
All-Frequency Rendering of Dynamic, Spatially-Varying Reflectance

Jiaping Wang∗ Peiran Ren† ∗ Minmin Gong∗ John Snyder‡ Baining Guo∗ †

∗ Microsoft Research Asia † Tsinghua University ‡ Microsoft Research

Figure 1: Real-time rendering results of our system. (a) Plastic teapot with spatially-varying Cook-Torrance model. (b) Iron dragon with spatially-varying
Ward model. (c) Brushed metal dish and balls with spatially-varying Ashikhmin-Shirley model. (d) Red satin cloth and greeting card with measured SVBRDFs.

Abstract
We describe a technique for real-time rendering of dynamic,
spatially-varying BRDFs in static scenes with all-frequency shad-
ows from environmental and point lights. The 6D SVBRDF is rep-
resented with a general microfacet model and spherical lobes fit to
its 4D spatially-varying normal distribution function (SVNDF). A
sum of spherical Gaussians (SGs) provides an accurate approxima-
tion with a small number of lobes. Parametric BRDFs are fit on-
the-fly using simple analytic expressions; measured BRDFs are fit
as a preprocess using nonlinear optimization. Our BRDF represen-
tation is compact, allows detailed textures, is closed under products
and rotations, and supports reflectance of arbitrarily high specular-
ity. At run-time, SGs representing the NDF are warped to align the
half-angle vector to the lighting direction and multiplied by the mi-
crofacet shadowing and Fresnel factors. This yields the relevant 2D
view slice on-the-fly at each pixel, still represented in the SG basis.
We account for macro-scale shadowing using a new, nonlinear vis-
ibility representation based on spherical signed distance functions
(SSDFs). SSDFs allow per-pixel interpolation of high-frequency
visibility without ghosting and can be multiplied by the BRDF and
lighting efficiently on the GPU.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Color, shading, shadowing and texture

1 Introduction
Real-world reflectance varies across object surfaces. To preserve
visual realism, detailed spatial and angular reflectance variation
must be considered along with natural lighting and shadowing.
Such reflectance is represented by the 6D spatially varying bidi-

∗email:{jiapw,mgong,johnsny,bainguo}@microsoft.com

rectional reflectance distribution function (SVBRDF). Reflectance
also varies with time, for physical reasons such as wetting/drying,
or to support interactive design and editing. Our aim is real-time
rendering of direct effects from environmental lighting incident on
detailed and dynamic SVBRDFs. To make this practical, we restrict
ourselves to static geometry and precomputed visibility.

Precomputed Radiance Transfer (PRT) [Sloan et al. 2002; Ng
et al. 2003; Ng et al. 2004] achieves real-time rendering with natu-
ral lighting and shadowing by representing the geometry’s spatially-
varying response to parameterized lighting. Handling detailed, dy-
namic SVBRDFs with all-frequency lighting has so far eluded the
approach. This is because the precomputed data is huge; the more
so when considering complex lighting and reflectance, sharp shad-
ows, and glossy surfaces. To obtain reasonable data sizes and per-
formance, some previous methods limit the directional variation of
lighting, visibility and reflectance, by using bases such as spher-
ical harmonics (SH). They thus ignore sharp shadows and highly
specular surfaces. Other methods combine reflectance and visibil-
ity within the precomputed light transport and sample it at a sparse
(typically per-vertex) set of surface points. This precludes BRDFs
that are dynamic or have significant spatial variation. We solve the
problem by decoupling reflectance from visibility in the light trans-
port and using new, nonlinear representations for each.

Ignoring inter-reflection between objects, PRT rendering be-
comes:

R(o) =
∫
𝕊2

L(i)V (i)ρo(i) max(0, i ⋅n)di. (1)

Unit vector n denotes the surface normal, i the (input) lighting di-
rection, and o the (output) view direction. L and V denote the light-
ing and visibility spherical functions, and ρ the 4D BRDF function.
𝕊

2 denotes the unit sphere in ℝ
3.

A representation for reflectance ρ should satisfy several proper-
ties. It should fit arbitrary, including highly specular, BRDFs using
a small number of parameters. It should permit fast extraction of
the 2D view slice, ρo, from the 4D BRDF. It should then allow fast
integrated products of this slice with the lighting and visibility to
calculate the shading. Finally, the representation should permit fast
and accurate fitting to existing BRDF models.

We base our representation on the microfacet model, as the prod-
uct of analytic Fresnel and self-shadowing factors with a normal
distribution function (NDF). This reduces a 6D SVBRDF to a 4D
SVNDF [Wang et al. 2008]. We further approximate the NDF as
a mixture (sum) of spherical Gaussians (SGs), symmetric lobes

around different axes. For parametric SVBRDFs, we derive the
approximation analytically and on-the-fly at each pixel. For mea-
sured SVBRDFs, we do the fitting as a preprocess. At run-time, for
every pixel, we warp the NDF to obtain the needed view-dependent
BRDF slice, using a simple lobe reflection and scaling operation.

