
submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Chasing the Weakest System Model for
ImplementingΩ and Consensus

Martin Hutle, Dahlia Malkhi, Ulrich Schmid, Lidong Zhou

Abstract— Aguilera et al. and Malkhi et al. have pre-
sented two system models, which are weaker than all pre-
viously proposed models where the eventual leader election
oracle Ω can be implemented and thus also consensus can
be solved. The former model assumes unicast steps and at
least one correct process withf outgoing eventually timely
links, whereas the latter assumes broadcast steps and at
least one correct process withf bidirectional but moving
eventually timely links. Consequently, those models are
incomparable. In this paper, we show thatΩ can also be
implemented in a system with at least one process withf
outgoing moving eventually timely links, assuming either
unicast or broadcast steps. It seems to be the weakest
system model that allows to solve consensus viaΩ-based
algorithms known so far. We also provide matching lower
bounds for the communication complexity of Ω in this
model, which are based on an interesting “stabilization
property” of infinite runs. Those results reveal a fairly high
price to be paid for the further relaxation of synchrony
properties.

Index Terms— Distributed Systems, Failure Detectors,
Fault-tolerant Distributed Consensus, System Modeling,
Partial Synchrony.

I. I NTRODUCTION

T HE chase for the weakest system model that
allows to solve consensus has long been an ac-

tive branch of research in distributed algorithms. To
circumvent the FLP impossibility in asynchronous
systems [16], many models in between synchrony
and asynchrony [13] have been proposed over the
years: The Archimedean model [29], the classic
partially synchronous models [10], [14], the semi-
synchronous models [7], [26], theΘ-Model [20],
[30], the model of [25] and the FAR-Model [15].

Another recent branch of this research is the
chase [1], [4]–[6], [21], [22] for the weakest system

Corresponding Author: Martin Hutle, EPFL / I&C - IIF - LSR, INF
233 Station 14, CH-1015 Lausanne.martin.hutle@epfl.ch, Phone:
+41 21 693 4240

A short presentation of the main results of this paper appeared as
Brief Announcement in [18]

model that allows the implementation of the even-
tual leader oracle failure detectorΩ. For a system
of n partially synchronous [14] or semi-synchronous
[26] processes where at mostf may crash, a suite of
models with more and more relaxed link synchrony
assumptions has been developed. In this setting, a
link between two processes is called timely at time
t if a message sent at timet is not received later
thant+ δ. The boundδ can be known or unknown.
A link is called timely (resp. eventually timely) if
it is timely at all timest ≥ 0 (resp.t ≥ tGST , for
some unknown timetGST).

The following models have been proposed so far:
Stable Leader Election [4], denotedS↔

n−1: At
least one correct process must haven−1 eventually
timely bidirectional links with known delay bound
δ (the other links can be purely asynchronous).
All links except the timely ones are fair lossy. A
message to at most one process can be sent in a
single computing step (unicast steps).

Aguilera et al. 2003 [1], denotedS→
n−1: At

least one correct process must haven − 1 even-
tually timely outgoing links (�(n− 1)-source) with
unknown delay boundδ. All links except the timely
ones are fair lossy, and computing steps are unicast.

Aguilera et al. 2004 [5], denoted S→
f : At

least one correct process must havef eventually
timely outgoing links (�f -source) with unknown
delay boundδ. All links except the timely ones are
fair lossy, and computing steps are unicast.

Malkhi et al. [21], denoted S↔
f∗: There must be

at least one correct process with links that eventually
permit a bounded-delay round-trip with at leastf
neighbors (f -accessibility), at any time. The set
of neighbors may change over time (i.e., may be
moving [27], [28]). All links must be reliable and
the delay boundδ must be known (but the result can
be extended to unknown bound and message loss).
A message may be sent to all processes in a single
computing step (broadcast steps).

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

Note thatΩ with stability properties can be built
in S↔n−1, and inS↔f∗ for certain values off .

An orthogonal approach looks at the weakest fail-
ure detector abstraction to upholdΩ and consensus.
Limited scope FDs [6], [11], [17], [22]–[24], [31]
require onlyf processes other than the leader to
uphold the accuracy requisite. Although not con-
cerned with implementation, it is clear that anx-
accurate FD requires that at least one correct process
must havex eventually timely outgoing links with
unknown delay bound. Hence, these abstractions
requireS→f as well.

We can summarize the differences between the
existing models as follows:

Name �timely pattern link steps
S↔n−1 n− 1 — bidir. unicast
S→n−1 n− 1 — outgoing unicast
S→f f fixed outgoing unicast
S↔f∗ f moving bidir. bcast

In the sequel, letA ⊆ B denote the fact that
model B is weaker than modelA w.r.t. inclusion
of sets of executions, such that every correctΩ
implementation for modelB also works correctly in
A. We obviously have:S↔n−1 ⊆ S→n−1 ⊆ S→f . W.r.t.
link synchrony,S↔f∗ is also weaker than any ofS↔n−1,
S→n−1and S→f . However,S↔f∗ requires bidirectional
links and uses more powerful computing steps,
hence is stronger than any ofS↔n−1, S→n−1and S→f .
As a consequence,S↔f∗ and the latter models are
incomparable.

From the above relations, it follows thatS↔f∗ and
S→f are currently the weakest system models for
implementing Ω and hence consensus. One may
wonder, however, whether a system that is like
S→f , except that the timely links of the�f -source
may be moving like inS↔f∗, is strong enough for
this problem? Stated in the terminology ofS↔f∗:
Whether it is sufficient for thef links that ensure
�f -accessibility to be timely only in the outgoing
direction? This paper answers the above question in
the affirmative.

Detailed contributions:

(1) We define a system modelS→f∗, which can
be simulated in two modelsSb→

f∗ and Su→
f∗

that are weaker thanS↔f∗ andS→f , respectively.
All those models require at least one correct
process that is a�moving-f -source: It must

have timely outgoing links with an unknown
delay bound to a moving set off receivers
at any time. We also provide a simpleΩ
implementation forS→f∗, which hence allows to
implementΩ in Sb→

f∗ andSu→
f∗ as well.

(2) We prove a lower bound, which shows that
Ω(nf) links must carry messages forever in any
correctΩ implementation forS→f∗.

(3) We also give a communication-optimalΩ im-
plementation forS→f∗ (for reliable links), where
O(nf) links carry messages forever.

(4) We show that the above communication-
optimal Ω implementation forS→f∗ lets only
n − 1 links carry messages forever in the
case where the�moving-f -source eventually
stabilizes to a non-moving�(n− 1)-source, as
in [1].

(5) We show thatn− 1 links must carry messages
forever in any suchΩ implementation.

II. SYSTEM MODEL S→
f ∗

Since the modelsS→f and S↔f∗ are “structurally
different”, in the sense that they use different basic
computing steps, there is no single model that is
weaker than bothS→f and S↔f∗ at the same time,
in the sense of inclusion of sets of executions.
However, every algorithm that works in a unicast
model also works in a broadcast model (with minor
changes). Moreover, in the unicast model, it is
usually possible to simulate broadcast steps via
multiple unicast steps. Hence, we will start out from
a model with broadcast steps and derive a model
with unicast steps from it.

More specifically, the algorithms, correctness
proofs and lower bound results developed in this
paper will be based upon a system modelS→f∗, which
assumes broadcast steps, at least one�moving-f -
source, and reliable links (see Section II-C for
details). In order to prove our claim thatΩ can be
implemented in models that are weaker thanS→f and
S↔f∗, we will show that algorithms designed forS→f∗
can be transformed to work also in two additional
modelsSu→

f∗ ⊇ S→f and Sb→
f∗ ⊇ S↔f∗. The model

Su→
f∗ (see Section II-B) assumes unicast steps and

is weaker thanS→f , whereasSb→
f∗ (see Section II-A)

assumes broadcast steps and is weaker thanS↔f∗.
Using the notation that modelB is weaker than

A w.r.t. simulation (A ⊆s B) when there is a
simulation that allows an algorithm forA to be run

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

in B, we will hence show thatSu→
f∗ ⊇s S→f∗ and

Sb→
f∗ ⊇s S→f∗. Although of courseSu→

f∗ 6⊇ S→f∗ and
Sb→

f∗ 6⊇ S→f∗ w.r.t. set inclusion, it is nevertheless true
that any of our algorithms forS→f∗ in conjunction
with the appropriate simulation leads to a correct
implementation ofΩ in Su→

f∗ resp.Sb→
f∗ . Moreover,

all lower bound results forS→f∗ developed in this
paper carry over toSu→

f∗ andSb→
f∗ as well.

