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Abstract—This paper is concerned with a speech recogni- the task language is highly skewed. We can split their laggua
tion scenario where two unequal ASR systems, one fast with models in two unequal parts: one very small but accounting
constrained resources, the other significantly slower but lao for a high fraction of all requests, and the other taking are

much more powerful, work together in a sequential manner. In the | tail of | bability oh H Iso. one doul
particular, we focus on decisions when to accept the resultef e long tail or low probability phrases. Here also, u

the first recognizer and when the second recognizer needs teb fun two separate recognition processes with these language
consulted. As a kind of application-dependent garbage modiag, models.

we suggest an algorithm that augments the grammar of the first  |n a tandem recognition system like that, we can either start
recognizer with those valid paths through the language mode by running the light-weight recognizefigst recognizer”) and

of the second recognizer that are confusable with the phrase i the hiah -~ d o
from this grammar. We show how this algorithm outperforms a en run the high-coverage recognizéseond recognizer)

system that only looks at recognition confidences by about 26  only if needed, or we can kick off two recognition processes

relative. at the same time and wait till the first recognizer returns.
Index Terms—parallel and sequential speech recognition, Assuming the first recognizer returns faster than the sedébnd
application-dependent garbage modeling needed, we can then wait for the second recognizer to return,

otherwise the result of the first one will be accepted.

Here, the crucial point is providing a gainful formalizatio

It is widely accepted in the scientific and engineeringf the “if needed” condition. Indeed, the first recognizen ca
community that technical progress obeys Moore’s law whianly recognize sentences that are in its small language Imode
predicts exponential growth for many available resourites | (in other wordsjt only knows what it knowsbut the decision
processor speed and storage space. However, the othef fatdb @onsult the second recognizer should also take into atcou
life is that increased technical capabilities lead to mare sthe language models of the latter, a kind of knowledge that
phisticated services and as a result, our demands for =®uthe first recognizer lackst(does not know what it does not
grow exponentially as well. know).

Applied to the field of commercial speech recognition and In this paper, we describe an algorithm that helps the
understanding, this observation emphasizes importane#iof decision making process by augmenting the first recogmizer’
cient control mechanisms that maximize recognition agguralanguage model with valid paths through the second recegniz
while keeping the required resources at bay. For instamce,language model that are most likely to cause confusions. The
the domain of speech-enabled services on mobile devicesgmentation happens offline, prior to the recognition gssc
certain recognition tasks such as command and control aatd can be viewed as application-dependent garbage mgdelin
voice activated dialing can be carried out directly on théicke ~ The remainder of this paper is organized as follows: Section
using embedded speech recognizers (which are typicallg mdr describes the problem and reviews relevant researcht, Nex
light-weight but also faster because the network transomssin Section Il we introduce our approach to use application-
factor is eliminated from the loop). Other requests, like idependent garbage moddecoys” in a two-stage recognition
street address or business name recognition tasks, need tprocess. We then suggest alternative ways of decoy gemerati
directed to a network recognizer because recognizing thémSection IV and present results of a pilot experiment to
requires access to more resources than typically offered bgemonstrate the power of decoys in Section V. The paper is
mobile device. One consequence of such separation is that¢bncluded with ideas for future work and a summary.
two ASR systems have different language models, whereby the
embedded language model is typically much smaller than thd!-
language model of the network ASR, which also contributes
to a faster response from the former. Another example is awWhile Statistical Language Models (SLMs) estimatechas
recognition scenario where prior distribution of sentenoge grams probabilities or PCFG, are essential for natural-user
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machine dialogs and can contribute to a better user experienmecognition system.

a lot of the commercial speech recognition for call centers, The approach we are suggesting in this paper is vastly
directory assistance and other applications still relinsde different from the ones listed above as we are not limiting
rected dialog models with handcrafted, phrase-based geasnourselves to word- or phone- filler models but instead select
for speech recognition due to the practical efficiency of thentire phrases as false recognition magnets, guided by the
latter [1]. Grammars specify exactly which user responsksown application structure.