For visibility V , we use a per-vertex spherical signed distance
function (SSDF) which encodes the angular distance to the closest
visibility boundary at each direction. SSDFs allow ghost-free, per-
pixel interpolation and fast integrated products with SG lobes. We
use PCA to further compress this data, and decompress it on the fly
on the GPU. We then compute the integrated product of four factors
at each pixel: lighting, visibility, BRDF slice, and clamped cosine,
where the last two are represented using SG mixtures. Lighting
is represented as a filtered cubemap pyramid for an environmental
source or a spherical Gaussian for a point source.

Our main contribution is to introduce a new reflectance repre-
sentation for PRT: one that is structured, specialized to reflectance,
and based on the microfacet model. This representation has many
advantages over generic bases such as SH or wavelets. It supports
reflectance of arbitrary specularity, and approximates both paramet-
ric and measured BRDF models well using just a few lobes. It can
be derived on-the-fly from parametric models, allowing direct tex-
ture mapping of the model’s parameters. It is closed under rotations
and vector products [Tsai et al. 2008]. It allows fast extraction of
the BRDF view slice using a simple spherical warp of each SG lobe,
and provides fast inner/vector products with visibility and lighting.
We further introduce the SSDF representation to provide per-pixel
interpolation of high-frequency precomputed visibility. Our system
is the first to demonstrate real-time, all-frequency PRT rendering
with dynamic and detailed SVBRDFs, as shown in Figure 1.

2 Previous Work
PRT and Factorization Precomputed Radiance Transfer (PRT)
[Sloan et al. 2002] combines visibility, surface reflectance, and
inter-reflection as a whole light transport operator for efficiently
relighting a static scene. The original method used spherical har-
monics (SH) as a basis for lighting and precomputed transfer, and
so supports only low-frequency (soft) shading effects. Substituting
other bases, such as Haar wavelets over cube maps [Ng et al. 2003],
allows “all-frequency” effects, including sharp shadows and spec-
ular reflections. Unfortunately, precomputing an object’s spatially-
varying response to all-frequency light requires huge data storage.

To address this problem, previous work has applied view-light
(in-out) BRDF factorization [Wang et al. 2004; Liu et al. 2004;
Wang et al. 2006; Tsai and Shih 2006]. The idea is to separate re-
flectance into a sum of factor pairs where one depends only on the
view direction and the other only on the light direction. The lighting
reflectance factor is then pre-multiplied by static visibility, which is
also view-independent. This method works well for relatively dif-
fuse BRDFs but requires impractically many terms to approximate
specular surfaces [Mahajan et al. 2008]. It also mixes visibility and
reflectance in the precomputed transfer, and so is limited to static,
per-object, homogeneous reflectance.

PRT with Spherical Lobes Other methods use spherical lobes in
PRT, as does ours. [Green et al. 2006] approximates the combined
light transport due to reflectance and visibility as a sum of Gaussian
lobes. The representation is unsuitable for detailed visibility func-
tions, and produces only very soft shadows. Mixing reflectance and
visibility in the precomputation means that surface reflectance must
be static.

[Tsai and Shih 2006] use a scattered mixture of spherical radial
basis functions (SRBFs) to represent environmental lighting. The
method is based on BRDF factorization and represents the prod-
uct of the light-dependent BRDF factor with visibility using fixed,
rather than optimized, SRBF lobe axes. As with other BRDF fac-

torization approaches in PRT, results are limited to homogeneous,
static reflectance that is not highly specular.

[Green et al. 2007] decomposes reflectance and visibility and
uses a mixture of Gaussian lobes for reflectance. A separate SG
mixture is fit to each BRDF slice at a sampling of elevation an-
gles. The representation is unsuitable for anisotropic BRDFs and
requires costly precomputation and heavyweight storage even for
simple isotropic ones: 45 lobes compared to our one or two. The
visibility basis uses SH, limiting the technique to soft shadows.

Though we use similar basis functions, our use of SG mixtures
differs from previous work. We apply the representation to surface
reflectance only (rather than mixing reflectance and visibility), and
do the fitting to the normal distribution function using the micro-
facet model. The result is much more compact than previous meth-
ods. For parametric BRDF models, we can evaluate reflectance di-
rectly from the BRDF model’s parameters, on-the-fly rather than in
a costly precomputation that transforms the entire 4D BRDF sam-
ple matrix into a generic basis such as SH or wavelets. We also ex-
ploit special properties of the SG basis for the first time, including
fast spherical rotation/warping and products. This allows us to sup-
port fully dynamic and per-pixel varying BRDFs with all-frequency
shadows in real time.

PRT with Spatially-Varying Reflectance Several PRT methods
support spatially varying reflectance. [Sloan et al. 2003] decouples
macro-scale from micro-scale transfer, and supports spatially vary-
ing BTFs for the micro-scale using radiance transfer textures repre-
sented in terms of spherical harmonics. To support spatial variation
on deformable geometry, [Sloan et al. 2005] uses the zonal har-
monic basis (a sum of broad lobes which are subsets of the spher-
ical harmonic basis but defined around an arbitrary center) to rep-
resent micro-scale PRT. Both methods are based on low-order SH
and capture only soft shading effects.

[Ng et al. 2004] uses wavelet triple products to separate visibil-
ity and reflectance and allow all-frequency, interactive rendering. In
theory, such separation should permit dynamic and spatially vary-
ing reflectance. Unfortunately, the wavelet basis used does not sup-
port fast spherical rotation and in fact requires a heavyweight 6D
representation that pre-rotates the BRDF. Dynamic and spatially
varying reflectance is not practical.