All our models assume a fully-connected network
of n processesΠ, f of which may fail by crashing.
Let C ⊆ Π be the set of correct processes, i.e.
processes that never fail. Every process executes
an algorithm consisting of atomic computing steps.
Like in [5], [14], we assume that processes are
partially synchronous, in the sense that every non-
crashed process takes at least one step everyΦ steps
of the fastest process. The speed ratio boundΦ is
unknown to the algorithm. To make our models as
weak as possible, we do not assume real-time clocks
as in [5]1, but rather adopt the convention from [14]
that real-time is measured in multiples of the steps
of the fastest process. In particular, the (unknown)
delay boundδ is such that the fastest—and hence
any—process can take at mostδ steps while a timely
message is in transit. Hence, we can use simple step-
counting for timing out messages.

A. Broadcast modelSb→
f∗

In every step, a process may broadcast at most
one message to every other process in the system.
If not specified otherwise, links are fair lossy [5].

Definition 1: In the broadcast model, we say that
a unidirectional link(p, q) is timely at timet if no
message broadcast byp at time t is received atq
after timet + δ.

Note that a timely link/message does not require
the receiver to be correct; if the receiver is faulty,
then it is vacuously considered timely. Also, when
no message is sent at timet, the link/message is
considered timely at timet.

Definition 2: In the broadcast model, a processp
is a moving-j-source at timet if there existj other
processesq such that the links(p, q) are timely at
t.

Definition 3: A processp is a �moving-j-source
if it is correct and there is a timet such that, for

1It it is easy to build our algorithms and proofs on real-time
clocks as well. However, since the source has to be at least partial
synchronous anyway, this would be a stronger assumption.

all t′ ≥ t, p is a moving-j-source. It is called a
perpetual moving-j-sourceif this holds for t′ ≥ 0.

In Sb→
f∗ , we require that there is at least one

�moving-f -source. Note that ifδ is unknown and
the links are reliable, then a�moving-j-source is
also a moving-j-source (with some differentδ) for
all t ≥ 0.

Since a�j-accessible process [21] hasj moving
bidirectional timely links, it follows immediately:

Corollary 1: A �j-accessible process is also a
�moving-j-source.

B. Unicast modelSu→
f∗

In every step, a process may send at most one
message to some other process in the system. If not
specified otherwise, links are fair lossy [5].

We assume that every message sent by a process
in Su→

f∗ belongs to exactly one message class. A
message classMp is said to be ofbroadcast type
if, in every executionσ, p sends all messages∈
Mp to its n−1 peer processes in strict round-robin
order. For example, the sequence of receivers of all
send steps ofp in σ where a message inMp is
sent may bep2, p3, . . . , pn, p2, p3, . . . , pn, p2, p3 . . . ,
where{p2, . . . , pn} = Π−{p}. Thek-th occurrence
of a group of ofn− 1 consecutive sends (to all its
peer processes) in such a sequence is calledp’s k-
th u-broadcast ofMp, and it is said to occur at the
time t when the first of its send steps occurs.

Definition 4: In Su→
f∗ , a processp is a moving-

j-source at timet if no more thann − j − 1 of
the n − 1 messages sent in a single u-broadcast at
time t are received after timet + δ. We then say
that the at leastj other messages aretimely at time
t. No assumption is made about the timeliness of
messages that are not u-broadcast.

In Su→
f∗ , we require that there is at least one

�moving-f -source according to Definition 3 (with
“moving-j-source” defined according to Defini-
tion 4). The model is hence such that it has purely
asynchronous links, except for messages which are
u-broadcast by the�moving-f -source after stabiliza-
tion time: Any such message finds at leastf timely
links, which may be different for different messages.
Of course, nothing prevents an algorithm from not
u-broadcasting any message inSu→

f∗ , but then there
are only purely asynchronous links.

Since a�j-source [5] hasf fixed links that are
eventually always timely, it follows immediately:

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

Corollary 2: A �j-source is also a�moving-j-
source.

Putting everything together, we have:
Corollary 3: S→f ⊆ Su→

f∗ andS↔f∗ ⊆ Sb→
f∗ .

C. The broadcast modelS→f∗
The model S→f∗, which will be used for our

algorithms and lower bounds, is identical to the
broadcast modelSb→

f∗ , except that it assumes reliable
links. Hence, Definitions 1–3 apply also toS→f∗. To
disambiguate betweenS→f∗ andSb→

f∗ , we will use the
term send-to-allto denote a broadcast inS→f∗.

We will now sketch howS→f∗ can be simulated in
Sb→

f∗ and inSu→
f∗ . First, send-to-all is mapped to a

true broadcast step in the broadcast model, and to
n− 1 consecutive sends to all peer processes in the
unicast model. Moreover, send-to-all involves a pro-
tocol for reliable communication atop of fair lossy
links. There are advanced techniques like [8] or [2]
that could be adopted here, but even a simple pig-
gyback and acknowledgment protocol suffices: Any
message fromp that has not been acknowledged by
receiverq is piggybacked upon the next messages
sent toq in Su→

f∗ (resp. broadcast inSb→
f∗), so that it

is retransmitted until an acknowledgment message
has been received. Acknowledgment messages are
also piggybacked upon the messages sent (resp.
broadcast) byq, and hence retransmitted untilp does
no longer piggyback the message. It is obvious that
this protocol implements reliable communication
between any pair of correct processes. Note that a
message that was lost will not become timely by this
simulation. But, for messages that are timely, the
simulation preserves the timeliness of the message:

Lemma 1:With our simulations, a�moving-f -
source inSu→

f∗ resp. inSb→
f∗ is also a�moving-f -

source inS→f∗. Its delay bound isδ′ = δ for the
simulation inSb→

f∗ , and δ′ = δ + (n − 2)Φ for the
simulation inSu→

f∗ .
Proof: We can restrict our attention to timely

messages, since non-timely messages are not ad-
versely affected by retransmissions. Timely mes-
sages are never lost by definition, however, so no
retransmission is actually necessary here.

For the simulation in the broadcast modelSb→
f∗ , a

timely message inSb→
f∗ obviously remains timely

(with δ′ = δ) in S→f∗. For the simulation in the
unicast modelSu→

f∗ , the implementation of send-to-
all as n − 1 unicast sends of the same message

to all peer processes causes every message class
to be of broadcast type inSu→

f∗ . Consequently, by
Definition 4, at mostn− f − 1 of then− 1 unicast
messages sent in any send-to-all may be received
later thanδ time after the first unicast send. Due
to our partially synchronous processes, performing
n−1 consecutive send steps takes at most(n−2)Φ
time in Su→

f∗ , thusδ′ = δ + (n− 2)Φ is a bound on
the delay of timely messages inS→f∗.

Remark. One can argue that, in practice, the
retransmission of messages could compromise the
timeliness, due to the potentially linear-growing
message size caused by the piggybacking mecha-
nism.

Fortunately, with our algorithms, this can be
avoided due to the fact that only some of the
messages, namely, the ALIVE messages (cf. e.g.
Algorithm 1, Section III), need to be timely, but
not reliable (in case they are not timely), whereas
all the other messages never need to be timely, but
always reliable. Thus, the piggybacking mechanism
needs to be employed only for messages that are
not ALIVE messages. On the other hand, ALIVE

messages can just be sent as unreliable datagrams,
preferably out-of-band, i.e., with priority over or-
dinary messages, such that even a large number
of messages in the buffers does not affect the
transmission time of ALIVE messages.

We decided not to incorporate this differentia-
tion of messages in our system model, since we
are primarily concerned about solvability issues in
this paper. To improve readability, we hence just
assumed thatS→f∗ provides reliable links. It should
be quite straightforward to extend our results when
needed, however.

III. Ω IMPLEMENTATION IN S→
f∗

We consider the definition of theΩ failure detec-
tor as introduced in [9]:

Definition 5: A failure detector is of classΩ if
the failure detector outputH(p, t) ∈ Π and the
following holds:

Eventual Leadership:There is a time after which
all the correct processes always trust the same
correct process. Formally,

∃t,∃` ∈ C,∀p ∈ C,∀t′ ≥ t : H(p, t′) = `
In this section, we introduce and analyze a simple

implementation ofΩ in S→f∗, given as Algorithm 1.
It is well-suited for explaining the principle of

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

operation, but suffers from ever increasing timeouts.
In Section V, we also provide an algorithm where
the timeout values stabilize for all links that are
eventually timely.

The algorithm works as follows: Every process
p periodically sends-to-all ALIVE messages every
η steps (line 8). These messages are equipped with
a monotonically increasing sequence numberseqp.
The receiver task (Task 2) of processq waits for and
collects ALIVE messages with a sequence number
equal to the current receiver sequence numberrseqq.
A timer with a timeout of∆q steps is used for termi-
nating the wait; bothrseqq and∆q are incremented
when the timer expires (line 20). Note that this timer
can be implemented via step counting, since we
assume partially synchronous processes. Although
processes are not synchronized, i.e., there is no
a priori correlation between the time any process
sends an ALIVE message with a certain sequence
number and any receiver’s timeout for that sequence
number, using an ever increasing∆q will allow q to
eventually get every timely ALIVE message fromp
before the timeout (we will call thistimely received
in the sequel).