are admissible and assume all others todog¢-of-grammar  Finally, we should mention the related task of detection of
(OOG). However, even in the case of very clear and restectigpoken out-of-domain utterances, where determinatiordef a
system prompts (e.g. those expecting eithass” or “no”  missible versus unsupported requests is based not on whethe
answers), there will always be uncooperative users defyitftey are covered by the employed recognition grammar (which
these expectations. If we are not prepared to handle sughhese cases is rather a large SLM) but on a broader concept
unexpected utterances, as well as side speech that is @fdopic. The decision is usually made after the recognition has
actually addressing the system, misrecognitions areylikel taken place and can be facilitated either by explicit modgli
occur. To prevent this from happening, garbage models cahout-of-domain utterances (e.g. [11]) or, if obtaining-od

be introduced in ASR systems that serve as false accdpimain datais cumbersome, by considering topic classditat
magnets. The more open the prompt (and sophisticated #weres (e.g [12]).

corresponding grammar), the more opportunities are there||| A ppLICATION-DEPENDENTGARBAGE MODELING

for the users to say something out of grammar, and as %or the two-recognizer scenario that we are focusing on in

consequence, the acuter the need for a good garbage mo, ?sl'paper, the need for garbage modeling is eminent, sirce t

Even in the case of SLM recognition, there can stil bE—‘ask definition itself implies that there will be many OOGs fo
t

many words that are out of vocabulary (OOV), V.V.h'Ch’ if no e first grammar-based recognizer, namely all those régjues
modeled appropriately, can degrade the recognition acgUTd ot are not in its grammar, but can be understood by the

of surrounding words. Garbage model is also a natural choice . .
. Second recognizérBecause of this prior knowledge, we can
for capturing OOV words.

Garbage modeling is usually addressed in the IiteratunafroOIO more than employing standard garbage modeling tech-

. . : . . niques such as filler models that essentially “average” sttou
either acoustic or language modeling perspective. Thesdicou - :
) o . = characteristics of the language and therefore can be viewed
modeling approach [2], [3] is aiming at building specialefill

. as,a mesh of random false accept magnets. The schematic
models to represent non-speech and task-irrelevant speech

audio. For instance, in [3], to assist a single digit rectigni representation of a recognizer without a garbage model and

. : : . . of the standard garbage modeling is shown in Figure 1(a,b).
task in a challenging environment, special HMMs are tramqn contrast to this, the two-recognizer scenario allowsédor

%net?i(éfe and non-keywords to minimize a number of err%rarly insight into the language “outside” the first grammatr b

The language model based garbage modeling [4], [5], [rgrilll within the scope of the second language model. From the

agnitude of the phrases of this language we can select only
focuses on relevant keyword phrases but attempts to reegh hse phrases that appear confusable with the phrases from
every word (or phoneme) in an utterance even where it is E'%P

relevant for the task. One advantage of such methods is t Gt‘efgSt ﬁlég?onr:jevgi dcjrilt thaejaz Ce(:)nn]}:)sdaeblilﬁ p\t‘vrith de(}:lcs) S is
they alleviate the need for additional acoustic model ingin PP P 9 g 9 y

. . schematically depicted in Figure 1(c). The number of decoys
when porting across different tasks. Insteaejrams at word . . L .
; can vary but it would typically be comparable in size with the
or subword levels are trained to account for the utterands pa . , :
. humber of the phrases in the grammar of the first recognizer
surrounding keywords and phrases.

in order to preserve the advantage of fast recognition.

