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Chasing the Weakest System Model for
Implementing$2 and Consensus

Martin Hutle, Dahlia Malkhi, Ulrich Schmid, Lidong Zhou

Abstract—Aguilera et al. and Malkhi et al. have pre- model that allows the implementation of the even-
sented two system models, which are weaker than all pre- tual leader oracle failure detectér. For a system
viously proposed models where the eventual leader electiongf ,, partially synchronous [14] or semi-synchronous
oracle 2 can be implemented and thus also consensus car‘1[26] processes where at mokmay crash, a suite of

be solved. The former model assumes unicast steps and al del ith d | d link h
least one correct process withf outgoing eventually timely MOodels with more and more rélaxed link synchrony

links, whereas the latter assumes broadcast steps and at2Ssumptions has been developed. In this setting, a
least one correct process withf bidirectional but moving link between two processes is called timely at time

eventually timely links. Consequently, those models are ¢ if a message sent at timeis not received later
incomparable. In this paper, we show that{2 can also be than¢+§. The bounds can be known or unknown.
implemented in a system with at least one process witlf A link is called timely (resp. eventually timely) if

outgoing moving eventually timely links, assuming either . . . .
unicast or broadcast steps. It seems to be the weakestll 1S timely at all timest > 0 (resp.t > tgsr, for

system model that allows to solve consensus viabased SOME unknown timegsr).
algorithms known so far. We also provide matching lower The following models have been proposed so far:

bounds for the communication complexity of 2 in this . o .
model, which are based on an interesting “stabilization Stable Leader Election [4], denOtedSn—l' At
property” of infinite runs. Those results reveal a fairly high I(_:"aSt one _CO”?Ct process mUSt havel eventually
price to be paid for the further relaxation of synchrony timely bidirectional links with known delay bound

properties. 0 (the other links can be purely asynchronous).

Index Terms—Distributed Systems, Failure Detectors, All links except the timely ones are fair lossy. A
Fault-tolerant Distributed Consensus, System Modeling, Message to at most one process can be sent in a
Partial Synchrony. single computing step (unicast steps).

Aguilera et al. 2003 [1], denotedS_ > : At
least one correct process must have- 1 even-
|. INTRODUCTION tually timely outgoing links ¢(n — 1)-source) with
HE chase for the weakest system model thgpknown d?'ay bound. All links .except the timely
T allows to solve consensus has long been an Ques are fair lossy, and computing steps are unicast.
tive branch of research in distributed algorithms. To Aguilera et al. 2004 [5], denoted S;”: At
circumvent the FLP impossibility in asynchronoukast one correct process must hafreeventually
systems [16], many models in between synchrogy‘e'y outgoing links ¢f-source) with unknown
and asynchrony [13] have been proposed over @lay bound). All links except the t|me|y ones are
years: The Archimedean model [29], the classfair lossy, and computing steps are unicast.
partially synchronous models [10], [14], the semi- Malkhi et al. [21], denoted S;.: There must be
synchronous models [7], [26], th©-Model [20], atleast one correct process with links that eventually
[30], the model of [25] and the FAR-Model [15]. permit a bounded-delay round-trip with at legst

Another recent branch of this research is theeighbors f-accessibility), at any time. The set
chase [1], [4]-[6], [21], [22] for the weakest systenaf neighbors may change over time (i.e., may be

moving [27], [28]). All links must be reliable and
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message may be sent to all processes in a single

A short presentation of the main results of this paper appeared’%s )
Brief Announcement in [18] computing step (broadcast steps).
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Note that() with stability properties can be built have timely outgoing links with an unknown

in S, and inS;; for certain values off. delay bound to a moving set of receivers
An orthogonal approach looks at the weakest fail- at any time. We also provide a simpke
ure detector abstraction to uphdidand consensus. implementation foiS;;, which hence allows to

Limited scope FDs [6], [11], [17], [22]-[24], [31] implement() in St~ andSy.” as well.
require only f processes other than the leader t(2) We prove a lower bound, which shows that
uphold the accuracy requisite. Although not con- Q(nf) links must carry messages forever in any

cerned with implementation, it is clear that an correct() implementation forS;;.
accurate FD requires that at least one correct procg3% We also give a communication-optim@al im-
must haver eventually timely outgoing links with plementation foiS;; (for reliable links), where
unknown delay bound. Hence, these abstractions O(nf) links carry messages forever.
requireS;” as well. (4) We show that the above communication-
We can summarize the differences between the optimal 2 implementation forS;, lets only
existing models as follows: n — 1 links carry messages forever in the
Name\ <>time|y\ pattern\ link ‘ steps case__where the>movmg-f—source eventually
= = . stabilizes to a non-moving(n — 1)-source, as
L, | n—1 — bidir. | unicast in [1]
~. | n—1 — outgoing| unicast ' o
Sy f fixed | outgoing| unicast (5) We shoyv thatr — 1 Im_ks must carry messages
- . S forever in any sucl) implementation.
Sp f moving | bidir. bcast

In the sequel, letd C B denote the fact that
model B is weaker than modeM w.r.t. inclusion IIl. SYSTEM MODEL ¢
of sets of executions, such that every corréct Since the modelsS;” and S;; are “structurally
implementation for modeB also works correctly in different”, in the sense that they use different basic
A. We obviously haveS;”, C §;7, € §;°. W.rt. computing steps, there is no single model that is
link synchrony,S; is also weaker than any &f,”,, weaker than bothS;” and S;; at the same time,
..1and S;*. However, S; requires bidirectional in the sense of inclusion of sets of executions.
links and uses more powerful computing stepblowever, every algorithm that works in a unicast
hence is stronger than any 6", S, ,and S;”. model also works in a broadcast model (with minor
As a consequenceS;; and the latter models arechanges). Moreover, in the unicast model, it is
incomparable. usually possible to simulate broadcast steps via
From the above relations, it follows th&y; and multiple unicast steps. Hence, we will start out from
S;~ are currently the weakest system models far model with broadcast steps and derive a model
implementing ) and hence consensus. One mayith unicast steps from it.
wonder, however, whether a system that is like More specifically, the algorithms, correctness
S;, except that the timely links of thef-source proofs and lower bound results developed in this
may be moving like inS;;, is strong enough for paper will be based upon a system ma8gl, which
this problem? Stated in the terminology of;: assumes broadcast steps, at least emeving-/-
Whether it is sufficient for thef links that ensure source, and reliable links (see Section 1I-C for
o f-accessibility to be timely only in the outgoingdetails). In order to prove our claim th&t can be
direction? This paper answers the above questionitnplemented in models that are weaker titgnand
the affirmative. S}., we will show that algorithms designed for;;
can be transformed to work also in two additional
, Lo modelsSy,” 2 Sy and 8§, 2 S;;. The model
Detailed contributions: Sy (see Section II-B) assumes unicast steps and
(1) We define a system mod&i;;, which can is weaker thars;”, WhereasSJ’Z: (see Section II-A)
be simulated in two model§]’z*—’ and Sy~ assumes broadcast steps and is weaker
that are weaker thai;; andS;”, respectively.  Using the notation that modéd$ is weaker than
All those models require at least one correct w.rt. simulation @ C, B) when there is a
process that is amoving-f-source: It must simulation that allows an algorithm fot to be run
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in B, we will hence show thatS;” O, S;; and all ¢ > ¢, p is a movingj-source. It is called a
St D, S;.. Although of courseSy.” 2 S, and perpetual moving~sourceif this holds fort’ > 0.
St 2 Sy wirt. setinclusion, it is nevertheless true In S7.°, we require that there is at least one
that any of our algorithms fosS;; in conjunction omoving-f-source. Note that iy is unknown and
with the appropriate simulation leads to a correthe links are reliable, then amoving-j-source is
implementation of? in S, resp.S%. Moreover, also a movingj-source (with some different) for

all lower bound results foiS;; developed in this all £ > 0.