Every receiver processq maintains an array
counterq[p], which essentially contains the number
of suspicions of senderp encountered atq so far:
The senderp is suspected atq if q is notified of
the fact that at leastn − f receivers experienced
a timeout for the same sequence numbers. This
notification is done via SUSPECT messages, which
are sent-to-all (line 18) by any receiver process that
experienced a timeout for senderp with sequence
number s. For the latter,q maintains a binary
arrayreportedq[p][rseq], which records whether an
ALIVE message fromp has been received by the
timeout for sequence numberrseqq or not.

The receiverq increasescounterq[p] if it receives
at least n − f of such SUSPECT messages for
p with sequence numbers (line 25). In addition,
counterq[p] is increased if a larger counter value
for processp is observed in any ALIVE message
(line 15). Note thatcounterq[p] may be raised by
more than1 here. The processp = ` with minimal
counter value incounterq[p] (or the minimal process
id in case of several such entries) is elected asq’s
leader (line 11). The arraysuspectq[p][s] is used
to store the set of processes from which suspect
messages for senderp and sequence numbers have
been received so far (line 24).

Informally, the correctness of Algorithm 1 fol-
lows from the following reasoning: At the time
the�moving-f -source becomes a moving-f -source,
at least f outgoing links of the sourcep carry
timely messages at any time. Thus, eventually, it
is impossible that the quorum ofn − f SUSPECT

messages is reached forp for any sequence number.
Note that this even holds true if some of thef timely
receiver processes have crashed. Consequently, all
processes stop increasing the counter for process
p, whereas the counter of every crashed sender
process keeps increasing forever since every re-
ceiver obviously experiences a timeout here. Since
the counter values are continuously exchanged via
the content of the ALIVE messages, eventually all
processes reach agreement upon all counters that
have stopped increasing. Hence, locally electing the
process with minimal counter indeed leads to a
correct implementation ofΩ.

The detailed proof of correctness below follows
the proof in [5]:

Lemma 2:For every processesp and q,
counter p[q] as well as the timeout∆q are
monotonically nondecreasing.

Proof: Clear from the waycounter p[q] and∆q

are updated.
Lemma 3: If p is correct andq is faulty, then

counter p[q] is unbounded.
Proof: If q is faulty, then eventually it

stops sending〈ALIVE , p, seqp, c〉 messages. There-
fore there is a sequence numbers, such that for all
s′ ≥ s, every correct processp′, reportedp′ [q][s

′] is
never set totrue in line 13, and thusp′ sends a
〈SUSPECT, q, p′, s′〉 to all processes (line 18). Since
there are at leastn− f correct processes, it follows
that p incrementscounter p[q], and since there are
infinitely manys′, this happens infinitely often.

The following Lemma 4 shows that, irrespectively
of how far sender and receiver have been out of sync
initially, a correct receiver eventually gets all timely
messages with a certain sequence number before it
timeouts this sequence number.

Lemma 4:Let σk
p denote the time wherep sends

〈ALIVE , p, k, ∗〉 andρk
q be the time whereq timeouts

messagek, i.e., increments the receiver sequence
number rseqq from k to k + 1. Then σk

p − ρk
q is

strictly monotonically decreasing, without bound,
from somek ≥ k0 on.

Proof: For allk > 0, σk
p ≤ σk−1

p +Φη, whereas
ρk

q ≥ ρk−1
q +η+k. Now, for anyk, σk

p−ρk
q ≤ (σk−1

p +

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

Algorithm 1 Implementation ofΩ in S→f∗, code for processp
Variables
1: ∀q ∈ Π : counterp[q] ∈ N, initially 0
2: ∀q ∈ Π ∀s ∈ N : suspectp[q][s] ⊆ Π, initially ∅
3: ∀q ∈ Π ∀s ∈ N : reportedp[q][s] ∈ {true, false}, initially false
4: seqp, rseqp ∈ N, initially 0
5: ∆p, initially η

Initially
6: start Tasks 1,2
7: starttimer with ∆p

Task 1
8: every η stepsdo
9: send〈ALIVE , p, seqp, counterp〉 to all q ∈ Π

10: seqp ← seqp + 1
11: leaderp ← q, where〈counterp[q], q〉 is minimal

Task 2
12: upon receive〈ALIVE , q, s, c〉 do
13: reportedp[q][s]← true
14: for all r ∈ Π do
15: counterp[r]← max{counterp[r], c[r]}

16: upon expiration oftimer do
17: for all q, wherereportedp[q][rseqp] = false do
18: send〈SUSPECT, q, p, rseqp〉 to all r ∈ Π (including p itself)
19: reportedp[q][rseqp]← true
20: rseqp ← rseqp + 1
21: ∆p ← ∆p + 1
22: settimer to ∆p

23: upon receive〈SUSPECT, q, r, s〉 do
24: suspectp[q][s]← suspectp[q][s] ∪ {r}
25: if |suspectp[q][s]| ≥ n− f then
26: counterp[q]← counterp[q] + 1

Φη)− (ρk−1
q +η +k) = σk−1

p −ρk−1
q +(Φ−1)η−k.

Expanding this yieldsσk
p − ρk

q ≤ σ0
p − ρ0

q + k(Φ −
1)η − k(k + 1)/2, which proves the lemma.

Lemma 5: If p is a correct�moving-f -source
then, for every processq, counter q[p] is bounded.

Proof: By way of contradiction, assume that
counter q[p] is unbounded. Then there is at least
one processr, where line 25 is true infinitely often
for p, which requiresn − f 〈SUSPECT, p, ∗, s〉 for
infinitely many s. Sincep is a �moving-f -source,
there is a sequence numbers′, so that for every
s ≥ s′, there is a setQ(ts) of at leastf processes
that receive〈ALIVE , p, s, c〉 by time δ after it was
sent at timets. Sincep never suspects itself, there
must be at least one processrs ∈ Q(ts) that
sends〈SUSPECT, p, ∗, s〉 in order to reach then−f
quorum, despite of the fact that〈ALIVE , p, s, ∗〉 was

received timely atrs, for infinitely many s. Since
there are only finitely many processes in the system,
there must be at least one correct processr that
occurs infinitely often among the processesrs. This
process must hence infinitely often time out a timely
message. This is impossible because of Lemma 4,
however, which shows that there is somek ensuring
∀k′ > k : σk′

p + δ < ρk′
q .

Lemma 6:Let counter t
p[q] denote the value of

counter p[q] at processp at time t. If p and q are
correct processes then, for every timet and every
correct processr, there exists a time after which
counter r[q] ≥ counter t

p[q].

Proof: Let x = counter t
p[q]. If x = 0 or p =

r then the result follows from Lemma 2, and so
assumex > 0 andp 6= r. After p setscounter p[q] =
x, it sends infinitely many ALIVE messages to all

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

other processes. By Lemma 2, the value ofc[q] in
these messages is at leastx. Since links are fair lossy
(even reliable), processr eventually receives at least
one of these messages, and setscounter r[q] to a
value that is at leastx if counter r[q] has a smaller
value. Afterwards, from Lemma 2,counter r[q] ≥ x.

Lemma 7: If p is correct and there is a time
after which counter p[q] = x forever, then, for
every correct processr, there is a time after which
counter r[q] = x.

Proof: Follows immediately from Lemma 6,
since bothp andr are correct.

Theorem 1:Algorithm 1 implementsΩ in system
S→f∗

Proof: By Lemmas 2, 5 and 3, and the fact that
there exists a correct�moving-f -source, it follows
that for every correct processp there is a time after
which leader p is correct and stops changing. By
Lemma 7, for every correct processesp andq, there
is a time after whichleader p = leader q.

Hence,S→f∗ allows to implementΩ. On the other
hand, from Theorem 16 in [5], we know:

Theorem 2: [5] There is noΩ implementation
in S→j , wherej < f .

Together with Corollary 2, we thus have:
Corollary 4: There is noΩ implementation in
S→j∗ , wherej < f .

IV. COMMUNICATION COMPLEXITY

In this section we consider message complexity,
in the following sense: Obviously, Algorithm 1
continuously sends ALIVE messages over all links.
In terms of the communication complexity measure
introduced by Larrea et. al. in [19], namely, counting
the worst-case number of communication channels
that are used infinitely often throughout some exe-
cution run, the algorithm has complexityΩ(n2).

A. Lower bounds

Aguilera et al. [5] provided a variant of their
algorithm, where under the additional assumption
of reliable links, onlyf links are required to carry
messages forever in some execution. In contrast to
this, we show that no such implementation exists
if we have only a moving-f -source. Our (much
higher) lower bound obviously also applies to the
case where we have only a�moving-f -source,
which is weaker than a moving-f -source. Note that

we restrict our attention ton > f +1 in this section,
since a moving-f -source and anf -source are the
same in case ofn = f + 1. After all, moving is
meaningless if there are onlyf outgoing links.