Related to this approach is application-dependent garbag SRRV :
modeling where the system acts on the assumption that thz\lote that application-dependentand generic garbage siodel

A . can be efficiently combined together to take advantage of the
application itself determines how to construct garbageetwod domain competence of the former and the robustness of the
[7], [8]. For instance, for a connected digit verificatiorska

Rahim et al. in 17 lored bility of i< fill d IIatter. See Section V for details.
ahim et al. in [7] explored usability o generic iler mosel 1, the explanations above, we have yet not addressed the
(one for non-speech and another for non-digits) as well a

ber of anti-k d model h of th being trai ortant question of what “confusability” means in the €on
number of anti-k€yword models, each ot them being ralnqut of decoy selection. The next section will offer altaive
on all digits but a specific one.

‘ . . definitions of confusability and suggest practical waystsf i
Sometimes garbage models combine acoustic and langu y ggest p y

model elements. For instance, in [9] acoustic models forﬁ‘lputatmn.

phonemic or syllabic fillers are trained and then introduced IV. DETERMINING DECOYS

into a language model via training data where they areThe notion of confusability we are interested in should be
used to replace occurrences of out-of-vocabulary words. diefined in the following context. Given a sétof phrasega; }

[10] a relatively small number of phone-based filler models, _
Note that we make no assumptions about the nature of thedgegmodel

introduced in a b'gram |anguage model prOduced Compet't'gﬁthe second recognizer which is not restricted to phrased grammars but
keyword spotting results compared to a much slower LVCS#an be a statistical language model (SLM) as well.
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Fig. 1. Schematic representation of speech recognition (a) witigaubage model (b) with traditional garbage model (c) aapion-

dependent garbage model. New audio is represented by aestagnition candidates from the first grammar are circles garbage model
is represented by dots that in the application-dependemiasio are located in the vicinity of the recognition camadiés$. Arrows indicate
recognition candidates for the new audio and the bold arr@rksnthe winner candidate. Assuming that the new audio & ekample is
an OOG, only the decoys will correctly identify it as such.

from the grammar of the first recognizer, and a potentialipterference of language model weights, while boosting the
much larger setB of phrases{b;} from the language of chance of getting more confusable candidates at the sarae tim
the second recognizer, for eaah € A we need to find a  Yet even this option has the bottleneck of possibly not
subsetB? C B of phrases, that the recognizer would havehaving acoustic realizations for al, € A. Next we suggest
difficulties telling apart fromu;. There are several alternativetwo approximations to get around this problem: the employed
ways to estimate the confusability measure and hence totsel®SR in a simulation mode and a text-to-speech engine.
decoys candidates: . . .
. S L A. ASR in the Simulation Mode
1) Acoustic (phonetic) similarity: produce pronunciations
of all candidatesh, and select those with phonetic While we cannot rely on availability of audio samples for all
distances tos; within a given threshold. Weighted orPhrases from the first grammar, the ASR engine itself has an
Levenshtein edit distances between individual phoniéi€a of what acoustic representation to expect for each word
can be used to compute distances between phrases, R@se. Using its internal acoustic models, it can draw ane o
dynamic programming can be emp|0yed for agg|omer§everal Samples from the distributions that define them and
tion. thus generate feature vectors that can then be recognized as
2) Observed recognizer behavior collect statistics about if they were coming from regular “naturally obtained” speec
misrecognitions (or.-best competitors) from an existing[13]- We use Microsoft proprietary ASR engine to carry out
application that uses both language models; select the feature vector generation process which wesaillation
phrasesh, from the second language model that werll is worth mentioning that using the simulated data, one can
involved in competitions with some utterancesaof also compute acoustic confusability directly from the estimu
3) Directed recognition test recognize some acousticmodels (HMMs), without a recognition pass [14].

realization ofa; one or several times with the second One problem with using ASR acoustic models to generate