BRDF Editing Interactive BRDF editing systems have approxi-
mated parametric BRDFs in static scenes using lower-dimensional
functions (1D for isotropic and 2D for anisotropic BRDFs). [Ben-
Artzi et al. 2006] represents the 1D function with a wavelet ba-
sis and precomputes light transport relative to each basis compo-
nent. Dynamic BRDFs are enabled based on a 1D wavelet pro-
jection. [Ben-Artzi et al. 2008] extends the approach to include
inter-reflection. Precomputation and memory costs limit these ap-
proaches to fixed views. Another technique extends factorization
to represent a linear space of precomputed reflectance [Sun et al.
2007]. Lack of compactness in the BRDF representation restricts
all three of these techniques to use constant rather than spatially
varying reflectance over each object.

Other Methods An extension of light cuts [Walter et al. 2005;
Walter et al. 2006], called visibility cuts [Cheslack-Postava et al.
2008], renders per-pixel shaded surfaces with dynamic BRDFs.
Their technique is interactive but does not attain real-time perfor-
mance (less than 10fps). Highly specular surfaces are problematic
because importance sampling is driven by lighting rather than re-
flectance. Visibility cuts are sampled per-vertex, leading to ghost-
ing artifacts if the mesh is tessellated coarsely and poor perfor-
mance if it is tessellated densely. In fact, our SSDF is an example
of a nonlinear visibility representation sought by [Cheslack-Postava
et al. 2008] in their conclusion.

[Křivánek and Colbert 2008] importance sample analytic BRDFs

on the GPU. As with much other previous work, visibility is repre-
sented with low-order SH which cannot capture all-frequency shad-
ows. Only simple, parametric reflectance models are demonstrated.
Complex and measured models must be precomputed and tabu-
lated, limiting them to static, homogeneous (untextured) surfaces.
Our microfacet-based representation supports on-the-fly evaluation
of a very general class of parametric models, and compact approx-
imation of measured BRDFs, allowing reflectance to be textured
over the surface (via an SVBRDF).

[Xu et al. 2008] propose a visibility representation similar to our
SSDF, but based on parametric domain distance instead of geodesic
(spherical) distance. The representation is used as a replacement
for summed area tables, to quickly compute average visibility over
a square in the parameter domain. We exploit the idea for a new
purpose: to provide a ghost-free, dense interpolation of a visibility
function from a sparse set of spatial samples.

3 Spherical Gaussians
We represent reflectance and clamped cosine factors from Equation
(1) as spherical Gaussians (SGs). SGs are a type of spherical ra-
dial basis function (SRBF), a family of spherical functions or lobes
which are symmetric around a specified lobe axis. In addition to
SGs, introduced in [Tsai and Shih 2006], several types of SRBFs
have been studied in graphics, including the von Mises-Fisher dis-
tribution [Han et al. 2007], the Abel-Poisson kernel [Tsai and Shih
2006], zonal harmonics [Sloan et al. 2005], and high-order mono-
mials [Arvo et al. 1994]. SGs have a number of important properties
that make them particularly useful for rendering.

A spherical Gaussian has the form

G(v; p,λ ,μ) = μ eλ (v⋅p−1) (2)

where p ∈ 𝕊
2 is the lobe axis, λ ∈ (0,+∞) is the lobe sharpness,

and μ ∈ ℝ is the lobe amplitude (μ ∈ ℝ
3 for RGB color). The

direction v ∈ 𝕊
2 is the spherical parameter of the resulting function.

SGs are compactly ε-supported. This means that the closure of
the region in which G(v) attains values larger than a threshold ε
covers less than the entire sphere. The area of this region, denoted
fa, is a function of lobe sharpness and becomes arbitrarily small as
λ → ∞:

fa(λ) =
∫

G(v;z+,λ ,1)≥ε
dv =−2π

lnε
λ

, λ >− lnε. (3)

Constraining λ > − lnε also ensures that the lobe’s thresholded
support lies within a hemisphere. We will use this property later
in lobe fitting and warping. Specifically, we use ε = 0.1 to define
fa. This value does not cause cropping of lobes in any computation,
but only changes the definition of the area function.

Since an SG is symmetric around its center, its spherical rotation
is given simply by a spherical rotation of p, while preserving the
values of the other two lobe parameters. Products of SGs also have
a simple form. In the following, let two arbitrary SGs be given by
Gi(v) = G(v; pi,λi,μi) for i = 1,2.

The inner product, or integral of two spherical functions yielding
a scalar, is derived in [Tsai and Shih 2006] for SGs and given by

G1 ⋅G2 =
∫
𝕊2

G1(v)G2(v)dv =
4π μ1 μ2

eλ1+λ2

sinh(dm)

dm
(4)

where dm = ∥λ1p1 +λ2p2∥.
The vector product, or direction-wise multiplication of two

spherical functions yielding a product spherical function, is closed
in the SG basis. In other words, the vector product of two SGs is

represented exactly as another SG. The product SG is given by

(G1 ⊗G2)(v) = G1(v)G2(v)

= G
(

v;
pm

∥pm∥ , λm ∥pm∥, μ1 μ2 eλm(∥pm∥−1)
)

(5)

where pm = (λ1 p1+λ2 p2)/(λ1+λ2) and λm = λ1+λ2. A similar
result is derived in [Tsai et al. 2008, Eqn. 10], but ignoring proper
normalization. Our derivation appears in the appendix.