paper carry over t&},” and S}, as well. Since acj-accessible process [21] hasmoving
All'our models assume a fully-connected networksidirectional timely links, it follows immediately:

of n processesl, f of which may fail by crashing.  Corollary 1: A ¢j-accessible process is also a
Let C C II be the set of correct processes, i.@moving-j-source.

processes that never fail. Every process executes

an algorithm consisting of atomic computing stepg  Unicast modelS:—
Like in [5], [14], we assume that processes areI i i d at i
partially synchronous, in the sense that every non- N Every step, a process may send at most one
crashed process takes at least one step @vetgps message to some other process in the system. If not

of the fastest process. The speed ratio bo®nis Sp\?\zflggsatmhgrmzf,e\lllgfs rﬁ;esézlrf:gt [S]' 4 Drocess
unknown to the algorithm. To make our models as y g yap

: , “— belongs to exactly one message class. A
weak as possible, we do not assume real-time cIoéRsSf* 9 y g

as in [5f, but rather adopt the convention from [14;fnessage clasd, is said to be ofbroadcast type

that real-time is measured in multiples of the step Intoexgry_ei(eceuetlron%,cg ssszgdif] :'[Irlicrtn?;usr?gf)bin
of the fastest process. In particular, the (unknown)” " peerp )
delay bounds is such that the fastest—and hencd der. For example, the sequence of receivers of all

any—process can take at mostteps while a timely segf[j rﬁg;pzq?p Z;n g V\;)he;e Z messpag](j ”2417 IS
" 253y -3y Py P2, M3y - -~y Py P2, M3 -+

message is in transit. Hence, we can use simple st\%ﬁl B
counting for timing out messages. ere{py, ..., pn} = II—{p}. Thek-th occurrence
of a group of ofn — 1 consecutive sends (to all its

peer processes) in such a sequence is calked-
A. Broadcast mode$},” th u-broadcast of\1,,, and it is said to occur at the

In every step, a process may broadcast at mdsgae t when the first of its send steps occurs.
one message to every other process in the systenPefinition 4: In S¢.~, a procesgp is a moving-
If not specified otherwise, links are fair lossy [5]. j-source at timef if no more thann — j — 1 of
Definition 1: In the broadcast model, we say thdhe n — 1 messages sent in a single u-broadcast at
a unidirectional link(p, ¢) is timely at timet if no time ¢ are received after time + 6. We then say
message broadcast hyat time ¢ is received ay that the at leasf other messages atinely at time
after timet -+ 6. t. No assumption is made about the timeliness of
Note that a timely link/message does not requifée€ssages that are not u-broadcast.
the receiver to be correct; if the receiver is faulty, In Sf,”, we require that there is at least one
then it is vacuously considered timely. Also, whefmoving-f-source according to Definition 3 (with
no message is sent at time the link/message is ‘Mmoving-j-source” defined according to Defini-
considered timely at time. tion 4). The model is hence such that it has purely
Definition 2: In the broadcast model, a process asynchronous links, except for messages which are
is amovings-source at timet if there existj other U-broadcast by themoving-f-source after stabiliza-
processeg such that the linkgp, ¢) are timely at tion time: Any such message finds at legisimely
t. links, which may be different for different messages.
Definition 3: A processp is a omovings-source Of course, nothing prevents an algorithm from not

if it is correct and there is a time such that, for U-broadcasting any messagedfi,”, but then there
are only purely asynchronous links.

It it is easy to build our algorithms and proofs on real-time . . . .
clocks as well. However, since the source has to be at least partialSInCe aoj-source [5] han fixed links that are

synchronous anyway, this would be a stronger assumption. eventually always timely, it follows immediately:
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Corollary 2: A ¢j-source is also amoving-- to all peer processes causes every message class

source. to be of broadcast type i5,”. Consequently, by
Putting everything together, we have: Definition 4, at most: — f — 1 of then — 1 unicast
Corollary 3: §;7 C §” andS;; C S, messages sent in any send-to-all may be received

later than¢ time after the first unicast send. Due
- to our partially synchronous processes, performing
C. The broadcast model;; n—1 consecutive send steps takes at mast 2)®
The model S7;

; 7+ Which will be used for our time in S¥~, thusy’ = 6 + (n — 2)® is a bound on
algorithms and lower bounds, is identical to thghe delay of timely messages 8. n

broadcast mode§?,”, except that it assumes reliable Remark. One can argue that, in practice, the

links. Hence, Definitions 1-3 apply also &.. To retransmission of messages could compromise the
disambiguate betwees);; andS?,”, we will use the timeliness, due to the potentially linear-growing
term send-to-allto denote a broadcast ;. message size caused by the piggybacking mecha-
We will now sketch howS;; can be simulated in pjsm.,
S, and in S, First, send-to-all is mapped to a Fortunately, with our algorithms, this can be
true broadcast step in the broadcast model, andai@ided due to the fact that only some of the
n — 1 consecutive sends to all peer processes in f@ssages, namely, theLAE messages (cf. e.g.
unicast model. Moreover, send-to-all involves a prexigorithm 1, Section Ill), need to be timely, but
tocol for reliable communication atop of fair lossyiot reliable (in case they are not timely), whereas
links. There are advanced techniques like [8] or [l the other messages never need to be timely, but
that could be adopted here, but even a simple pigtways reliable. Thus, the piggybacking mechanism
gyback and acknowledgment protocol suffices: Ameeds to be employed only for messages that are
message fromp that has not been acknowledged byiot ALIVE messages. On the other handi.1¥e
receiverq is piggybacked upon the next messagesessages can just be sent as unreliable datagrams,
sent tog in ¥, (resp. broadcast i§},”), so that it preferably out-of-band, i.e., with priority over or-
is retransmitted until an acknowledgment messagmary messages, such that even a large number
has been received. Acknowledgment messages @femessages in the buffers does not affect the
also piggybacked upon the messages sent (reg@nsmission time of AIVE messages.
broadcast) by, and hence retransmitted uniitloes  We decided not to incorporate this differentia-
no longer piggyback the message. It is obvious thgdn of messages in our system model, since we
this protocol implements reliable communicatioare primarily concerned about solvability issues in
between any pair of correct processes. Note thathis paper. To improve readability, we hence just
message that was lost will not become timely by thigssumed thas;; provides reliable links. It should

simulation. But, for messages that are timely, thse quite straightforward to extend our results when
simulation preserves the timeliness of the messageeded, however.

Lemma 1:With our simulations, asmoving-f-
source inSp.” resp. inSh is also aomoving-f- IIl. € IMPLEMENTATION IN S}
source inS;,. Its delay bound is)’ = ¢ for the
simulation inS%”, and§’ = § + (n — 2)® for the
simulation inS}.”.