In the sequel, we consider runsR of a correct
Ω implementation in such a system. Any such run
consists of an infinite number of steps, which can
either be a computing or a receive step of some
process. A receive step just models the arrival of a
message at the receiver; we assume that processing
of the received message occurs in the next comput-
ing step. The delay boundδ for timely messages
according to Definition 1 refers to the time interval
from the senderp’s computing step (at timetsp) until
the receiverq’s receive step (at timetrq). Note that if
a computing step (typically triggered by a timeout
in our algorithms) at processq occurs at some time
tq ≥ tsp + δ, then one can be sure that the message
has (already) been processed by timetq.

An admissible runR is a run where every process
except the at mostf faulty ones performs infinitely
many steps inR, and where all messages sent to
correct processes are eventually received. Finally,
a feasible rundenotes an admissible runR of a
correctΩ implementation in a system with certain
properties—like the one that at least one process
is a �moving-f -source, or that every process is a
moving-f -source, depending upon the context. In a
feasible runR, the eventually elected leader will be
denoted̀ (R), and the simple directed graph induced
by the set of links that eventually carry messages
forever will be called theeffective communication
graph Ge(R). We are interested in the worst-case
number of links inGe(R) over all feasible execu-
tions R.

It is important to note that a restricted effective
communication graph (Ge(R) 6= fully connected
graph) reduces the number of timely messages re-
ceived from a moving-f -source: The links carrying
timely messages at some timet and the links in
Ge(R) may be different. Since an unused link is
also counted as timely in our setting, only the links
in the intersection of those sets need to deliver
timely messages to their receivers. Note that this is
not an artificial assumption, but rather the faithful
modeling of the fact that delays are under the con-
trol of the system adversary, whereas the effective
communication graph is under the control of the
algorithm.

As our main lower bound results, we will prove

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

that the effective communication graphGe(R) must
contain (1)n − 1 outgoing links from the eventual
leader, and (2) a total ofΩ(nf) links in some run
R. Comparison with [5] hence reveals an interesting
trade-off between weaker synchrony assumptions
and communication efficiency. The intuition behind
these lower bounds is that at leastn− f processes
must suspect a moving-f -source before it can actu-
ally be considered faulty (and hence demoted in case
it is the leader). Otherwise, a process’s suspicion
may just be a consequence of currently not being in
the moving set of timely receivers. However, since
the set of processes that receives timely messages
may change forever, processes have to continuously
inform all other processes about their suspicions
regarding the current leader. For the eventual leader,
this implies the need to send to all itsn − 1 peer
processes. Moreover, exchanging suspicions among
all processes in anf -resilient way requiresΩ(nf)
links to be used forever.

For our formal proof, we need a notation that
allows us to relate runsR and R′ to each other
that eventually differ only in the moving pattern and
communication delays. To simplify notation, time
will be just the number of steps in a run here: The
finite prefixRt of a runR = (s1, s2, . . .) up to time
t is hence justRt = (s1, s2, . . . st). The extension
of a prefix Rt leading to runR is the suffixEt =
R \ Rt = (st+1, st+2, . . .), and a finite extension of
Rt is a prefix of someEt.

Definition 6: In a system with at least one
�moving-f -source, an extensionEt of some given
prefix Rt is calledfeasibleif R = RtEt is a feasible
run, and it is calledstable iff no further process
crashes and status changes of any�moving-f -source
occur in the feasible extensionEt. Any two stable
extensionsEt andE ′

t of the same prefixRt, as well
as the runsR = RtEt and R′ = RtE

′, are called
Rt-similar, or just similar if Rt is clear from the
context.

Note carefully that, when consideringRt-similar
runs R and R′, we always assume that bothR
andR′ are stable, i.e., that all crashes have already
occured inRt and that every�moving-f -source has
already become a perpetual moving-f -source inEt.
Given that those events must of course occur within
finite time, assuming stability in this respect is not
a restriction.

The following two lemmas are instrumental in
our lower bound proofs. Actually, they are of in-

dependent interest, since they reveal an interesting
additional stabilization property of infinite runs of
correct Ω implementations inS→f∗: For example,
Lemma 8 assures that, starting from any finite prefix
P , there is a finite extensionRt after which the
system has stabilized, in the sense that the leader
does not change anymore. Of course, events that
happen within finite time, like process crashes and
all �moving-f -source status changes, have already
occurred within Rt due to the stability assump-
tion discussed before. The surprising fact, however,
is that the stabilization of the leader happens in
presence of events like moving pattern and timing
changes, which occur infinitely often, hence also
after Rt.

Lemma 8:For any prefixP of any feasible initial
run, there is a feasible finite extensionRt of P with
the property that any twoRt-similar runsR andR′

provide the same eventual leader`(R′) = `(R).
Proof: Suppose, by way of contradiction, that

∀finite feasible extensionsRt of P :

∃Rt-similar runsR andR′ with `(R′) 6= `(R),

which obviously implies (we drop attributes like
“feasible” here for conciseness)

∀Rtof P : ∀R = RtEt : ∃Rt-similar R′ = RtE
′
t

with `(R′) 6= `(R). (1)

This assumption will allow us to prove the exis-
tence of a feasible run̂R where the leader changes
infinitely often, which contradicts the properties of
Ω. Hence, there must indeed be some finite prefix
Rt such that anyRt-similar runR′ provides`(R′) =
`(R) as asserted.

We find it instructive to introduce the essence of
our proof by an inductive construction of a sequence
of prefixesRk, k ≥ 1, of feasible runs, such that
Rk is a proper prefix ofRk+1 and the leader has
changed. In the limit, this leads to a feasible run
R̂ = limk→∞ Rk where the leader changes infinitely
often. Since we are dealing with infinite2 executions,
however, we will employ K̈onig’s infinity lemma
[12, Lemma 8.1.2] to establish the existence ofR̂.

For the induction basisk = 1, let R1 be some
prefix of length at least|P | of the initial feasible

2Induction provides assertions for finite executions only, which is
not sufficient here. In fact, a finite sequence of such prefixes could
always be constructed by crashing the eventual leader or changing
the status of processes w.r.t. being a moving-f -source or not.

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

run where some leader`1 has already been elected
by all processes. Clearly,P is prefix of R1.

For the induction step, assume that we have
already constructed the prefixRk of some feasible
run R, where the leader̀k has been chosen. By (1),
there is anRk-similar (and hence feasible) runR′

where some different leader`(R′) 6= `k is chosen.
Let Rk+1 be a prefix ofR′ with |Rk+1 \ Rk| ≥
1, to guaranteelimk→∞ |Rk| = ∞, where some3

new leader`k+1 has already been chosen. Since
`(R′) 6= `(R), such a prefixRk+1 must of course
exist. Obviously,Rk is a proper prefix ofRk+1 and
the leader has changed.

For the rigorous proof, based upon König’s
infinity lemma, we define an infinite sequence
of non-empty finite setsV0, V1, . . . as follows:
Consider some arbitrary feasible runR and let
(`1(R), `2(R), . . .) with `k−1(R) 6= `k(R) for any
k ≥ 1 be the sequence of different subsequent
unique leaders chosen inR. For `k(R), for example,
this means that there is some prefixRk of R at
the end of which all correct processes agree on the
leader`k(R). Moreover, we definè0(R) = ⊥ for
everyR.

The setsVk are defined as follows:

V0 = {⊥}
Vk = {(`1, . . . , `k)|∃ feasible runR

where∀1 ≤ i ≤ k : `i = `i(R)}

Because of (1), it follows that|Vk| ≥ 1 for every
k ≥ 0, and since there are at mostn processes,
|Vk| ≤ nk <∞.

Moreover, there is a natural tree connecting the
elements of neighboring setsVk−1, Vk: There is an
edge(vk−1, vk) for vk−1 ∈ Vk−1 andvk ∈ Vk iff vk =
(vk−1, `) for some process̀. Any element inV1 is
connected by an edge to the single element⊥ ∈ V0.
Note that the existence of an edge implies that there
is a feasible runR where (`1(R), . . . , `k−1(R)) =
(`1, . . . , `k−1) = vk−1 and (`1(R), . . . , `k(R)) =
(`1, . . . , `k) = vk where`k−1 6= `k for any k ≥ 1.

It is obvious from our construction that every
element inVk has an edge to exactly one element in
Vk−1. We can hence apply K̈onig’s infinity lemma

3Note carefully that`k+1 may be different from the eventually
chosen leader̀(R′) here, since agreeing upon the latter might require
all messages (including all slow ones) to be received. By allowing
`k+1 6= `(R′), this is not required here.