By summing SGs around various lobes, called a mixture model
of scattered SGs, or more simply an SG mixture, we can represent
an arbitrary smooth spherical function to any degree of accuracy.
Mathematically, our model is given by

F∗(v) =
n

∑
i=1

G(v;pi,λi,μi). (6)

An SG mixture is closed under rotations. A rotated version of an
SG mixture F∗(i) is computed by rotating its lobe centers via

ℜF∗(v) =
n

∑
i=1

G(v,ℜpi, λi, μi) (7)

where ℜ denotes the rotation matrix.
The SG mixture basis is not orthogonal. An inner or vector prod-

uct of two, n-term SG mixtures must consider all pairs of SG lobes
and so has complexity O(n2). We avoid the difficulty by using
SG mixtures only for sparse spherical functions requiring small n.
Complex spherical functions such as visibility and environmental
lighting incident on specular surfaces are represented using a dif-
ferent representation, as we will see.

4 Reflectance Representation using SGs
We decompose the BRDF ρ(o, i) at a surface point into a diffuse
component kd and a specular component ksρs:

ρo(i) = ρ(o, i) = kd +ks ρs(o, i). (8)

These two components of shading are calculated separately. The
following describes how the specular part is represented and how
the BRDF slice for one viewing direction o is evaluated.

4.1 Parametric BRDFs

We focus on BRDF models based on microfacet theory [Torrance
and Sparrow 1967], which includes a large variety of commonly-
used reflectance types. The specular lobe ρs in microfacet theory
can be formalized as

ρs(o, i) = Mo(i)D(h) h =
o+ i
∥o+ i∥ , (9)

which expresses reflectance in terms of the normal distribution
function (NDF), D(h), and the remaining factor, Mo(i), combin-
ing microfacet shadowing and Fresnel reflection. These latter fac-
tors are very smooth [Ashikmin et al. 2000; Ngan et al. 2005], and
so can be compactly approximated, while the NDF often contains
high-frequency information. We model the NDF D(h) using a sin-
gle SG lobe for isotropic models or multiple lobes for anisotropic
models.

For example, the Cook-Torrance model [Cook and Torrance
1981] is represented in terms of a roughness parameter m:

ρs(o, i) =
FCT(o, i)SCT(o, i)

π(n ⋅ i)(n ⋅o) e−(θ/m)2
, (10)

Mo(i) =
FCT(o, i)SCT(o, i)

π(n ⋅ i)(n ⋅o) , D(h) = e−(arccos(h⋅n)/m)2
. (11)

Figure 2: Fitting SG mixtures to parametric BRDF models (unshadowed
rendering). The three left columns show the Cook-Torrance model (m =
0.045): (a) ground truth, (b) single-lobe SG model, (c) 256-term BRDF
factorization. The right column shows the Ashikhmin-Shirley model (nu =
75,nv = 1200): (d) ground truth, (e) 7-lobe SG model, (f) 256-term BRDF
factorization.

Figure 3: BRDF fitting, violet acrylic example from [Matusik et al. 2003].
Our method (3 SG lobes) is compact and more accurate than fitting para-
metric models like Ashikhmin-Shirley in (c).

The functions FCT and SCT denote the Fresnel and shadowing func-
tions, respectively, and have an analytic form. We approximate the
NDF with a single SG lobe via

D(h) = e−(arccos(h⋅n)/m)2 ≈ G(h;n,2/m2,1). (12)

This approximation matches the original model quite well; a de-
tailed error analysis is provided in the supplemental material. Other
frequently-used parametric BRDF models such as (isotropic) Blinn-
Phong [Blinn 1977], isotropic and anisotropic Ward [Ward 1992],
and (anisotropic) Ashikhmin-Shirley [Ashikhmin and Shirley
2000] can also be represented using (9). Analytic approximations
for these models using SG fits to the NDF, similar to (12), are given
in the supplement.

Spatial variation is encoded simply by texturing over the sur-
face the parameters ks, kd from (8) as well as the specific BRDF
model parameters, such as m for Cook-Torrance. This is a compact
representation that allows high-frequency spatial variation. Surface
reflectance at each pixel is determined on-the-fly in rendering with-
out any precomputation or fitting, which allows arbitrary temporal
and spatial changes to reflectance in runtime.

Figure 2 shows parametric BRDF models represented and ren-
dered with our method. The SG mixture model achieves better ren-
dering quality than does BRDF factorization even with 256 terms.
Such a large number of terms produces an extremely heavyweight
representation that prohibits spatial variation or interactive perfor-
mance. To put this number in perspective, previously published
PRT factorization methods have used many fewer terms: 4 in [Wang
et al. 2004], 10 in [Liu et al. 2004], and 16 in [Tsai and Shih 2006].