Proof: We can restrict our attention to timelyth
messages, since non-timely messages are not ]%ﬁb

versely affected by retransmissions. Timely mes- wing holds:
y y N : y Eventual LeadershipThere is a time after which
sages are never lost by definition, however, so n

AR M the correct processes always trust the same
retransmission is actually necessary here.

For the simulation in the broadcast mo@lj, a correct process. Formally,
timely message inS},” obviously remains timely I, IHeCNpel,Vt'>t: H(p,t') =1
(with &' = 6) in S;;. For the simulation in the In this section, we introduce and analyze a simple
unicast mode&S;.”, the implementation of send-to-implementation of in S;;, given as Algorithm 1.
all asn — 1 unicast sends of the same messadfeis well-suited for explaining the principle of

We consider the definition of the failure detec-
tor as introduced in [9]:

Definition 5: A failure detector is of clas$) if
failure detector outpufi(p,t) € II and the
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operation, but suffers from ever increasing timeouts. Informally, the correctness of Algorithm 1 fol-

In Section V, we also provide an algorithm wherows from the following reasoning: At the time

the timeout values stabilize for all links that ar¢he omoving-f-source becomes a movingsource,

eventually timely. at least f outgoing links of the source» carry
The algorithm works as follows: Every procesimely messages at any time. Thus, eventually, it

p periodically sends-to-all AVE messages everyis impossible that the quorum of — f SUSPECT

n steps (line 8). These messages are equipped witessages is reached fofor any sequence number.

a monotonically increasing sequence numkey,. Note that this even holds true if some of thémely

The receiver task (Task 2) of proceswaits for and receiver processes have crashed. Consequently, all

collects ALIVE messages with a sequence numbprocesses stop increasing the counter for process

equal to the current receiver sequence numbey,. p, whereas the counter of every crashed sender

A timer with a timeout ofA, steps is used for termi-process keeps increasing forever since every re-

nating the wait; bothrseq, and A, are incremented ceiver obviously experiences a timeout here. Since

when the timer expires (line 20). Note that this timeghe counter values are continuously exchanged via

can be implemented via step counting, since vilee content of the AlVE messages, eventually all

assume partially synchronous processes. Althougtocesses reach agreement upon all counters that

processes are not synchronized, i.e., there is Imave stopped increasing. Hence, locally electing the

a priori correlation between the time any proceggocess with minimal counter indeed leads to a

sends an AIVE message with a certain sequenasorrect implementation of.

number and any receiver’s timeout for that sequenceThe detailed proof of correctness below follows

number, using an ever increasidg will allow ¢ to the proof in [5]:

eventually get every timely AVE message fromp Lemma 2:For every processesp and g,

before the timeout (we will call thismely received counter,[q] as well as the timeoutA, are

in the sequel). monotonically nondecreasing.
Every receiver procesg maintains an array Proof: Clear from the wayounter,[q] andA,
counter,[p], which essentially contains the numbeare updated. u

of suspicions of sendey encountered a§ so far: Lemma 3:If p is correct andg is faulty, then
The sender is suspected at if ¢ is notified of countery[q] is unbounded.
the fact that at least — f receivers experienced Proof: If ¢ is faulty, then eventually it
a timeout for the same sequence numbefThis stops sendindALIVE, p, seq,, c) messages. There-
notification is done via 8sPECT messages, whichfore there is a sequence numbeisuch that for all
are sent-to-all (line 18) by any receiver process theit> s, every correct process, reported,[q][s'] is
experienced a timeout for sendgrwith sequence never set totrue in line 13, and thug' sends a
number s. For the latter,¢ maintains a binary (SUSPECT ¢, p’, s’) to all processes (line 18). Since
arrayreported,[p][rseq], which records whether anthere are at least — f correct processes, it follows
ALIVE message fromp has been received by thghat p incrementscounter,[q|, and since there are
timeout for sequence numbeseg, or not. infinitely many s’, this happens infinitely often.m
The receivey; increasesounter,|p] if it receives  The following Lemma 4 shows that, irrespectively
at leastn — f of such SysPECT messages for of how far sender and receiver have been out of sync
p with sequence numbey (line 25). In addition, initially, a correct receiver eventually gets all timely
counter,[p] is increased if a larger counter valuenessages with a certain sequence number before it
for processp is observed in any AIVE message timeouts this sequence number.
(line 15). Note thaicounter,[p] may be raised by ~Lemma 4:Let o} denote the time wherg sends
more thanl here. The process = ¢ with minimal (ALIVE,p, k, ) andp’; be the time where timeouts
counter value imounter,[p] (or the minimal process messagek, i.e., increments the receiver sequence
id in case of several such entries) is elected/as numberrseq, from k to k + 1. Theno} — p} is
leader (line 11). The arrayuspect,[p][s] is used strictly monotonically decreasing, without bound,
to store the set of processes from which suspdmm somek > k, on.
messages for sendgrand sequence numbethave Proof: Forallk > 0, of < o}~'+®n, whereas
been received so far (line 24). Pk > pk=14n+k. Now, for anyk, ok —pt < (o= +
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Algorithm 1 Implementation of2 in S;;, code for procesg

Variables

1: Vg € II: counter,lg] € N, initially 0

2: Vg e I Vs € N suspect,[q][s] C I, initially

3: Vg € 1 Vs € N: reported,[q][s] € {true, false}, initially false
4: seq,, rseq, € N, initially 0

5: A,, initially n

Initially
6: start Tasks 1,2
7: starttimer with A,

Task 1

8: every n stepsdo

9:  send(ALIVE,p, seq,,, counter,) to all ¢ € II
101 seq, < seq, +1

11:  leader, < g, where(counter,|q], ¢) iS minimal

Task 2

12: upon receive(ALIVE, ¢, s,c¢) do

13:  reported,[q][s] < true

14: forall r €Il do

15: counter,[r] <« max{countery[r], c[r]|}

16: upon expiration oftimer do

17:  for all q, wherereported,[q][rseq,] = false do

18: send(SUSPECT, ¢, p, rseq,,) to all r € II (including p itself)
19: reported,,[q][rseq,] « true

20: rseq, < rseq, + 1

21 A, —Ap,+1

22:  settimer to A,

23: upon receive(SUSPECT, ¢, r, s) do

24:  suspect,[q][s] < suspect,[q][s] U {r}
25: if |suspect,[q][s]] > n — f then

26: counter,[q] < countery[q] + 1

) — (P +n+k) =oF = pFt 4 (@ —1)n—k. received timely atr,, for infinitely many s. Since
Expanding this yieldsrs — pf < 60 — % + k(@ — there are only finitely many processes in the system,
1)n — k(k + 1)/2, which proves the lemma. ® there must be at least one correct procesthat
occurs infinitely often among the processgsThis
process must hence infinitely often time out a timely
message. This is impossible because of Lemma 4,

Proof. By way of contradiction, assume thahowever, which shows that there is somensuring
counter,[p] is unbounded. Then there is at leasty’ > . : o' 4 5 < pV'. -
p q

one process, where line 25 is true infinitely often
for p, which requiresn — f (SUSPECT, p, %, s) for
infinitely many s. Sincep is a omoving-f-source,
there is a sequence numbegt so that for every
s > ¢, there is a set)(t;) of at leastf processes
that receive(ALIVE, p, s,c) by time § after it was
sent at timet,. Sincep never suspects itself, there Proof: Letxz = counter;[q]. If z=0o0rp=
must be at least one process € ((t;) that r then the result follows from Lemma 2, and so
sends(SUSPECT, p, *, s) in order to reach the — f assumer > 0 andp # r. After p setscounter,[q| =
quorum, despite of the fact théALIVE, p, s, *) was z, it sends infinitely many AIVE messages to all

Lemma 5:1f p is a correctemoving-f-source
then, for every procesg counter,[p| is bounded.