All three alternatives have to struggle with practical feasiNstance, if there is not enough data to train a particular
bility issues. It might be reasonable to assume that the eamfistribution, then all acoustic representations invogvinwill
of phrasesu; € A is relatively small and we can indeed iteratdk€ly contain errors which will be further amplified during
over the entire list, but making the same assumption abeut figcognition.
second sef3 would be very presumptuous, since the secongl ysing TTS to Produce Acoustic Representations
recognizer can operate with a large SLM. Thus, we would not
be able to consider all phrase paiis;,b;),i = 1...1,j = To avoid the issues with simulation, we need an independent
...J to compare their phonetic representations. Similarlgource of audio representation for all phrases in the first
we need to dismiss the second option as it implies that yeammar, and in Text-to-Speech engines we will find the most
have access to a transcribed corpus large enough to inclmdéural candidate for that. Unlike the ASR simulation mode,
eacha; at least once (better several times). The third optiom;TS tends to generate reproducible speech output and thus, i
does not make any assumptions about an existing data setler to obtain several audio samples, we can either change
instead it deliberately creates one. Furthermore, it ditbps voices within a TTS engine, or try alternative engines. The
first language model from the recognition, in order to faaltst approach we will be evaluating in Section V will have both.



V. EXPERIMENTS AND RESULTS Then, we computdalse accep(FA) andfalse reject(FR)

In this section we present a pilot experiment to delivé@tes in terms of the meaning-representations:
a proof of concept for the decoy framework. We set up #meaning is wrong

FA =

baselines and evaluate advantage of application-dependen #utterances

garbage modeling with decoys. -
The notion of recognition confidencas central to un- FR — #N0 recognition

derstanding the experiments. Confidence values are trained #utterances

to predict the expected average utterance accuracy for @lld compute the final error rate as a weighted average of the
utterances recognized with the same confidence. Stalistiggo?,
regression methods are often used to derive confidences fromBy raising the confidence threshold for skipping the second
a number of features such as maximum-likelihood scores [@fcognition (see above) we increase the percentage of utter
the highest scoring hypotheses, number of the hypotheses ghces that are sent to the second recognition stage, and thus
All of our experiments consist of two stages. First, wémprove final error rate. We plot the final error rate against
employ the first language model (possibly augmented withe fraction of utterances for which second recognizer had
garbage models) to recognize all utterances. Those re@mynito be consulted, and call Bpeed-to-Error (S2E§urve. The
results that possess high confidence values are acceptedfaffier down-and-to-the-left the curve the better the aller
the rest is recognized using the second language model, afierformance of the combined system.
which the two recognition confidences are compared to select

the final result for the utterances in question.
C. Generating Decoys

A. Data and Experimental Setup Because of a simple structure of the first grammar (a
disjunction of 1081 name alternatives), seeding decoyh wit

For our pilot experiments we selected two domains: Voiantries from the first grammar is quite simple. Using the ASR
Activated Dialing (VAD) and business search. VAD is a petfegimulation mode, up to 21 alternative recognitions havenbee
candidate to provide a grammar for the first recognizer asoBtained for each of the 1081 seeds (five decoys per seed
typical personal address book is small to moderate in siga average), producing a total of 2136 distinct decoys after
(1081 distinct entries in our experiments). On the contrarliminating redundancies.
business listings can become very large in size, a greatehoi For TTS-based decoys, we used four voices (one male and
of a language model for the second recognition stage. For @ite female per TTS engine) to vocalize each of the seeds and
experiments, we compiled a grammar that comprises somgognized them in a 5-best mode producing a total of 2617
68K company names. decoys.

Our test set contains 570 utterances, both domains repreThe generated decoys are then compiled into a new grammar
sented by an equal number of examples. In addition, for thg a disjunction with individual entry weights as deterrdine
sake of a better generalization, we required that no namgsthe second language model that they all came from.
appear in the corpus more than once.