[12, Lemma 8.1.2], which asserts an infinite path—
and hence a corresponding infinite feasible runR̂—
in the tree:

König’s infinity lemma [12, Lemma 8.1.2]:Let
V0, V1, . . . be an infinite sequence of disjoint non-
empty finite sets, and letG be a graph on their
union. Assume that every vertexv in a setVn with
n ≥ 1 has a neighbourf(v) in Vn−1. Then G
contains a ray (and infinite path)v0, v1, . . . with
vn ∈ Vn for all n.

Since the leader changes with everyk along that
path, it changes infinitely often in̂R.

Bear in mind thatRt guaranteed by Lemma 8
is such that all process crashes and all�moving-f -
source status changes must have occurred already
in Rt. Remember also that it is not necessarily the
case that all messages sent inRt are received within
Rt.

With a similar proof as for Lemma 8, we can
show the following stabilization property w.r.t. ef-
fective communication graphs:

Lemma 9:For any prefix P of some feasible
initial run, there is a feasible finite extensionRt of P
and a feasible runR = RtEt, with the property that
any Rt-similar runR′ providesGe(R

′) ⊆ Ge(R).
Proof: Suppose, by way of contradiction, that

∀feasibleR : ∀prefixesRt : ∃Rt-similar runR′

with Ge(R
′) 6⊆ Ge(R). (2)

If we denote byUt =
⋃

R′ Ge(R
′) the union of the

effective communication graphs of allRt-similar
runs R′ of R (including R), which is the graph
containing the links of allGe(R

′), this condition
implies

∀feasible runsR : ∀prefixesRt : Ut 6⊆ Ge(R). (3)

We will now derive a contradiction: Our assump-
tion will allow us to inductively construct an infinite
sequence of prefixesRk, k ≥ 1, of feasible runs
where, from some finite indexk′ on, all setsUk =
U|Rk|, k ≥ k′, are the same and all links in this set
are used infinitely often. Hence, for any feasible run
with prefix Rk′, in particular, forR̂ = limk→∞ Rk,
all those links must be contained inGe(R̂), which
contradictsUk′ 6⊆ Ge(R̂) in (3).

For the induction basisk = 1, we chooseR1 =
P , which is a prefix of the initial feasible run. For
the induction step, we assume that the prefixRk

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

of some feasible run has already been constructed.
To obtainRk+1, we extendRk by some prefix of
length≥ 1, to guaranteelimk→∞ |Rk| =∞, of some
Rk-similar (and hence feasible) run R’ specified in
detail below. Obviously,Rk is a proper prefix of
Rk+1, hence either (a)Uk+1 ⊂ Uk or (b) Uk+1 =
Uk: After all, the resulting set ofRk+1-similar runs
is just the set ofRk-similar runs without all runs
Yk that have prefixRk but notRk+1. Consequently,
Uk+1 is just Uk without Ge(Y) for all Y ∈ Yk.

Since there are only finitely many different ef-
fective communication graphs that could be dropped
via case (a), there must be some finite indexk′ such
that Uk = Uk+1 = U for all k ≥ k′, which leaves
us with (b) as the only interesting case. For every
link (p, q) ∈ Uk, there is someRk-similar run R′

with (p, q) ∈ Ge(R
′) by the definition ofUk. To

constructRk+1, we choose a non-zero length prefix
of Ek = R′ \ Rk such that at least one message
is sent along(p, q) in Ek. The particular extension
Ek used is such that all links inU are visited in
round-robin order fork = k′, k′ + 1, . . .

We use K̈onig’s infinity lemma to assert the
existence of a limiting runR̂ = limk→∞ Rk. More
specifically, we will start out from the prefixRk′

established above, i.e., restrict our attention toRk′-
similar runs that satisfyUk = U = {1, . . . , u} for
all k ≥ k′. We classify those runs into setsVk

according to the sequence of chosen communication
links ∈ U .

Consider some arbitrary feasible extensionE of
Rk′ and let L(E) = (l1(E), l2(E), . . .) be the
sequence of links chosen for sending a message in
E, with broadcast messages resolved in an arbitrary
order. Given an arbitrary but fixed round-robin se-
quenceS = (1, 2, . . . , u, 1, 2, . . .) of the links inU ,
we denote bySk the prefix of the firstk elements
of S, with S0 = (⊥).

We classify feasible extensions into setsVk ac-
cording to the maximumSk that appears as a
(not necessarily consecutive) subsequence inL(E).
More specifically,Vk will contain the elementSk if
there is some feasible extensionE the sequence of
chosen linksL(E) of which contains all links inSk

in the appropriate order. In addition, if there is a
feasible extensionE the sequence of chosen links
of which has length at leastk and containsSk−1 but
not Sk, thenVk contains the element(Sk−1,⊥).

Formally, the setsVk are hence defined as follows:

V0 = {(⊥)}
Vk = {Sk|∃ extensionE

wherelπ(i)(E)− 1 ≡ i− 1 mod u

for 1 ≤ i ≤ k and i ≤ π(i) < π(i + 1)} ∪
{(Sk−1,⊥)|∃ extensionE with |L(E)| ≥ k

wherelπ(i)(E)− 1 ≡ i− 1 mod u

for 1 ≤ i ≤ k − 1 and i ≤ π(i) < π(i + 1)

but not for i = k}

Clearly, |Vk| ≤ 2 < ∞. Moreover, as explained in
the inductive construction above, we can guarantee
that Sk ∈ Vk and hence|Vk| ≥ 1 for everyk. As in
Lemma 8, there is again a natural tree connecting
the elements of neighboring setsVk−1, Vk: Both
elementsSk ∈ Vk and (Sk−1,⊥) ∈ Vk, if present,
have an edge to the elementSk−1 ∈ Vk−1. We can
hence apply K̈onig’s infinity lemma [12, Lemma
8.1.2], which asserts an infinite path in the tree
and hence the existence of a feasible extensionÊ—
and thus a feasible run̂R = Rk′Ê—where all links
in U are used infinitely often. It hence follows by
the definition of the effective communication graph
Ge(R̂) of run R̂ that U = Uk ⊆ Ge(R̂) for any
k ≥ k′. Since everyRk is of course a prefix of
R̂, this contradicts (3), however. Hence, there must
indeed be some finite prefixRt = Rk′ and some run
R such that anyRt-similar extensionR′ provides
Ge(R

′) ⊆ Ge(R) as asserted.
Using Lemma 8 and 9, we can now prove that

the eventual leader must have alln − 1 outgoing
links in the eventual communication graphGe(R)
in some feasible runR in S→f∗. This contrasts with
the lower bound of onlyf outgoing links for system
S→f with an �f -source [5], and must be considered
as the price for moving timely links.

Theorem 3:For all n > f + 1 ≥ 2, in a system
S→f∗ with reliable links andn processes where up
to f processes may crash, the eventual leader must
have alln−1 outgoing links in the eventual effective
communication graph in some run. This holds even
when every process is a perpetual moving-f -source,
andδ is known.

Proof: Given any prefixP of some feasible
failure-free run, consider the feasible runR8 and
the finite prefixR8t guaranteed by Lemma 8. We
can choose the initial run resp. the prefixP in the
application of Lemma 9 to be justR8 resp.R8t.

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

Recall that all crashes, if any, must have occurred
in R8t already. As a result, we are assured about the
existence of some feasible runR and a finite prefix
Rt, where for everyRt-similar run R′ not only
Ge(R

′) ⊆ Ge(R) = Ge but also`(R′) = `(R) = `.
The latter holds since a runR′ that isRt-similar is
obviously alsoR8t-similar if R8t is a prefix ofRt.

Suppose that there is at least one link from` to
some processp missing in Ge. Consider twoRt-
similar runsR1 and R2, where in both extensions
(after Rt) process` could send timely over this
missing link to p (recall that an unused link can
be considered timely), as well as tof − 1 other
processes. Denote the set of thesef − 1 processes
and ` as A, and letB = Π − A with p ∈ B be
the remaining set ofn − f ≥ 2 processes. Every
process inB sends timely to allf processes in
A and arbitrarily to all other processes inB, and
every process inA sends timely to thef − 1 other
processes inA. In addition, every process inA also
sends timely to processp in R1, and to some process
q ∈ B with q 6= p in R2. Finally, every process inA
hasn− f − 1 slow outgoing links to the remaining
processes inB as well, which will experience some
large delay∆ + 1 as explained below. Due to our
construction, all processes could be a moving-f -
source in both runs.

Now consider runsRcrash1 = Rcrash2 = Rcrash

where all processes inA (which include`) crash at
t, i.e., at the end ofRt. Clearly, a new leader must
be elected within some extended prefixRcrash

t+∆ . Note
carefully thatt + ∆ may be such that even all slow
messages from the surviving processes (inB) must
have arrived, i.e., are required for electing the new
leader. Processesp andq now face a dilemma: If we
choose the delay of slow messages sent by processes
∈ A in R1 andR2 after Rt to be ∆ + 1, Rcrash

t+∆ is
indistinguishable fromR1

t+∆ for q. Similarly, Rcrash
t+∆

is indistinguishable fromR2
t+∆ for p. Thus, ifp resp.

q demotes̀ , it behaves illegal w.r.t.R2 resp.R1. If
those processes don’t demote`, they behave illegal
w.r.t. Rcrash.