Lemma 6:Let counter;[q] denote the value of
counter,[q| at procesgp at timet. If p andq are
correct processes then, for every timand every
correct process, there exists a time after which
counter,[q] > counter![q].



submitted tolEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

other processes. By Lemma 2, the valuecgf in  we restrict our attention te > f -1 in this section,
these messages is at leasSince links are fair lossy since a movingf-source and ary-source are the
(even reliable), processeventually receives at leassame in case oh = f + 1. After all, moving is
one of these messages, and setsnter,[q] t0 a meaningless if there are onlfy outgoing links.
value that is at least if counter,[q] has a smaller In the sequel, we consider rur® of a correct
value. Afterwards, from Lemma 2punter,[q] > z. Q implementation in such a system. Any such run
B consists of an infinite number of steps, which can
Lemma 7:1f p is correct and there is a timeeither be a computing or a receive step of some

after which counter,lqg] = « forever, then, for process. A receive step just models the arrival of a
every correct process there is a time after whichmessage at the receiver; we assume that processing
counter,[q] = x. of the received message occurs in the next comput-
Proof. Follows immediately from Lemma 6,ing step. The delay bound for timely messages
since bothp andr are correct. B according to Definition 1 refers to the time interval
Theorem 1:Algorithm 1 implements? in system from the sendep’s computing step (at timg) until
Sr the receiver’s receive step (at timg). Note that if

Proof: By Lemmas 2, 5 and 3, and the fact thaa computing step (typically triggered by a timeout
there exists a correetmoving-f-source, it follows in our algorithms) at processoccurs at some time
that for every correct procegsthere is a time after ¢, > > + ¢, then one can be sure that the message
which leader, is correct and stops changing. Byas (already) been processed by titpe
Lemma 7, for every correct processeandq, there  An admissible runR is a run where every process

is a time after whicheader, = leader,. B except the at mosf faulty ones performs infinitely
Hence,S;; allows to implement2. On the other many steps inR, and where all messages sent to
hand, from Theorem 16 in [5], we know: correct processes are eventually received. Finally,
Theorem 2: [5] There is nof2 implementation a feasible rundenotes an admissible ruR of a
in §;7, wherej < f. correct() implementation in a system with certain
Together with Corollary 2, we thus have: properties—like the one that at least one process
Corollary 4: There is no{) implementation in is a emoving-f-source, or that every process is a
S;., wherej < f. moving-f-source, depending upon the context. In a
feasible runki, the eventually elected leader will be
IV. COMMUNICATION COMPLEXITY denoted’(R), and the simple directed graph induced

In this section we consider message complexity the Se.t of links that eventgally carry messages
in the following sense: Obviously, Algorithm qforever will be called theeffective communication

continuously sends AVE messages over all links 9@PN Ge(£?). We are interested in the worst-case

In terms of the communication complexity measw’éumb(:"r of links inG.(1) over all feasible execu-
introduced by Larrea et. al. in [19], namely, countin[ﬁonS R.

the worst-case number of communication channels!t 'S Important to note that a restricted effective

that are used infinitely often throughout some exgommunication graph(. (&) # fully connected
cution run, the algorithm has complexiy(n2). graph) reduces the number of timely messages re-
’ ceived from a movingf-source: The links carrying

timely messages at some tinteand the links in

A. Lower bounds G.(R) may be different. Since an unused link is

Aguilera et al. [5] provided a variant of theiralso counted as timely in our setting, only the links
algorithm, where under the additional assumption the intersection of those sets need to deliver
of reliable links, onlyf links are required to carrytimely messages to their receivers. Note that this is
messages forever in some execution. In contrastrtot an artificial assumption, but rather the faithful
this, we show that no such implementation existeodeling of the fact that delays are under the con-
if we have only a movingt-source. Our (much trol of the system adversary, whereas the effective
higher) lower bound obviously also applies to theommunication graph is under the control of the
case where we have only amoving-f-source, algorithm.
which is weaker than a moving-source. Note that As our main lower bound results, we will prove
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that the effective communication graph(R) must dependent interest, since they reveal an interesting

contain (1)n — 1 outgoing links from the eventualadditional stabilization property of infinite runs of

leader, and (2) a total dR(nf) links in some run correct (2 implementations inS;;: For example,

R. Comparison with [5] hence reveals an interestiigemma 8 assures that, starting from any finite prefix

trade-off between weaker synchrony assumptiois there is a finite extensiom; after which the

and communication efficiency. The intuition behindystem has stabilized, in the sense that the leader

these lower bounds is that at least- f processes does not change anymore. Of course, events that

must suspect a moving-source before it can actu-happen within finite time, like process crashes and

ally be considered faulty (and hence demoted in caalé omoving-f-source status changes, have already

it is the leader). Otherwise, a process’s suspici@ecurred within R, due to the stability assump-

may just be a consequence of currently not beingtion discussed before. The surprising fact, however,

the moving set of timely receivers. However, sinds that the stabilization of the leader happens in

the set of processes that receives timely messagessence of events like moving pattern and timing

may change forever, processes have to continuoushanges, which occur infinitely often, hence also

inform all other processes about their suspiciomrdter R,.

regarding the current leader. For the eventual leaderLemma 8: For any prefixP of any feasible initial

this implies the need to send to all its— 1 peer run, there is a feasible finite extensidh of P with

processes. Moreover, exchanging suspicions amdhg property that any twa;-similar runsR and R’

all processes in arf-resilient way require$2(nf) provide the same eventual leadgR’) = ¢(R).

links to be used forever. Proof: Suppose, by way of contradiction, that
For our formal proof, we need a notation that . : ,

allows us to relate run®? and R’ to each other  Vinite feasible extension&, of P

that eventually differ only in the moving pattern and JR;-similar runsk and R’ with ((R') # ((R),

\(/:v?lznk;ne ujrlljlgf :Ir?en nienliyesr' (;Os,z ?Sp!gyanrztr?t'rloer]ré_t'_lmﬁwhich obviously implie_s (we drop attributes like

- i € Mbeasible” here for conciseness)

finite prefix R; of a run R = (sq, $2,...) up to time

t is hence justR; = (si,$2,... ;). The extension  VR,of P:VR = R,E; : IR,-similar R’ = R, E;

of a prefix R; leading to runR is the suffix £, = with 2(R" < ¢(R 1
R\ Ry = (841, St42,--.), and a finite extension of (’) # {(R). 1)
R, is a prefix of someF;. This assumption will allow us to prove the exis-

Definition 6: In a system with at least onetence of a feasible rui® where the leader changes
omoving-f-source, an extensiofl; of some given infinitely often, which contradicts the properties of
prefix R; is calledfeasibleif R = R,E; is a feasible (2. Hence, there must indeed be some finite prefix
run, and it is calledstable iff no further process R; such that any?,-similar run R’ provides(/(R’) =
crashes and status changes of ampving-f-source ¢(R) as asserted.
occur in the feasible extensiab;. Any two stable  We find it instructive to introduce the essence of
extensiongs; and E; of the same prefixz;, as well our proof by an inductive construction of a sequence
as the runskR = R,E, and R’ = R,E’, are called of prefixes R, £ > 1, of feasible runs, such that
R;-similar, or just similar if R, is clear from the R, is a proper prefix ofR;,,; and the leader has
context. changed. In the limit, this leads to a feasible run