4.2 Measured BRDFs

We represent measured BRDFs with the general microfacet model
using a tabulated NDF D and shadowing factor S at each surface

Figure 4: SVBRDF fitting on a measured example from [Lawrence et al.
2006]. Two light/view settings are shown: (a,c) original, (b,d) our approxi-
mation with 2 SG lobes per pixel.

point. The representation is similar to [Wang et al. 2008] except
that we then fit the NDF with a small number of SG lobes. The
overall model is given by:

ρs(o, i) =
F(o, i)S(o)S(i)
π(i ⋅n)(o ⋅n) D(h). (13)

The Fresnel factor F is given by [Cook and Torrance 1981]:

F(o, i) =
(g−c)2

2(g+c)2

(
1+

(
c(g+c)−1

)2

(
c(g−c)+1

)2

)
(14)

where g =
√

η2 +c2 −1, c = ∣i ⋅h∣, and η denotes the relative in-
dex of refraction. As in [Wang et al. 2008], we constrain the shad-
owing factor to be isotropic. The resulting 1D shadowing function
at each surface point is packed into 90D vectors and compressed
to 8D using PCA. The compressed vector and the relative index
of refraction can be stored in textures for rendering. We currently
use a constant index of refraction η = 1.33. Figures 3 and 4 show
results of our microfacet-based SG mixture representation on real
measured BRDFs and SVBRDFs. More fitting results are included
in the supplement.

For isotropic BRDFs, we fit the NDF D(h) in (13) with SG mix-
tures having 1 or 2 lobes around the canonical axis p = z+ as a pre-
process. The fitting is done by Levenberg-Marquardt optimization
[Nocedal and Wright 1999]. When SG mixtures have more than
one lobe, the lobes are sorted in increasing order of sharpness for
texture interpolation.

For anisotropic BRDFs, more lobes are typically required and
are fit using a variable axis rather than the fixed z+. We fix the num-
ber of lobes in the SG approximation for all surface points and then
compute an independent nonlinear optimization to fit each point’s
NDF using the L-BFGS-B solver [Zhu et al. 1997] as in [Tsai and
Shih 2006]. The resulting parameters of the SG mixtures are en-
coded with multiple textures for rendering. Independent optimiza-
tion produces unaligned lobes at adjacent texels whose axes may
be far apart and thus unsuitable for interpolation. In this case, we
avoid texture filtering and instead apply nearest-neighbor texture
sampling and spatial supersampling.

After fitting the NDF, the resulting SG parameters are stored as a
texture map. The representation requires 4 floats for each lobe in the
isotropic case (3 for RGB lobe amplitude and 1 for lobe sharpness).
An additional 3 floats are needed in the anisotropic case to encode
the lobe direction.

4.3 Obtaining the View Slice using a Spherical Warp

Given a view direction o, we require the corresponding 2D BRDF
slice ρs(i;o) to integrate with visibility and lighting. We obtain
it by a vector product of the NDF’s SG approximation, D∗(h) =
∑n

i=1 G
(
h;pD

i ,λ
D
i ,μ

D
i

)
, with the remaining factor Mo(i):

ρs(i;o) = Mo(i)⊗D∗(h). (15)

To compute this, we first express the NDF in terms of the lighting
vector i instead of the half-way vector h:

W ∗(i) =
n

∑
i=1

G
(

i;pW
i ,λ

W
i ,μW

i

)≈ D∗(h). (16)

This involves a spherical warp on D∗ via the transformation

i = ψ(h) = 2(o ⋅h)h−o. (17)

We can approximate this warp as a sum of simple, per-lobe warps
on D∗. Each warped lobe has ε-support area in Equation (3) equal
to its original unwarped area times the differential area of the warp
at the lobe center, pD

i . The warped lobe’s amplitude is preserved.
The formula is given by

pW
i = ψ(pD

i) = 2(o ⋅pD
i)p

D
i −o, (18)

λ W
i = f−1

a
(

fa(λ D
i) ⋅ τ(pD

i)
)
=

λ D
i

τ(pD
i)
, (19)

μW
i = μD

i . (20)

Differential area of this warp, τ(h), is the determinant of the Jaco-
bian of the warp function ψ and given by

τ(h) =
di
dh

=

∥∥∥ ∂ ψ(h)
∂ θ × ∂ ψ(h)

∂ φ

∥∥∥∥∥∥ ∂h
∂ θ × ∂h

∂ φ

∥∥∥ = 4 ∣h ⋅o∣ (21)

where h(θ ,φ) = (sinθ cosφ ,sinθ sinφ ,cosθ). Other types of per-
lobe warps can be computed similarly by replacing the transform ψ
and its distortion factor τ .

Finally, we observe that the factor Mo(i) is smooth [Ngan et al.
2005]. Our approximation assumes Mo is constant across the sup-
port of each SG in the warped NDF W∗, so that the lobe amplitude
is simply multiplied by the value of Mo evaluated at the lobe center,
yielding the following simple formula:

ρ∗
s (i;o) = Mo(i)⊗W ∗(i)≈

n

∑
i=1

G
(

i; pW
i ,λ

W
i ,Mo(pW

i)μW
i

)
. (22)

Our fast method for spherical warping yields a BRDF slice rep-
resented as an SG mixture. Since we approximate each warped lobe
as isotropic, our method incurs error especially at oblique viewing
directions where the warp has large anisotropic distortion. Figures 3
and 4 include error from the fast spherical warp, as well as error
from fitting our representation. The visual difference is small. Er-
ror from spherical warping is further analyzed in the supplement.
Future work could reduce this error by fitting multiple-lobe SGs to
the warped result, or using anisotropic basis functions.