Hence, the implementation ofΩ cannot be cor-
rect, such that alln− 1 outgoing links from` must
indeed be inGe as asserted. After all,Rcrash

t+∆ would
no longer be indistinguishable fromR1

t+∆ for q if
the link from` to p really carried a timely message,
instead of being vacuously timely because the link
is not used.

Finally, we will provide our major lower bound

theorem. It shows that the eventual communication
graphGe(R) in some feasible runR must contain
as many asΩ(nf) links in S→f∗. Again, this sharply
contrasts with the lower bound of onlyf outgoing
links for systemS→f with an�f -source [5], and must
also be considered as the price for moving timely
links.

Theorem 4:For all n > f + 1 ≥ 2, in a system
S→f∗ with reliable links andn processes where up
to f processes may crash, any implementation ofΩ
requires at leastnf

2
links to carry messages forever

in some run. This holds even when every process is
a perpetual moving-f -source, andδ is known.

Proof: Given any prefixP of some feasible
failure-free run, consider the feasible runR8 and
the finite prefixR8t guaranteed by Lemma 8. We
can choose the initial run resp. the prefixP in the
application of Lemma 9 to be justR8 resp.R8t. As
a result, we are assured about the existence of some
feasible runR and a finite prefixRt, where for every
Rt-similar run R′ not only Ge(R

′) ⊆ Ge(R) = Ge

but also`(R′) = `(R) = `. The latter holds since
a run R′ that is Rt-similar is obviously alsoR8t-
similar if R8t is a prefix ofRt.

Let degin
p resp.degout

p be the in-degree resp. out-
degree of processp in Ge. Assume, by way of
contradiction, that there is at least one processp
with degin

p + degout
p ≤ f − 1 in Ge. Since we know

already from Theorem 3 that̀hasdegout = n− 1
in Ge, we can assumep 6= `. Let X in resp.Xout

be the sets of processes with links to resp. fromp.
Further letY be an arbitrary set of processes such
that |X in ∪Xout ∪ Y | = f , ` ∈ Y , andp 6∈ Y . Let
A = X in ∪Xout ∪ Y andB = Π− A− {p} 6= ∅.

Now consider twoRt-similar runsR1 and R2,
where in both extensions (afterRt) processp could
send timely to all processes inA (although only
processes inXout ⊂ A receive those messages) and
processes inA and in B could send timely to all
processes inA. However,R1 andR2 differ in that
all processes inA could also send timely top in R1

(althoughp receives messages fromX in ⊂ A only),
whereas inR2 all processes inA could send timely
to some processq ∈ B instead. Note that every
process inA has n − f − 1 slow outgoing links
as well, which will experience some large delay
∆ + 1 as explained below. By our construction, all
processes could be a moving-f -source in both runs.
However, processp and all processes inB are totally
partitioned from each other inGe if the processes

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

in A were removed.
Now consider runsRcrash1 = Rcrash2 = Rcrash

where all processes inA (which include`) crash
at t, i.e., at the end ofRt. Clearly, a new leader
must be elected within some extended prefixRcrash

t+∆ .
Note carefully thatt + ∆ may be such that even
slow messages fromp must have arrived, i.e., are
required for electing the new leader. Processesp
and B now face a dilemma: If we choose the
delay of slow messages sent by processes∈ A
in R1 and R2 after Rt to be ∆ + 1, Rcrash

t+∆ is
indistinguishable fromR1

t+∆ for all processes inB.
Similarly, Rcrash

t+∆ is indistinguishable fromR2
t+∆ for

p. Thus, if p resp. some process inB demotes̀ or
uses a link outsideGe, it behaves illegal w.r.t.R2

resp.R1. If those processes don’t demote` and/or
do not use a link outsideGe, they behave illegal
w.r.t. Rcrash. Hence, the implementation ofΩ cannot
be correct. Consequently, every correct algorithm
has degin

p + degout
p ≥ f for every processp. The

number of links that carry messages forever is hence
|Λ| = 1

2

∑
p∈Π degin

p + degout
p ≥ nf

2
.

The following result follows immediately from
the fact that Theorem 3 and 4 have been established
for a stronger model:

Corollary 5: For n > f + 1 ≥ 2, any implemen-
tation of Ω in S→f∗ requires at leastΩ(nf) links,
including alln−1 outgoing links from the eventual
leader, to carry messages forever in some run.

B. Attaining the lower bound

The lower bounds established in Corollary 5
show that anyΩ implementation inS→f∗ has high
communication costs. In this section, we present
an algorithm (Algorithm 2) that attains this lower
bound, i.e., uses onlyO(nf) links forever.

In view of such high costs, one may wonder
whether there is an algorithm that works correctly
in S→f∗, but automatically reduces its communication
demand when the system stabilizes fromS→f∗ to a
system with stronger synchrony properties, at some
unknown point in time. Interestingly, Algorithm 2
also meets this requirement: Under the additional
condition that links are reliable and that there exists
some timet, after which some processp remains the
leader forever and is never suspected by any live
process4, the communication complexity reduces

4In other words, we consider runs ofΩ implementations inS→n−1 in
which an�(n− 1)-source (and not only a�moving-f -source) exists.

from O(nf) to O(n) some finite time aftert.
Algorithm 2 employs echoing (= rebroadcasting)

of all messages. In order not to complicate the code
further with messages counters that disambiguate
DISABLE messages and SUSPECT messages, we
assume that the low-level communication preserves
causal ordering; addressing this explicitly in the
protocol is not hard, but is omitted for simplicity.
To ensure that the algorithm matches theΩ(nf)
quiescence lower bound established in Corollary 5,
we also assume that the SUSPECT messages (and
their echoes) are disseminated to all processes via
flooding over some (fixed)(f + 1)-node-connected
and (f + 1)-regular overlay topology. The appro-
priate protocol is also omitted from the code for
simplicity.

To bring down the communication complexity
from O(n2) to O(nf) resp.O(n), a process should
send ALIVE messages only when it considers itself
the leader. Although a process not considering itself
leader no longer sends ALIVE messages, its counter
should not increase on other processes due to sus-
picions. To this end, each process maintains a new
boolean status vectorenabled , with one bit for each
other process. The entry for a processq is enabled
upon receipt of an ALIVE with the current or higher
counter fromq. The entry becomesdisabled(or set
to false) if q explicitly sends a DISABLE message
for this counter. With theenabled vector, a process
p sends SUSPECT messages only on an enabled
process when the corresponding timer expires.

The status vector also addresses the following
problem: A processq that has not been a leader
for a while may become leader at some point. The
problem is that different processes may learn that
q is the new leader at different times. Sinceq does
not send ALIVE messages until it believes itself to
be the leader, other processes may start suspecting
it even before the first ALIVE message goes out.
In the case of a new leaderq as described before,
the enabled flag for q is false in its current
counter until the first ALIVE message fromq arrives.
Therefore, no premature suspicions are generated.
We proceed with a proof of correctness.

Lemma 10:For every�moving-f -source process
p there exists a boundbp such that for allq ∈ Π,
alwayscounter q[p] ≤ bp.

Proof: Let t be a time after whichp is a
moving-f -source. Letcounter p[p] = c at time t.
Let bp = maxq∈Π{counter q[p]} at timet. Let t′ ≥ t

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

Algorithm 2 Ω with reduced communication, code for a processp
Variables
1: ∀q ∈ Π : counterp[q] ∈ N, initially 0
2: ∀q ∈ Π : enabledp[q] ∈ {true, false}, initially false
3: ∀q ∈ Π ∀s ∈ N : suspectp[q][s] ⊆ Π, initially ∅
4: ∀q ∈ Π ∀s ∈ N : reportedp[q][s] ∈ {true, false}, initially false
5: seqp, rseqp ∈ N, initially 0
6: ∆p, initially η

Initially
7: start Tasks 1,2
8: starttimer with ∆p

Task 1
9: every η timestepsdo

10: prevleaderp ← leaderp

11: leaderp ← q, where〈counterp[q], q〉 is minimal among{q | enabledp[q] = true ∨ q = p}
12: if leaderp = p then
13: send〈ALIVE , p, seqp, counterp〉 to all q ∈ Π
14: seqp ← seqp + 1
15: else if prevleaderp = p then
16: send〈DISABLE, p, counterp[p]〉 to all q ∈ Π
Task 2
17: upon receive〈ALIVE , q, s, c〉 do
18: reportedp[q][s]← true
19: for all r ∈ Π do
20: if c[r] > counterp[r] then
21: counterp[r]← c[r]
22: enabledp[r]← false
23: if c[q] = counterp[q] then
24: enabledp[q]← true
25: if any change done tocounterp or to enabledp then
26: send〈ALIVE , q, s, c〉 to all r ∈ Π /* echo */