Note carefully that, when considering;-similar R = lim;_., R, where the leader changes infinitely
runs R and R/, we always assume that botR often. Since we are dealing with infinftexecutions,
and R are stable, i.e., that all crashes have alreallgwever, we will employ Knig's infinity lemma
occured inR; and that everymoving-f-source has [12, Lemma 8.1.2] to establish the existencefbf
already become a perpetual movifigsource inE;. For the induction basi¢ = 1, let R; be some
Given that those events must of course occur withimefix of length at leastP| of the initial feasible
finite time, assuming stability in this respect is not
a restriction. 2Induction provides assertions for finite executions only, which is

The followi t | inst tal i not sufficient here. In fact, a finite sequence of such prefixes could
€ 1ollowing two lemmas are instrumenta Ir.%ﬂways be constructed by crashing the eventual leader or changing

our lower bound proofs. Actually, they are of inthe status of processes w.r.t. being a movjageurce or not.
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run where some leadé; has already been elected12, Lemma 8.1.2], which asserts an infinite path—

by all processes. Clearly; is prefix of R;. and hence a corresponding infinite feasible R
For the induction step, assume that we haue the tree:

already constructed the prefi®, of some feasible Konig's infinity lemma [12, Lemma 8.1.2]:et

run R, where the leadef, has been chosen. By (1) Vo, V1,... be an infinite sequence of disjoint non-

there is anR,-similar (and hence feasible) ruR’ empty finite sets, and let; be a graph on their

where some different leadéfR’) # ¢, is chosen. union. Assume that every vertexin a setV;, with

Let R,,, be a prefix of " with |R,., \ Rx] > n > 1 has a neighbourf(v) in V,,_;. Then G

1, to guarantedim, .., |Ry| = oo, where som& contains a ray (and infinite path),,v;,... with

new leader/,,., has already been chosen. Since, €V, for all n.

((R) # ((R), such a prefixR;; must of course Since the leader changes with evéralong that

exist. Obviously,R,, is a proper prefix of?,,.; and path, it changes infinitely often i&.

the leader has changed. [ |
For the rigorous proof, based upondig's  Bear in mind that?, guaranteed by Lemma 8

infinity lemma, we define an infinite sequencts such that all process crashes andoatioving-f-

of non-empty finite setsl;,V;,... as follows: source status changes must have occurred already

Consider some arbitrary feasible ruR and let in R;. Remember also that it is not necessarily the

(01 (R), 5(R),...) with ¢,_1(R) # (,(R) for any case that all messages senfinare received within

k > 1 be the sequence of different subsequefi-

unique leaders chosen i For/;.(R), for example,  \wjith a similar proof as for Lemma 8, we can

this means that there is some prefif of R at ghow the following stabilization property w.r.t. ef-
the end of which all correct processes agree on g ive communication graphs:

leader,(1). Moreover, we definéy(R) = L for | emma 9:For any prefix P of some feasible

every 1. _ initial run, there is a feasible finite extensié of P
The setsl, are defined as follows: and a feasible rul = R, E,, with the property that
any R;-similar run R’ providesG.(R') C G.(R).
Vo = {1} Proof: Suppose, by way of contradiction, that

Vi = {(t,...,4)|3 feasible runR

‘ vVfeasible R : VprefixesR; : 3R;-similar run R’/
whereVl <i <k: ¢, =/{,(R)}

with G.(R') € G.(R). )

Because of (1), it follows thafV,| > 1 for every |f we denote by, = |J,, G.(R') the union of the
k > 0, and since there are at mostprocesses, effective communication graphs of al,-similar
Vi < nP < cc. runs R’ of R (including R), which is the graph
Moreover, there is a natural tree connecting th®ntaining the links of allG.(R'), this condition
elements of neighboring set§_,, V;: There is an implies
edge(vg_1, vy) for vx_y € Vi1 anduy, € Vj iff v, = _ _
(ve_1,¢) for some procesé. Any element inV; is Vfeasible runsR : VprefixesR, : U, € G.(R). (3)
connected by an edge to the single element Vo.  \we will now derive a contradiction: Our assump-
Note that the existence of an edge implies that thefg, will allow us to inductively construct an infinite
is a feasible runi where ((,(R), ..., 6x-1(R)) = gequence of prefixe®,, k > 1, of feasible runs
(Grsoslya) = v @nd (G(R), ..., 6x(R)) = \yhere, from some finite indek’ on, all setsl; =
(4, = L) = Uk where/(;._, # £, for anyk > 1. Ur,, k > k', are the same and all links in this set
It is obvious from our construction that everyye ysed infinitely often. Hence, for any feasible run
element inV}, has an edge to gxact!y one element iRith prefix Ry, in particular, for? = limy,_., Ry,
Vi—1. We can hence apply ¢6ig’s infinity lemma. )| those links must be contained @.(R), which
contradictsUy € G.(R) in (3).
e oty o, e o e vty For the nducion basié — 1, we choose -
’ , Which is a prefix of the initial feasible run. For

all messages (including all slow ones) to be received. By allowi ’ )
i1 # L(R'), this is not required here. the induction step, we assume that the prefix
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of some feasible run has already been constructedFormally, the set¥), are hence defined as follows:
To obtain R, ., we extendR;, by some prefix of

length> 1, to guaranteéimy, ., |Rx| = oo, of some Vo = (L)}

Ry-similar (and hence feasible) run R’ specified ifi = {5k|3 extensionE

detail below. Obviously,R; is a proper prefix of wherel,(E) —1=i—1 mod u
Ry41, hence either (@f/y, C Uy or (b) Uyss = for 1 <i<kandi<n(i)<nm(i+1)}U

Uy: After all, the resulting set ofz; ;-similar runs

is just the set ofR,-similar runs without all runs {(Sk-1, L)[3 extensionE with [L(E)| > k

Y, that have prefixi;, but not R, ;. Consequently, wherel;;)(E) —1=i—1 modu
Uk+1 is just Uy, without G.(Y') for all Y € Y. for1<i<k—1andi<n(i)<nm(i+1)
Since there are only finitely many different ef- but not for: = £}

fective communication graphs that could be dropp
via case (a), there must be some finite indéxzuch
that U, = U,y = U for all £ > £/, which leaves
us with (b) as the only interesting case. For eve
link (p,q) € Uy, there is someR-similar run R’
with (p,q) € G.(R') by the definition ofU,. To

%ﬂearly, |Vi| < 2 < co. Moreover, as explained in
the inductive construction above, we can guarantee
that S, € Vi and henceVj| > 1 for everyk. As in
Bemma 8, there is again a natural tree connecting
the elements of neighboring seig_;,V,: Both