5 Visibility Representation using SSDFs
We represent spatially-varying visibility with a nonlinear represen-
tation called a spherical signed distance function (SSDF). An SSDF
is stored at each mesh vertex and is interpolated per-pixel over trian-
gles. The benefit of this representation is that it provides ghost-free
interpolation as shown in Figure 5. Visibility edges (row 3), re-
constructed with bilinear interpolation on SSDFs (row 2), are sharp
yet still make smooth transitions. Direct interpolation of the binary
function (row 1) yields double images.

As is usual in PRT methods, the mesh tessellation must ade-
quately sample this visibility signal. For example, representing
a floor as a pair of triangles with only four SSDFs at its vertices
will not permit detailed shadows cast by objects resting on it. Un-
like previous PRT work, the tessellation can ignore variation in re-
flectance, which is handled by texture mapping SG mixtures. The
SSDF representation permits spatially-varying visibility to be rep-
resented at a relatively sparse set of surface vertices.

5.1 Spherical Signed Distance for Visibility

Visibility, Vx(i), is a spatially-varying binary spherical function in-
dicating whether the direction i to a distant light source is occluded
or not, at each surface point x. To make the notation clearer, we

Figure 5: Ghost-free visibility interpolation using nonlinear SSDFs. Two
visibility functions (top row, a1 and e1) are linearly interpolated with blend-
ing weights 0.25 in (b), 0.5 in (c) and 0.75 in (d), resulting in ghosting
artifacts. SSDFs corresponding to (a1) and (e1) are shown in (a2) and (e2),
while (b2), (c2), and (d2) are the linearly blended SSDFs. Reconstruction
from interpolated SSDFs, shown in (b3), (c3), and (d3), yields smooth tran-
sitions in orientation while preserving edge sharpness.

will drop the x subscript. We map binary visibility to an SSDF,
V d(i). The function’s sign encodes whether the direction i is oc-
cluded (negative) or not (positive), and its value encodes angular
distance, θd , to the nearest direction t on the shadow boundary. An
example is shown in Figure 6a.

Mathematically, the SSDF is given by

V d(i) =

⎧⎨
⎩

+ min
V (t)=0

arccos(t ⋅ i), if V (i) = 1;

− min
V (t)=1

arccos(t ⋅ i), if V (i) = 0. (23)

When multiplying an SSDF by an SG around a lobe center p, eval-
uating the SSDF V d(p) essentially reconstructs a hemispherical
blocker based on the closest occluder to p (compare a and b in Fig-
ure 6). For narrow SG lobes, this provides a good approximation
to visibility in the neighborhood of p, For broader lobes, detailed
knowledge of the visibility function is unnecessary, so the approxi-
mation is reasonable in that case as well.

5.2 Precomputing and Compressing SSDFs

As a preprocess, we convert the binary visibility function to an
SSDF using equation (23) at each vertex. We sample only the
upper normal hemisphere and reparameterize in a square image
[Shirley and Chiu 1997]. To avoid aliasing, we downsample an
initial 512×512 image to 128×128.

We then compress the spatially-varying SSDF using PCA:

V d
x (i)≈

NV

∑
j=1

𝕍 j(i)wV
x, j (24)

where NV denotes the number of PCA terms and 𝕍 j is the j-th
eigenvector. The PCA coefficients wV

x, j are stored as vertex at-
tributes and interpolated to each pixel during rasterization. The
eigenvectors are encoded in multiple textures and fetched by bi-
linear filtering. Our current implementation uses NV = 48. More
sophisticated compression techniques, such as local PCA or tensor
compression, could replace this simple approach.

5.3 Integrating Products with Visibility

We are given an SG lobe with center p and wish to compute prod-
ucts between this lobe and an SSDF. This is done by reconstruct-
ing a hemispherical visibility function and integrating the lobe over
the intersection of its hemispherical support (around the lobe axis
p) with the visibility hemisphere (whose boundary passes through
t nearest to p). The absolute direction t relative to p is irrele-
vant since SGs are isotropic; only the angle between them matters:
θd =V d(p).

Figure 6: Center-dependent visibility reconstruction with an SSDF. Two
cases are shown: on the left, signed distance is positive (lobe axis p is in
visible region), while on the right it is negative (lobe axis is occluded). (a)
Original visibility function (top view). t is the nearest visibility boundary to
the lobe center p. (b) Reconstructed visibility function around p. The vis-
ible region is a hemisphere whose boundary intersects t. (c) Reconstructed
visible region (purple) in the local coordinate frame (top view). (d) Recon-
structed visible region (side-view). z+ points to the lobe center and y+ points
to the cross product of t and p.