Both language models were represented by grammars in
SRGS format [15] and employed by Microsoft speech re&. Effect of Decoys on Semantic Error Rate
ognizer [16] that was also used to produce decoys in the

) . . . First of all, we have observed that the first recognizer was
simulation mode. For TTS experiments we used a proprletarxI inally sl due to the added d bout 5%
Microsoft TTS engine conforming to SAPI APl [17] and®y marginally siower due 1o the added decoys (about 5%

AT&T Natural Voices [18] relative), which is inline with our goal to improve overall
' recognition latency. In Figure 2 we plot the S2E error curves
for four experiments where the first recognition is conddcte

B. Evaluation Metrics with:
1) only VAD grammar

We use semantic error rateas the principle evaluation 2) VAD augmented with a traditional acoustic garbage
metric. Since the objective of any practical applicatiortds model

successfully accomplish its task, using the traditionaasuee  3) VAD and simulation-generated decoys

of word error rate is often inadequate. Instead, recognizeds) VAD and TTS-generated decoys

text is pompressed t(? its m_ean_ing by dismissing o_ccasional-l-he plots show that while generic garbage model and
r_10n-sal|ent elements like hesitations, pre-ﬂller_s and-fitbsrs _ simulation-based decoys both contributed to lower errEs;a

like "please”, “I need to” etc. and compensating for sp@liny, e t15 pased decoys provided by far the best results, espe-

alternatives. In the pilot experiments we are reporting on Eially in the “interesting” range of re-recognition percage
this paper, all utterances contain only salient infornratod

meaning is just the recognized word string. 2Typically, business logics require that false accepts relightly lower
weight than false rejects (0.7:1.0 in all of our experimgnts
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models does indeed make sense, and an additional small
improvement can be achieved due to this combination that
brings the overall reduction of the original error rate byast
20%.

We also experimented with language model based garbage
models (such as syllable loops) and were able to achieve
further improvements for re-recognition percentages @dou
the domain prior.
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Fig. 3. Importance of a good decoys selection strategy. We presented an algorithm to efficiently combine two

uneven ASR systems that cover different discourse domains.
Cﬁssuming that the first recognizer only understands a lianite

around the prior (=0.5) where the original error rate was
. . umber of phrases, and the language models of the second
by almost 18%. We explain the improvement of the TTS- o . . . o
recognizer is much more inclusive, we would like to minimize

generated decoys over the simulation-based ones by thtyab[he need for the second recognizer after the results of the

of the former to provide ASR-independent and thus bettgr . ; ;
: . irst recognizer become available. Our algorithm augments
representative audio samples.

L . the first recognizer’'s grammar with “decoys”, i.e. thoseidsal
As an additional proof that decoy selection strategy msitter g g y

in Figure 3 we re-plotted the S2E curves for the VAD onchaspathS through the language model of the second, slower

%cognizer, that are confusable with phrases from the st r

and the TTS-generated decoys, and added results of ano{)her{izer. The approach is tantamount to application-d d

experiment where 2600 decoys were selected at random fr b delina. Determining d b ti fi
the second language model. Again, the TTS-generated decggé age modeting. Letermining decoys by compufing adoust
exhibited a much better recognition accuracy fusability for TTS-generated audio representationghef

' phrases from the first grammar resulted in the best tradeoff
between accuracy and the fraction of times where the second
recognizer had to be used. In combination with a generic
garbage model and compared to a baseline that decides to

In line with our expectations, the previous experimerﬁa“ the second recognizer based on the first recognizer's
showed that a traditional acoustic garbage model can al&§ognition confidence, our approach reduced the errobsate
improve recognition. On the other hand, the decoys, thotigh &most 20%. As a next step, we plan to extend the algorithm
fective as demonstrated, can still make mistakes, formegta t0 support arbitrary language models for the first recognize
due to imperfect TTS. We thus expect that the generic garbage
model trained on a large amount of representative data for
the language will be a good counterpart to decoys that focus
specifically on confusable phrases. As a next step, we try
combining the generic garbage model with our application-
dependent decoys. .

Figure 4 demonstrates that the combination of the two

E. Combining Decoys and Acoustic Garbage Models
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