.elementsS, € V. and (Sx_1, L) € V;, if present,
constructR;,;, we choose a non-zero length pref'ﬁave an edge to the elemefit , € Vi_,. We can

of B, = R'\ R; such that at least one MeSSa%fence apply Knig's infinity lemma [12, Lemma
Is sent along(p, ¢) in L. The particular exten3|on8 1.2], which asserts an infinite path in the tree
E), used is such that all links i/ are visited in _ "~ : P :
round-robin order fork — k' K + 1 and hence the e_mstencp of a feasible extenﬁien
’ T and thus a feasible ruR = R, E—where all links
We use Knig's infinity lemma to assert thein U are used infinitely often. It hence follows by
existence of a limiting run? = limy_... R,. More the definition of the effective communication graph
specifically, we will start out from the prefik, G.(R) of run R thatU = U, C G.(R) for any
established above, i.e., restrict our attentiom?je- £ > k'. Since everyR; is of course a prefix of
similar runs that satisfy/, = U = {1,...,u} for R, this contradicts (3), however. Hence, there must
all £k > k'. We classify those runs into selg, indeed be some finite prefiX, = R;, and some run
according to the sequence of chosen communicati@nsuch that anyR;-similar extensionk’ provides
links € U. G.(R') C G.(R) as asserted. u
Consider some arbitrary feasible extensiBrof Using Lemma 8 and 9, we can now prove that
the eventual leader must have all- 1 outgoing

R and let L(E) = (1(E),1(E),...) be the wy fine eventual communication gragh.(R)
sequence of links chosen for sending a message in

: : > in some feasible ruk in S;.. This contrasts with
FE, with broadcast messages resolved in an arbitr prr T
3% lower bound of only outgoing links for system

order. Given an arbitrary but fixed round-robin se5_" . :
quencesS — (1,2,....u,1,2,...) of the links inT/, Sy~ with anof-source [5], and must be considered

: . as the price for moving timely links.

we den_ote bys;. the prefix of the firstt elements Theorem 3:For alln > f +1 > 2, in a system
of S, with Sy = (L). S wi . .

. With reliable links andn processes where up

We classify feasible extensions into séfs ac- to f processes may crash, the eventual leader must

cording to the maximumsS, that appears as ahave alln—1 outgoing links in the eventual effective
(not necessarily consecutive) subsequencg(il). communication graph in some run. This holds even
More specifically,V, will contain the element, if when every process is a perpetual movifigeurce,
there is some feasible extensiéhthe sequence ofandd is known.
chosen linksL(£) of which contains all links inSy, Proof: Given any prefixP of some feasible
in the appropriate order. In addition, if there is &ilure-free run, consider the feasible rut8 and
feasible extensiorEy’ the sequence of chosen linkshe finite prefix R8; guaranteed by Lemma 8. We
of which has length at leagtand containss;,_; but can choose the initial run resp. the prefixin the
not Sy, thenVj, contains the elemertS,_1, L). application of Lemma 9 to be jusk8 resp. RS;.
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Recall that all crashes, if any, must have occurréideorem. It shows that the eventual communication
in R8, already. As a result, we are assured about tgeph G.(R) in some feasible rurk must contain
existence of some feasible ruhand a finite prefix as many as)(nf) links in ;. Again, this sharply
R;, where for everyR,;-similar run R’ not only contrasts with the lower bound of onlfy outgoing
G.(R') C G(R) = G, but alsol(R’) = ((R) = (. links for systemS;~ with anc f-source [5], and must
The latter holds since a ruR’ that is R;-similar is also be considered as the price for moving timely
obviously alsoRS;-similar if R8; is a prefix of R;. links.

Suppose that there is at least one link fréro Theorem 4:For alln > f+1 > 2, in a system
some procesp missing in G.. Consider twoR;- S;; with reliable links andn processes where up
similar runsR! and R?, where in both extensionsto f processes may crash, any implementatiof2 of
(after R;) process/ could send timely over thisrequires at Ieas-’lg—f links to carry messages forever
missing link top (recall that an unused link canin some run. This holds even when every process is
be considered timely), as well as to— 1 other a perpetual moving=source, and is known.
processes. Denote the set of thgse 1 processes Proof: Given any prefixP of some feasible
and/ as A, and letB = II — A with p € B be failure-free run, consider the feasible rut8 and
the remaining set ofi — f > 2 processes. Everythe finite prefix k8, guaranteed by Lemma 8. We
process inB sends timely to allf processes in can choose the initial run resp. the prefixin the
A and arbitrarily to all other processes i, and application of Lemma 9 to be jugt8 resp.R8;. As
every process il sends timely to thef — 1 other a result, we are assured about the existence of some
processes iM. In addition, every process iA also feasible runk and a finite prefixk;, where for every
sends timely to procegsin R!, and to some processR;-similar run R’ not only G.(R') C G.(R) = G,

q € B with ¢ # p in R%. Finally, every process id but also/(R’) = ¢(R) = ¢. The latter holds since
hasn — f — 1 slow outgoing links to the remaininga run R’ that is R;-similar is obviously alsoRS;-
processes it as well, which will experience somesimilar if 8, is a prefix of &,.

large delayA + 1 as explained below. Due to our Letdeg)’ I‘eSp.deg;“t be the in-degree resp. out-
construction, all processes could be a movjfiag-degree of procesg in G.. Assume, by way of
source in both runs. contradiction, that there is at least one procgss

Now consider runsieesh! = Rerash? = Rerash  with deg)" 4 degy™ < f — 1 in G.. Since we know
where all processes id (which include/) crash at already from Theorem 3 thd&thasdeg”™ =n — 1
t, i.e., at the end ofz;. Clearly, a new leader mustin G., we can assume # (. Let X resp. X%
be elected within some extended prefig“s". Note be the sets of processes with links to resp. fram
carefully thatt + A may be such that even all slowFurther letY” be an arbitrary set of processes such
messages from the surviving processesK)nmust that | X" U X°“ UY| = f, /€Y, andp ¢ Y. Let
have arrived, i.e., are required for electing the ne = X" U X°“UY andB =11 — A — {p} # 0.
leader. Processesandg now face a dilemma: If we  Now consider twoR;-similar runs B! and R?,
choose the delay of slow messages sent by processhsre in both extensions (aftét;) process could
€ Ain R' and R? after R, to be A + 1, R{"" is send timely to all processes iA (although only
indistinguishable fronR;, , for ¢. Similarly, R{"%" processes iX°“* C A receive those messages) and
is indistinguishable fronR?, . for p. Thus, ifp resp. processes iM and in B could send timely to all
q demote¥, it behaves illegal w.r.tkR? resp.R'. If processes iM. However, R! and R? differ in that
those processes don't demdtethey behave illegal all processes i could also send timely tp in R!
w.r.t. Rerash, (althoughp receives messages frakf™ C A only),

Hence, the implementation & cannot be cor- whereas ink? all processes i could send timely
rect, such that alh — 1 outgoing links from¢ must to some procesg € B instead. Note that every
indeed be inG, as asserted. After alR;%" would process inA hasn — f — 1 slow outgoing links
no longer be indistinguishable from,, , for ¢ if as well, which will experience some large delay
the link from/ to p really carried a timely messageA + 1 as explained below. By our construction, all
instead of being vacuously timely because the linlcocesses could be a movirfgsource in both runs.
is not used. B However, procesg and all processes iR are totally

Finally, we will provide our major lower boundpartitioned from each other it:. if the processes
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in A were removed. from O(nf) to O(n) some finite time aftet.