Let the reconstructed visibility function be denoted V ′(i). For
convenience, we represent it in the local frame of the SG lobe as
shown in Figure 6cd. This coordinate frame orients p along z+ and
t×p along y+. In this coordinate system, the visibility domain is
the purple region and defined as:

V ′(i) =
{

1, δ (i)≥ π
2 −θd

0, otherwise (25)

where δ is the elevation angle of i when projected into the xz plane:

δ (i) =
π
2
−arctan

(
i ⋅x+

i ⋅ z+

)
. (26)

To compute inner products, we parameterize the interior of the
visible region via

i(ξ ,δ) =
(

sinξ sinδ , cosξ , sinξ cosδ
)
. (27)

Parameter ξ ∈ [0,π] represents the angle made by i with y+ while
δ ∈ [0,π] represents the angle around y+. The inner product is then
given by

G(i;p,λ ,μ) ⋅V (i)≈ G(i;p,λ ,μ) ⋅V ′(i) (28)

= μ
∫ π

δ0

∫ π

0
G
(
i;z+,λ ,1

)
sinξ dξ dδ (29)

= μ fh(θd ,λ). (30)

where δ0 = π
2 − θd . We precompute the 2D scalar function

fh(θd ,λ) and approximate it using a simple model consisting of a
sigmoid composed with a polynomial, as described in the appendix.

The vector product is approximated by making its amplitude
yield the same integrated value as the original lobe and preserving
its center. This yields the formula

G(i;p,λ ,μ)⊗V (i)≈ G

(
i;p,λ ,

fh(θd ,λ)
fh(

π
2 ,λ)

μ
)

(31)

where fh(
π
2 ,λ) =

∫
𝕊2 G(i;z+,λ ,1)dv = (2π/λ)(1−e−λ).

Figure 7 compares our SSDF representation and method for
computing products with ray tracing. For narrow SGs (a), our ap-
proximation yields a small error and little visual difference to the
ground truth. Broader SGs (c) produce a very soft shadow making
the small shift that occurs essentially imperceptible. Refer to the
supplement for a more detailed error analysis.

Figure 7: SSDF product accuracy. A good approximation is produced for
different values of lobe sharpness, λ . The figure is rendered with a single-
lobe fit to the Cook-Torrance BRDF.

6 Lighting Representation
Local Point Lights can be dynamically added and animated in
our system and are approximated with a single-lobe SG model.
Such a light source yields a spatially varying radiance field which
we compute per pixel. A point light source located at 3D position l
with radius r and intensity s yields a radiance field at surface loca-
tion x that we approximate by

L∗
x(i) = G

(
i;

l−x
∥l−x∥ , f−1

a

(2πr2

∥l−x∥2

)
,

s

∥l−x∥2

)
. (32)

The radius parameter actually models a spherical light source: in-
creasing r increases the softness of shadow boundaries.

For infinitely-distant lighting from direction l, the SG approxi-
mation is given by

L∗(i) = G
(
i; l, f−1

a (2π r2), s
)
. (33)

Distant Environmental Lighting is represented by the spherical
radiance function L(i). We use two different representations for L
depending on whether the lighting is applied to the diffuse or spec-
ular surface component. For the diffuse component, we fit the en-
vironmental radiance map with an SG mixture L∗(i) as in [Tsai and
Shih 2006]. Preserving just the brightest areas is sufficient for dif-
fuse rendering and requires only a few lobes (< 10). Of course, this
ignores details in the environment which are revealed in specular
reflections.

For the specular component, we preconvolve environmental ra-
diance with SG kernels of varying lobe sharpness to permit fast run-
time evaluation of inner products. The idea is similar to prefiltered
environment maps [Kautz et al. 2000; McAllister et al. 2002] used
for unshadowed rendering, and applied to low-frequency shadowed
rendering in [Green et al. 2006], but instead based on our SG kernel.
The inner product of lighting with an arbitrary SG is given by

G(i;p,λ ,μ) ⋅L(i) = μ
∫
𝕊2

G(i;p,λ ,1)L(v)di (34)

= μ ΓL(p,λ). (35)

The 3D function ΓL is precomputed and tabulated in terms of λ
and p. The result is represented as an image pyramid (MIPMAP),
indexed by λ , over cubemaps each representing a spherical function
indexed by p.

7 Run-Time Rendering
Per-vertex mesh information needed by the renderer includes po-
sition, texture coordinates, local coordinate frame, and PCA coef-
ficients wV

x, j for the SSDF from equation (24). These quantities
are interpolated across mesh triangles and used by the pixel shader.
Textures store the BRDF parameters or, for non-parametric BRDFs,
the tabulated SG lobes, D∗, and PCA-compressed shadow factor, Ŝ.

We separate the rendering equation into a view-independent
diffuse component, Rd , and view-dependent specular component,
Rs(o), by plugging equation (8) into equation (1) to obtain:

R(o) = kd Rd +ks Rs(o), (36)

Rd =
∫
𝕊2

L(i)V (i) max(0, i ⋅n)di, (37)

Rs(o) =

∫
𝕊2

L(i)ρs(o, i)V (i) max(0, i ⋅n)di. (38)

The two components are evaluated, summed, and tone-mapped in a
single shading pass.

The diffuse component is calculated as

Rd = (C∗(i;nx)⊗L∗(i)) ⋅V d
x (i) (39)

where C∗(i;nx) is an SG mixture approximation of the clamped
cosine, max(0, i ⋅nx). We fit it as a single-lobe SG:

C∗(i;nx) = G(i;nx,λc,μc), λc = 2.133, μc = 1.170, (40)

where nx is the per-pixel interpolated surface normal. Error of this
single lobe fit is analyzed in the supplement. We represent visibil-
ity V d

x as an SSDF in the local coordinate frame of the vertex and
decode its PCA representation as explained in Section 5.2. The SG
mixture for the lighting is rotated to the local frame before comput-
ing the vector product with the clamped cosine. Finally, we apply
equation (30) to compute the inner product of this result with vis-
ibility. We approximate fh using the simple formula described in
the appendix.

