ex: control variance has points at control 
statements, def-uses on the chains etc). Signatures are calculated 
for each part „P‟ based on test execution and these P-signatures 
are used for comparing pairs of tests. Identifying program points 
where P-signatures can be gathered is independent of test case 
and depends on metric and binaries alone. P-signatures are 
calculated using standard deviation, variance, and maximal sub 
graph techniques that are well known in statistics and algorithms. 

Corresponding P-signatures are compared for each test case pair 
to compute statistical variance between test pairs over these, and 
do a normalized summation for overall metric value. We use static 
execution to simulate actual execution from profiles containing 
temporal data. Entire execution is divided and captured in the 
form of time slices which is cheaper on runtime. We start the 
simulation of two tests simultaneously from collected profiles and 
compute metrics.  

3.2 Metrics: Test case pair comparison 
Here we show how two test cases are compared to calculate 
distance between them and mention about few of our metrics.  

3.2.1 Coverage Commonality 
This metric is based on code coverage data, focusing on 
difference between any two test cases – T1 and T2. 

Coverage Commonality =  
𝐶𝑜𝑚𝑚𝑜𝑛  𝑏𝑙𝑜𝑐𝑘𝑠 /𝑎𝑟𝑐𝑠  𝑓𝑜𝑟  𝑇1 𝑎𝑛𝑑  𝑇2

𝑇𝑜𝑡𝑎𝑙  𝑏𝑙𝑜𝑐𝑘𝑠  𝑐𝑜𝑣𝑒𝑟𝑒𝑑  𝑖𝑛  𝑇1 𝑎𝑛𝑑  𝑇2
 * 100 

3.2.2 Control variance 
This metrics computes the distance between test cases based on 
the difference in control statement executions. We record counts 
of block/arc execution in the binaries tested. Computation of this 
metric is illustrated in Figure 2. 

3.2.3 Temporal variance 
This metric computes the quantitative similarity in the time space 
for the test cases using available temporal information. We form a 
P-signature from temporal togetherness for every pair of blocks in 
the binary for every test case. We then derive a variance on these 
P-signatures across the two test cases being compared similar to 
Figure 2.  In another variant we try to find out the variance 
between the number blocks that are temporally occurring in a time 
interval, across the two tests.  

3.2.4 Def-use commonality 
This metric captures the difference in the two test cases w.r.to the 
way they exercise different def-use pairs (d-u) of variables.  

For each test case ‘t’ 

  For each program point ‘b’ IN   

                                          {branches} 

      If ('b' has follower and target) 

           𝑚𝑒𝑎𝑛 =
𝑡𝑎𝑘𝑒𝑛 +𝑛𝑜𝑡 _𝑡𝑎𝑘𝑒𝑛

2
 

            X = taken–mean;  

            Y = not_taken– mean 

           Deviation = 
 𝑋 + |𝑌|

𝑡𝑎𝑘𝑒𝑛 +𝑛𝑜𝑡 _𝑡𝑎𝑘𝑒𝑛
 

           

          P-Signature(t,b) = Deviation; 

     End If 

  End For  

End For 

Calculation of P-Signatures 

 

 

For each test case pair (ti, tj) 

   For each program point ‘p’ in  

            {Program points=branches} 

       Mean={P-Signature(ti,p)+     

                            P-Signature(tj,p)} /2 

       Vaiance+={Square(Mean- 

          P-Signature(ti,p))+    

          Square(Mean-P-Signatur(tj,p))}/2  

  End For 

 Return variance; 

End For 

Calculation of Metric value 

Figure 2: Control variance 

D-U Commonality = 
𝐶𝑜𝑚𝑚𝑜𝑛  𝑑−𝑢 𝑝𝑎𝑖𝑟𝑠  𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑  𝑖𝑛  𝑇1 𝑎𝑛𝑑  𝑇2

𝑇𝑜𝑡𝑎𝑙  𝑑−𝑢 𝑝𝑎𝑖𝑟𝑠  𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑  𝑖𝑛  𝑇1 𝑎𝑛𝑑  𝑇2
 * 100 

3.2.5 Other metrics 
We compute other metrics like- data variance: which captures the 

data values as proportional to the number of times the control 
statements are executed, execution time, type of test cases etc. 
Qualitative values are used to identify better test case when 
compared to another. This can be used for selecting good test 
when clustering is applied. 

3.3 Combining metrics 
From individual metrics for each test case pair, we form an 
aggregate quantifiable metric that shows comprehensive distance 

between test cases: 

Dist (Ti, Tj) =  
𝑊𝑘∗𝐷𝑖𝑠𝑡 𝑘(𝑇𝑖 ,𝑇𝑗 )

𝑚

𝑚
𝑘=1  

Where Distk(Ti, Tj) represents the value of kth metric 

Wk represents the weight for the kth metric that can be varied for 

practical purposes or learned as system evolves. 

4. RESULTS AND CONCLUSION 
We used our test comparison metrics to drive clustering algorithm 
with aggressive thresholds for redundancy detection on some 
legacy test suites of Microsoft Windows and some open source 
software. Sizes of test suites we used for evaluation varied from 
hundreds of tests to thousands for diverse products. On an 

average, we identified 10-20% of redundant test cases with high 
accuracy of around 70%. We were able to use SPIRiT to select 
variable subset of diverse test cases that would suit in time 
constrained scenarios and trained optimizations. Our metrics gives 
around half the false positives compared to code coverage based 
methods in redundancy detection. Our experimental data shows 
that we can indeed combine various methodologies to create a 
powerful classification system for test suite to find redundancy, 

help prioritization among various other applications. This 
approach is indeed better than traditional code coverage methods 
giving lesser false positives, preserve the failure inducing cases 
and guaranteeing the diversity in subset selection. Our approach 
can be applied to find effectiveness of new test, find failure 
variants, change analysis and other test suite analysis problems. 
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