Now consider runsReashl = Rerash? — perash Algorithm 2 employs echoing (= rebroadcasting)
where all processes i (which include?) crash of all messages. In order not to complicate the code
at ¢, i.e., at the end ofR;. Clearly, a new leaderfurther with messages counters that disambiguate
must be elected within some extended préfjx’y". DISABLE messages and USPECT messages, we
Note carefully thatt + A may be such that evenassume that the low-level communication preserves
slow messages from must have arrived, i.e., arecausal ordering; addressing this explicitly in the
required for electing the new leader. Procesgesprotocol is not hard, but is omitted for simplicity.
and B now face a dilemma: If we choose th&o ensure that the algorithm matches thénf)
delay of slow messages sent by processesd quiescence lower bound established in Corollary 5,
in R' and R? after R, to be A + 1, R{%" is we also assume that theuSPECT messages (and
indistinguishable fromR;, . for all processes itB. their echoes) are disseminated to all processes via
Similarly, R¢7%" is indistinguishable fronk?, , for flooding over some (fixed)f + 1)-node-connected
p. Thus, if p resp. some process B demotes/ or and (f + 1)-regular overlay topology. The appro-
uses a link outsidé., it behaves illegal w.rtR? priate protocol is also omitted from the code for
resp.R!. If those processes don't demateand/or simplicity.
do not use a link outsidé-., they behave illegal To bring down the communication complexity
w.r.t. Reresh Hence, the implementation 6f cannot from O(n?) to O(nf) resp.O(n), a process should
be correct. Consequently, every correct algoritheend ALIVE messages only when it considers itself
has deg;”+deg;“t > f for every proces®. The the leader. Although a process not considering itself
number of links that carry messages forever is henleader no longer sendsLAVE messages, its counter
Al =35 en deg)' + deg" > % ® should not increase on other processes due to sus-

The following result follows immediately from picions. To this end, each process maintains a new
the fact that Theorem 3 and 4 have been establishExblean status vectenabled, with one bit for each
for a stronger model: other process. The entry for a process enabled

Corollary 5: Forn > f+1 > 2, any implemen- upon receipt of an AIVE with the current or higher
tation of Q in Sy, requires at leasf)(nf) links, counter fromg. The entry becomedisabled(or set
including alln — 1 outgoing links from the eventualto false ) if ¢ explicitly sends a DSABLE message
leader, to carry messages forever in some run. for this counter. With theenabled vector, a process

p sends $SPECT messages only on an enabled
B. Attaining the lower bound process when the corresponding timer expires.

. : The status vector also addresses the following
hThe r:ower bOl.deS establl.sheq S'rl ﬁorolrl]grﬁ Broblem: A processg; that has not been a leader
show that a_nyQ Implementation In5,, has high o 5 \yhije may become leader at some point. The
commun_lcatlon cos_ts. In this sectlo_n, We prese foblem is that different processes may learn that
an angnthm (Algorithm 2) Fhat attains this Ioweq is the new leader at different times. Singeloes
bound, i.e., uses onlp(n ) links forever. not send AIVE messages until it believes itself to

hlntr:/ |ev¥h of S.UCh h'?h (_:t(;]sts,tho?e m;ly wondt e the leader, other processes may start suspecting
whether here 1S an algorithm that Works COMreCty oo pefore the first AVE message goes out.

hn Sﬁ ' ZUt iutortr;]atlcall)t/ redu;:e;l!ts cofmmurtncatlo”] the case of a new leaderas described before,
emand when the system stabilizes frdfy to a the enabled flag for ¢ is false in its current

system with stronger synchrony properties, at SOM8unter until the first Aive message from arrives.

ulnknown tpolw n tlm_e. Intert?sltJlngly, t’i‘llgorgZT 2T erefore, no premature suspicions are generated.
also meets this requirement. Under né additiongy, proceed with a proof of correctness.

condition that links are reliable and that there exists| o2 10:For everyomoving-f-source process
some timet, after which some procegsremains the there exists a bound, such that for allg ¢ I
leader forever and is never suspected by any li ﬁ/vays counter,[p] < b ’
proces$, the communication complexity reduces Proof: Let ¢ be a time after whichp is a

“In other words, we consider runs @fimplementations ir5;,~ ; in moving-f-source. Letcounter,|[p] =¢ at time ¢.
which ano(n — 1)-source (and not only amoving-f-source) exists. Let b, = max e {counter,[p|} at timet. Lett > ¢
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Algorithm 2 Q with reduced communication, code for a procgss

Variables
1: Vg €Il : countery[q] € N, initially 0
2: Vg €Il : enabled,(q] € {true, false}, initially false
3: Vg e I Vs € N: suspect,[q][s] C I, initially
4: Yq eI Vs € N: reported,[q][s] € {true, false}, initially false
5: seq,, rseq, € N, initially 0
6: A, initially n
Initially
7. start Tasks 1,2
8: starttimer with A,
Task 1
9: every n timestepsdo
10:  previeader, < leader,,
11:  leader, < q, where(counter,|q], ¢) is minimal among{q | enabled,[q] = true V ¢ = p}
12:  if leader, = p then
13: send(ALIVE, p, seq,,, counter,) to all ¢ € 11
14. seq, < seq, +1
15:  else if previeader, = p then
16: send(DISABLE, p, counter,[p]) to all ¢ € II
Task 2
17: upon receive(ALIVE, ¢, s, c) do
18:  reported,[q][s] < true
19: forall r €Il do
20: if c[r] > counter,[r] then
21: countery[r] < c[r]
22: enabled,[r] < false
23:  if c[g] = countery[g] then
24: enabled,[q] — true
25: if any change done teounter, or to enabled, then
26: send(ALIVE, g, s,c) to all » € TT /* echo */
27: upon receive(DISABLE, ¢, c) do
28: if ¢ # pthen
29: send(DISABLE, ¢, c) to all r € II /* echo */
30: if counter,lq] < c then
31 counterylq) «— c
32: enabledy|q] — false
33: upon expiration oftimer do
34: for all g, whereenabled,[q] = true and reported,[q|[rseq,] = false do
35: send(SUSPECT, ¢, p, rseq,,) to all r € TI
36: reported,,[q][rseq,] « true
370 rseq, < rseq, +1
38 A, —Ap,+1
39:  settimer to A,
40: upon receive(SUSPECT, ¢, 7, s) do
41: if g # p then
42: send(SUSPECT q,r, s) to all » € II /* echo */
43:  suspect,[q][s] « suspect,[q][s] U {r}
44: i [suspect,lq][s]| > n — f then
45: counter,[q] < counterp[q] + 1
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be the time at which the first echo message witimks, resulting in a total of f +2)(n—1) = O(nf)
counter|p] = b, is delivered byp. Then beforet’, non-quiescent links. [ |
for all ¢ either counter,[p] < b, or enabled,[p] = Theorem 7:In a system where the leader sta-
false. Hence, no suspicions causeunter,[p] to bilizes from a movingf-source to an(n — 1)-
increase beyond,. Since after timet’ there are source, Algorithm 2 uses only—1 communication
no timer expirations at any period by — f pro- channels infinitely often.
cesses, any process that hasnter,[p| = b, and Proof: By Theorem 5, eventually all non-
enabled,[p] = true never increasesounter,[p]. M crashed processes consigeo be the leader. Hence,
Lemma 11:If for some correct procesg at any only process continues sending AVE messages
point counter,[p] = ¢, then eventually for all correctforever. By assumption, eventually there are no
processes it holds thatcounter,[p] > c. Moreover, suspicions of the leader, so n@SPECT messages

if enabled,[p] = true for this counter value atare sent after a certain time in the execution.m
q, then the same holds eventually for all correct Theorem 3 reveals that Algorithm 2 is also opti-
processes. mal in this respect: Since the algorithm cannot know