27: upon receive〈DISABLE, q, c〉 do
28: if q 6= p then
29: send〈DISABLE, q, c〉 to all r ∈ Π /* echo */
30: if counterp[q] ≤ c then
31: counterp[q]← c
32: enabledp[q]← false

33: upon expiration oftimer do
34: for all q, whereenabledp[q] = true andreportedp[q][rseqp] = false do
35: send〈SUSPECT, q, p, rseqp〉 to all r ∈ Π
36: reportedp[q][rseqp]← true
37: rseqp ← rseqp + 1
38: ∆p ← ∆p + 1
39: settimer to ∆p

40: upon receive〈SUSPECT, q, r, s〉 do
41: if q 6= p then
42: send〈SUSPECT, q, r, s〉 to all r ∈ Π /* echo */
43: suspectp[q][s]← suspectp[q][s] ∪ {r}
44: if |suspectp[q][s]| ≥ n− f then
45: counterp[q]← counterp[q] + 1

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

be the time at which the first echo message with
counter [p] = bp is delivered byp. Then beforet′,
for all q either counter q[p] < bp or enabled q[p] =
false. Hence, no suspicions causecounterq[p] to
increase beyondbp. Since after timet′ there are
no timer expirations at any period byn − f pro-
cesses, any process that hascounter q[p] = bp and
enabled q[p] = true never increasescounter q[p].

Lemma 11:If for some correct processq at any
pointcounter q[p] = c, then eventually for all correct
processesr it holds thatcounter r[p] ≥ c. Moreover,
if enabled q[p] = true for this counter value at
q, then the same holds eventually for all correct
processes.

Proof: This follows immediately from the fact
that ALIVE , DISABLE and SUSPECT messages are
echoed.

Lemma 12:If a processq has crashed then even-
tually for all correct processesp it forever holds that
enabledp[q] = false.

Proof: Due to Lemma 11, the highest enabled
counter value forq held by any correct process is
eventually held by all. Sinceq crashes, after one
more timer expiration, there aren − f suspicions
with this counter value for sure. Therefore, even-
tually all processes have the same, highest counter
value, which is never enabled sinceq has crashed.

Theorem 5:Algorithm 2 maintainsΩ.
Proof: By Lemma 10 and Lemma 12, there

exists a non-crashed processp whose counter is
bounded and forever has the minimal value among
all bounded counters. By Lemma 11, eventuallyp
knows that all other counters are either higher than
its own, or are disabled. Therefore,p enables this
counter. Therefore, every other correct processq
eventually hasenabled q[p] = true andcounter q[p]
fixed. Furthermore, likep, q also eventually has all
other counter values higher thanp’s or disabled.
Hence,p is the leader.

Theorem 6:Eventually, Algorithm 2 uses only
O(nf) communication channels infinitely often.

Proof: By Theorem 5, eventually all non-
crashed processes considerp to be the leader. Hence,
only processp continues sending ALIVE messages
on n − 1 links forever. All SUSPECT messages
are exchanged via the(f + 1)-node-connected and
(f + 1)-regular overlay. Thus, in the effective com-
munication graph, every process hasf +1 outgoing
links, except the leader, which hasn − 1 outgoing

links, resulting in a total of(f +2)(n−1) = O(nf)
non-quiescent links.

Theorem 7:In a system where the leader sta-
bilizes from a moving-f -source to an(n − 1)-
source, Algorithm 2 uses onlyn−1 communication
channels infinitely often.

Proof: By Theorem 5, eventually all non-
crashed processes considerp to be the leader. Hence,
only processp continues sending ALIVE messages
forever. By assumption, eventually there are no
suspicions of the leader, so no SUSPECT messages
are sent after a certain time in the execution.

Theorem 3 reveals that Algorithm 2 is also opti-
mal in this respect: Since the algorithm cannot know
whether a moving-f -source has indeed become an
(n−1)-source forever, or just mimics this for some
finite time, the leader must always usen − 1 links
infinitely often. Note that this argument is not con-
tradicted by the communication-optimal algorithm
from [5], which uses onlyf links infinitely often,
since the latter does not work inS→f∗.

V. Ω IMPLEMENTATION IN S→
f∗ WITH

EVENTUALLY STABILIZING TIMEOUTS

Algorithms 1 and 2 suffer from ever increasing
timeouts. In this section, we provide an implemen-
tation of Ω where the timeout values eventually
stabilize for timely links. The key idea is to use
the counter p[q] variable as the timeout value for
messages fromq. This works, sincecounter p[q]
increases until at leastf messages from a�moving-
f -sourceq are timely with respect tocounter p[q]—
exactly what we need for an adaptive timeout value.

The proof of correctness is similar to the proof
of the simple algorithm in Section III.

Lemma 13:If p is correct andq is faulty then
counter p[q] is unbounded.

Proof: If q is faulty then eventually it
stops sending〈ALIVE , p, seq, c〉 messages. There-
fore there is a sequence numbers, such that for
all s′ ≥ s, every correct processp′, reportedp′ [q][s

′]
is never settrue in line 12, and thusp′ sends a
〈SUSPECT, q, p′, s′〉 to all processes (line 17). Since
there are at leastn− f correct processes, it follows
that p incrementscounter p[q], and since there are
infinitely manys′, this happens infinitely often.

Lemma 14:Let σk
p denotes the time wherep

sends〈ALIVE , p, k, ∗〉 and ρk
q be the time where

q timeouts this message, i.e., increments the re-
ceiver sequence numberrseqq from k to k + 1. If

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

Algorithm 3 Ω Implementation with eventually stabilizing timeouts, code for a processp
Variables
1: ∀q ∈ Π : counterp[q] ∈ N, initially η
2: ∀q ∈ Π ∀s ∈ N : suspectp[q][s] ⊆ Π, initially ∅
3: ∀q ∈ Π ∀s ∈ N : reportedp[q][s] ∈ {true, false}, initially false
4: seqp, rseqp ∈ N, initially 0

Initially
5: start Tasks 1,2
6: ∀q ∈ Π : start timer(q) with counterp[q]

Task 1
7: every η timestepsdo
8: send〈ALIVE , p, seqp, counterp〉 to all q ∈ Π
9: seqp ← seqp + 1

10: leaderp ← q, where〈counterp[q], q〉 is minimal

Task 2
11: upon receive〈ALIVE , q, s, c〉 do
12: reportedp[q][s]← true
13: for all r ∈ Π do
14: counterp[r]← max{counterp[r], c[r]}

15: upon expiration oftimer(q) do
16: for all q, wherereportedp[q][rseqp] = false do
17: send〈SUSPECT, q, p, rseqp〉 to all r ∈ Π
18: reportedp[q][rseqp]← true
19: rseqp ← rseqp + 1
20: settimer(q) to counterp[q]

21: upon receive〈SUSPECT, q, r, s〉 do
22: suspectp[q][s]← suspectp[q][s] ∪ {r}
23: if |suspectp[q][s]| ≥ n− f then
24: counterp[q]← counterp[q] + 1

counterq[p] grows without bound [in fact, becomes
larger thanΦ], then∃k′ : ρk

q ≥ σk
p +δ for all k ≥ k′.

Proof: Let k0 be the value of the receiver
sequence numberrseqq when counterq[p] has just
reached(Φ + 1)η, and T = σk0

p − ρk0
q . Note that

T may also be negative. For allk > k0, σk
p ≤

σk0
p +(k−k0)Φη, whereasρk

q = ρk−1
q +counterq[p] ≥

ρk−1
q +(Φ+1)η and henceρk

q ≥ ρk0
q +(k−k0)(Φ+

1)η. Hence,σk
p − ρk

q ≤ σk0
p + (k − k0)Φη − ρk0

q −
(k − k0)(Φ + 1)η ≤ T − (k − k0)η. Hence, there is
somek′ such that indeedρk

q ≥ σk
p + δ for all k ≥ k′

as asserted.
Lemma 15:If p is a correct�moving-f -source

then, for every processq, counter q[p] is bounded.
Proof: By way of contradiction, assume that

counter q[p] is unbounded. Then there is at least
one processr, where line 23 is true infinitely often
for p, which requiresn − f 〈SUSPECT, p, ∗, s〉 for
infinitely many s. Sincep is a �moving-f -source,

there is a sequence numbers0, so that for every
s ≥ s0, there is a setQ(ts) of at leastf processes
that receive〈ALIVE , p, s, c〉 by time δ after it was
sent at timets. Sincep never suspects itself, there
must be at least one processrs ∈ Q(ts) that sends
〈SUSPECT, p, ∗, s〉 in order to reach then − f
quorum, despite of the fact that〈ALIVE , p, s, ∗〉
was received timely atrs, for infinitely many s.
Since there are only finitely many processes in the
system, there must be at least one correct processr
that occurs infinitely often among the processesrs.
This process must hence infinitely often time out
a timely message. However, since by assumption
counter q[p] is unbounded, andq usescounter q[p] as
timeout for messages fromq, eventually the timeout
will be larger than any transmission delay plus the
desynchronization ofp andq, which is bounded by
Lemma 14.