Proof: This follows immediately from the fact whether a movingt-source has indeed become an
that ALIVE, DISABLE and SJSPECTmessages are(n — 1)-source forever, or just mimics this for some
echoed. m finite time, the leader must always use- 1 links

Lemma 12:If a process; has crashed then eveninfinitely often. Note that this argument is not con-
tually for all correct processesit forever holds that tradicted by the communication-optimal algorithm
enabled,|q] = false. from [5], which uses onlyf links infinitely often,

Proof: Due to Lemma 11, the highest enablesince the latter does not work ;.
counter value forg held by any correct process is
eventually held by all. Since crashes, after one V. Q2 IMPLEMENTATION IN 87 WITH
more timer expiration, there ane — f suspicions EVENTUALLY STABILIZING TIMEOUTS
with this counter value for sure. Therefore, even- Algorithms 1 and 2 suffer from ever increasing
tually all processes have the same, highest countiereouts. In this section, we provide an implemen-
value, which is never enabled singehas crashed. tation of 2 where the timeout values eventually

B stabilize for timely links. The key idea is to use
Theorem 5:Algorithm 2 maintains. the counter,|q| variable as the timeout value for

Proof: By Lemma 10 and Lemma 12, thereanessages fromy. This works, sincecounter,|q]
exists a non-crashed procegswhose counter is increases until at leagt messages from @amoving-
bounded and forever has the minimal value amorfgsourceq are timely with respect teounter,,[q|—
all bounded counters. By Lemma 11, eventually exactly what we need for an adaptive timeout value.
knows that all other counters are either higher thanThe proof of correctness is similar to the proof
its own, or are disabled. Thereforg,enables this of the simple algorithm in Section III.
counter. Therefore, every other correct procgss Lemma 13:If p is correct andg is faulty then
eventually hasenabled,[p] = true and counter,[p] counterylq] is unbounded.
fixed. Furthermore, like, ¢ also eventually has all Proof: If ¢ is faulty then eventually it
other counter values higher thars or disabled. stops sendingALIVE, p, seq,c) messages. There-
Hence,p is the leader. m fore there is a sequence numbersuch that for

Theorem 6:Eventually, Algorithm 2 uses onlyall s’ > s, every correct process, reported,[q][s']
O(nf) communication channels infinitely often. is never settrue in line 12, and thug’ sends a

Proof: By Theorem 5, eventually all non-(SUSPECTq,p’,s’) to all processes (line 17). Since
crashed processes consigéo be the leader. Hence there are at least — f correct processes, it follows
only processg continues sending AVE messages that p incrementscounter,|q], and since there are
on n — 1 links forever. All SUsPECT messages infinitely many s, this happens infinitely often.m
are exchanged via thgf + 1)-node-connected and Lemma 14:Let of denotes the time wherg
(f + 1)-regular overlay. Thus, in the effective comsends(ALIVE, p, k,*) and p’; be the time where
munication graph, every process h@as 1 outgoing ¢ timeouts this message, i.e., increments the re-
links, except the leader, which has— 1 outgoing ceiver sequence numbeseg, from £ to k + 1. If
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Algorithm 3 Q Implementation with eventually stabilizing timeouts, code for a progess
Variables

1: Vg € I1: counter,[q] € N, initially 7

2: Vg eIl Vs € N: suspect,[q][s] C I, initially (

3: Vg el Vs € N: reported,[q][s] € {true,false}, initially false

4: seq,, rseq, € N, initially 0

Initially
5: start Tasks 1,2
6: Vg € II : starttimer(g) with countery|q]

Task 1
7: every n timestepsdo
8:  send(ALIVE,p, seq,,, counter,) to all g € II
9: seq, < seq, +1
10:  leader, «— g, where(counter,|q],¢) is minimal

Task 2

11: upon receive(ALIVE, ¢, s, c) do

12: reported,[q][s] + true

13: forall r €Il do

14: counter,[r] «— max{countery[r], c[r|}

15: upon expiration oftimer(q) do

16:  for all g, wherereported,[q][rseq,] = false do
17: send(SUSPECT, g, p, 7seq,,) to all r € TI

18: reported,,[q][rseq,]| < true

190 rseq, <« rseq, +1

20:  settimer(q) to counterpy|q]

21: upon receive(SUSPECT, ¢, r, s) do

22:  suspect,[q][s] « suspect,[q][s] U {r}
23: if |suspect,[q][s]] > n — f then

24: counter,[q] < counterp[q] + 1

counter,[p] grows without bound [in fact, becomeshere is a sequence numbey, so that for every
larger than®], then3k’ : pf > of+dforallk > k. s > s, there is a sef)(t,) of at leastf processes

Proof: Let ko be the value of the receiverthat receive(ALIVE, p, s, c) by time § after it was
sequence numbersgqq when counterq[p] has just sent at timet,. Sincep never suspects itself, there
reached(® + 1)p, and T = % — p*. Note that must be at least one processe Q(ts) that sends
T may also be negative_ For all > ko, 0-1]; < <SUSPEC-|:p,*,-S> in order to reach then — f
ko4 (k—ko) @1, whereag = pk~'+counter,[p] > duorum, despite of the fact thatALIVE,p, s, x)
p§*1+(¢+1)77 and hencepig > p’;0+(k—k0)(61>+ was received timely E.i’t‘ls, for infinitely many .
1)n. Hence,o — pf < o0 4 (k — ko) — pko — Since there are only finitely many processes in the
(k — ko) (® + f)ﬂ <7 (I}f — ko). Hence, there is System, there must be at least one correct process
somek’ such that indee¢’qf > U];;JF(S for all k > k' fpﬁt occurs infinitely often among the processes
as asserted. - is process must hence infinitely often time out

. , a timely message. However, since by assumption
Lemma 15:If p is a correctomoving-f-source y g y b

: counter,[p] is unbounded, ang usescounter,|p| as
then, for every procesg, counter,|p] is bounded. timeout for messages from eventually the timeout

Proof: By way of contradiction, assume thajj pe |arger than any transmission delay plus the

countery[p] is unbounded. Then there is at leagfesynchronization of andg, which is bounded by
one process, where line 23 is true infinitely often| . \yma 14. -

for p, which requiresn — f (SUSPECT, p, x, s) for
infinitely many s. Sincep is a omoving-f-source, Now, the Lemmas 2, 6, and 7 also hold for
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Algorithm 3. Thus, we also have:
Theorem 8:Algorithm 3 implements? in system

f*

VI. SOLVING CONSENSUS INSf_*’

It is well known, that consensus [16] can be

solved in system with2 and reliable [9], [10] or
fair-lossy [2], [3] links, ifn > 2f.

Corollary 6: For n > 2f, consensus can be

solved in systemsy.” and S},

VIl. CONCLUSIONS

We presented a new system model, which we
believe to be the weakest model for implementating]
2 and thus consensus proposed so far: It assumes
just a single process witfi outgoing moving even- ;4
tually timely links; all other links can be totally
asynchronous. Our tight lower bounds regardin
the communication complexity show, however, thd
those weak timing assumptions have a price: Fap)
example, rather than using onjylinks forever here, [13]
Q(nf) links must be used forever in our moving
model. Our results thus reveal an interesting tradegff;
between synchrony assumptions and communica-

tion complexity.
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