Now, the Lemmas 2, 6, and 7 also hold for

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 16

Algorithm 3. Thus, we also have:
Theorem 8:Algorithm 3 implementsΩ in system

S→f∗

VI. SOLVING CONSENSUS INS→
f∗

It is well known, that consensus [16] can be
solved in system withΩ and reliable [9], [10] or
fair-lossy [2], [3] links, if n > 2f .

Corollary 6: For n > 2f , consensus can be
solved in systemsSu→

f∗ andSb→
f∗ .

VII. C ONCLUSIONS

We presented a new system model, which we
believe to be the weakest model for implementating
Ω and thus consensus proposed so far: It assumes
just a single process withf outgoing moving even-
tually timely links; all other links can be totally
asynchronous. Our tight lower bounds regarding
the communication complexity show, however, that
those weak timing assumptions have a price: For
example, rather than using onlyf links forever here,
Ω(nf) links must be used forever in our moving
model. Our results thus reveal an interesting tradeoff
between synchrony assumptions and communica-
tion complexity.

ACKNOWLEDGEMENTS

We like to thank Sergio Rajsbaum, Corentin
Travers, Hugues Fauconnier, Martin Biely and Josef
Widder for their valueable feedback upon an earlier
version of our paper.

REFERENCES

[1] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Faucon-
nier, and Sam Toueg. On implementing Omega with weak
reliability and synchrony assumptions. InProceeding of the
22nd Annual ACM Symposium on Principles of Distributed
Computing (PODC’03), pages 306–314, New York, NY, USA,
2003. ACM Press.

[2] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heart-
beat: A timeout-free failure detector for quiescent reliable
communication. InWorkshop on Distributed Algorithms, pages
126–140, 1997.

[3] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Using
the heartbeat failure detector for quiescent reliable communi-
cation and consensus in partitionable networks.Theoretical
Computer Science, 220(1):3–30, June 1999.

[4] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues
Fauconnier, and Sam Toueg. Stable leader election. In
DISC ’01: Proceedings of the 15th International Conference on
Distributed Computing, pages 108–122. Springer-Verlag, 2001.

[5] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues
Fauconnier, and Sam Toueg. Communication-efficient leader
election and consensus with limited link synchrony. InPODC
’04: Proceedings of the twenty-third annual ACM symposium on
Principles of distributed computing, pages 328–337, St. John’s,
Newfoundland, Canada, 2004. ACM Press.

[6] Emmanuelle Anceaume, Antonio Fernández, Achour
Most́efaoui, Gil Neiger, and Michel Raynal. A necessary and
sufficient condition for transforming limited accuracy failure
detectors.J. Comput. Syst. Sci., 68(1):123–133, 2004.

[7] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stock-
meyer. Bounds on the time to reach agreement in the presence
of timing uncertainty.Journal of the ACM (JACM), 41(1):122–
152, 1994.

[8] Anindya Basu, Bernadette Charron-Bost, and Sam Toueg. Crash
failures vs. crash + link failures. InProceedings of the Fifteenth
Annual ACM Symposium on Principles of Distributed Comput-
ing, page 246, Philadelphia, Pennsylvania, United States, 1996.
ACM Press.

[9] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg.
The weakest failure detector for solving consensus.Journal of
the ACM, 43(4):685–722, June 1996.

[10] Tushar Deepak Chandra and Sam Toueg. Unreliable failure
detectors for reliable distributed systems.Journal of the ACM,
43(2):225–267, March 1996.

[11] Francis C. Chu. ReducingΩ to ♦W . Information Processing
Letters, 67(6):298–293, 1998.

[12] Reinhard Diestel.Graph Theory. Springer, 2006.
[13] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the

minimal synchronism needed for distributed consensus.Journal
of the ACM, 34(1):77–97, January 1987.

[14] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consen-
sus in the presence of partial synchrony.Journal of the ACM,
35(2):288–323, April 1988.

[15] Christof Fetzer, Ulrich Schmid, and Martin Süßkraut. On
the possibility of consensus in asynchronous systems with
finite average response times. InProceedings of the 25th
International Conference on Distributed Computing Systems
(ICDCS’05), pages 271–280, Washington, DC, USA, June
2005. IEEE Computer Society.

[16] Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, April 1985.

[17] Rachid Guerraoui and André Schiper. ”Γ-accurate” failure
detectors. InÖzalp Babaŏglu, editor,Proceedings of the 10th
International Workshop on Distributed Algorithms (WDAG’96),
volume 1151 ofLNCS, pages 269–286, Berlin / Heidelberg, Oct
1996. Springer Verlag.

[18] Martin Hutle, Dahlia Malkhi, Ulrich Schmid, and Lidong Zhou.
Brief announcement: Chasing the weakest system model for
implementing omega and consensus. InProceedings Eighth
International Symposium on Stabilization, Safety, and Security
of Distributed Systems (formerly Symposium on Self-stabilizing
Systems) (SSS 2006), LNCS, pages 576–577, Dallas, USA, Nov.
2006. Springer Verlag.

[19] Mikel Larrea, Antonio Ferńandez, and Sergio Arévalo. Efficient
algorithms to implement unreliable failure detectors in partially
synchronous systems. InProceedings of the 13th International
Symposium on Distributed Computing (DISC’99), LNCS 1693,
pages 34–48, Bratislava, Slovaquia, September 1999. Springer.

[20] Gérard Le Lann and Ulrich Schmid. How to implement a timer-
free perfect failure detector in partially synchronous systems.
Technical Report 183/1-127, Department of Automation, Tech-
nische Universiẗat Wien, January 2003.

[21] Dahlia Malkhi, Florin Oprea, and Lidong Zhou.Ω meets paxos:

submitted to:IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 17

Leader election and stability without eventual timely links. In
Proceedings of the 19th Symposium on Distributed Computing
(DISC’05), volume 3724 ofLNCS, pages 199–213, Cracow,
Poland, 2005. Springer Verlag.

[22] Achour Most́efaoui and Michel Raynal. Solving consensus
using chandra-toueg’s unreliable failure detectors: A general
quorum-based approach. In P. Jayanti, editor,Distributed
Computing: 13th International Symposium (DISC’99), volume
1693 of Lecture Notes in Computer Science, pages 49–63,
Bratislava, Slovak Republic, September 1999. Springer-Verlag
GmbH.

[23] Achour Most́efaoui and Michel Raynal. Unreliable failure
detectors with limited scope accuracy and an application to
consensus. InFSTTCS, pages 329–340, 1999.

[24] Achour Most́efaoui and Michel Raynal. k-set agreement with
limited accuracy failure detectors. InPODC ’00: Proceedings
of the nineteenth annual ACM symposium on Principles of
distributed computing, pages 143–152. ACM Press, 2000.

[25] Anchour Mostefaoui, Eric Mourgaya, and Michel Raynal.
Asynchronous implementation of failure detectors. InProceed-
ings of the International Conference on Dependable Systems
and Networks (DSN’03), San Francisco, CA, June 22–25, 2003.

[26] Stephen Ponzio and Ray Strong. Semisynchrony and real
time. In Proceedings of the 6th International Workshop on
Distributed Algorithms (WDAG’92), pages 120–135, Haifa,
Israel, November 1992.

[27] Nicola Santoro and Peter Widmayer. Time is not a healer. In
Proc. 6th Annual Symposium on Theor. Aspects of Computer
Science (STACS’89), LNCS 349, pages 304–313, Paderborn,
Germany, February 1989. Springer-Verlag.

[28] Ulrich Schmid, Bettina Weiss, and John Rushby. Formally
verified byzantine agreement in presence of link faults. In22nd
International Conference on Distributed Computing Systems
(ICDCS’02), pages 608–616, Vienna, Austria, July 2-5, 2002.

[29] Paul M.B. Vit́anyi. Distributed elections in an archimedean ring
of processors. InProceedings of the sixteenth annual ACM
symposium on Theory of computing, pages 542–547. ACM
Press, 1984.

[30] Josef Widder, Ǵerard Le Lann, and Ulrich Schmid. Fail-
ure detection with booting in partially synchronous systems.
In Proceedings of the 5th European Dependable Computing
Conference (EDCC-5), volume 3463 ofLNCS, pages 20–37,
Budapest, Hungary, April 2005. Springer Verlag.

[31] Jiong Yang, Gil Neiger, and Eli Gafni. Structured derivations
of consensus algorithms for failure detectors. InProc. of the
17th Annual ACM Symposium on Principles of Distributed
Computing (PODC ’98), pages 297–308, 1998.