The specular component is calculated as

Rs(o) =
(
C∗(i;nx)⊗ρ∗

s,x(i;o)⊗V d
x (i)

)
⋅L(i). (41)

The BRDF slice ρ∗
s is defined in the local coordinate system, as

is the clamped cosine and visibility factors. The vector product of
these three is then rotated to the world coordinate system and an
inner product with environmental radiance computed via equation
(35). By prefiltering the environment map, this inner product re-
duces to a simple “MIPMAP of cubemaps” texture fetch for each
SG lobe in the vector product.

We determine the SG mixture for the 2D BRDF slice ρ∗
s,x on-the-

fly by a spherical warp of D∗
x(h) according to equation (22). Mx,o(i)

has an analytic form that is evaluated in a pixel shader. The NDF
D∗

x(h) is represented as a single-lobe SG for isotropic, parametric
BRDFs, a two-lobe SG for isotropic, non-parametric models, and
4-8 lobes for anisotropic models. For parametric models, D∗ is
computed per-pixel as an analytic function of the BRDF parameters
for the current rasterization fragment. For non-parametric models,
it is indexed from a texture.

Local Light Sources are represented as a single-lobe SG using
equation (32) for point lights or (33) for directional lights. Products
are computed differently than for environmental lighting. In this
case, we rotate the simple lighting to the local coordinate system of
the surface rather than rotating the reflectance and visibility to the
world coordinate system. The rendering equations, (39) and (41),
are modified to become:

Rd = (L∗
x(i)⊗C∗(i;z+)) ⋅V d

x (i) (42)

Rs(o) =
(
L∗

x(i)⊗C∗(i;z+)⊗ρ∗
s,x(i;o)

) ⋅V d
x (i) (43)

This avoids a vector product with visibility.
Point light sources should be located outside the object’s con-

vex hull since precomputed visibility represents occlusion to distant
lighting only.

Figure 8: Per-vertex vs. per-pixel shading.

Normal and Tangent Maps simulating surface meso-structure
are easily integrated. We generalize both by a quaternion map q(x),
which describes a rotation matrix ℜx defined in the local coordinate
frame at each surface point x. For diffuse rendering, the clamped
cosine C∗

x(i) is replaced by its rotated version ℜxC∗
x(i) in equations

(39) and (42). Rotation of an SG mixture is computed via equation
(7). For specular rendering, the vector product C∗

x(i)⊗ρ∗
s,x(i;o) is

replaced by its rotated version ℜx
(
C∗

x(i)⊗ρ∗
s,x(i;o

′)
)

in equations
(41) and (43). The viewing direction o for the rotated BRDF slice
must also be changed to o′ = ℜx o. Since the clamped cosine and
BRDF slice are determined on the fly anyway, this approach allows
run-time changes to the mapped normals and/or tangents.

8 Experimental Results and Discussion
We implemented our rendering algorithm on a PC with an Intel
CoreTM2 Duo 3.2G CPU, 4GB memory, and an nVidia Geforce
8800Ultra graphics card. We used the GPU rasterizer to sample the
visibility function at each vertex and then convert it to an SSDF as
described in Section 5.2. The PCA coefficients of the compressed
SSDFs are stored as vertex attributes and interpolated during ras-
terization. Distant environmental and local point light sources are
both rendered in a single pass of a pixel shader.

Table 7 lists the precomputation and run-time performance statis-
tics for all our examples. Detailed textures for parametric BRDFs
(first three rows) are specified directly in terms of the model pa-
rameters, require only a few MB of memory, and need no precom-
putation. SG mixture fits to measured BRDFs must be precom-
puted, requiring 2 hours for the “greeting card” example [Lawrence
et al. 2006] and 5 hours for the red satin and green velvet examples
[Wang et al. 2008] in Figure 12d-h.

Decoupling textured reflectance from visibility and using our
SSDF visibility representation allows sparse geometry tessellations
(see the “Vert.” column in the table). This reduces precomputa-
tion time and memory, and also increases run-time performance.
Without complicated optimizations such as view-dependent culling
or lazy updating, we achieve real-time frame rates in the range 40-
150fps while handling dynamic viewing, lighting, and reflectance
and evaluating the shading per-pixel.

Figure 8 compares per-vertex and per-pixel rendering results.
Our result in the (c) column remains consistent even for quite sparse
tessellation densities. The per-vertex shading result, in the (b) col-
umn, yields significant blurring and triangulation artifacts even with
a fairly dense tessellation. These are especially visible in high-
frequency shadows and highlights, as shown in the blue boxed inset.

Figure 9 isolates error between the SSDF representation itself
and its compression. PCA-based compression in (d,e) produces a

Scene BRDF Type Texture Res. BRDF Size # Vert. # E.L. SSDF Samp. SSDF Comp. SSDF Size Env. FPS Pt. FPS

Teapot: Fig.1a, Fig.11ab Cook-Torrance, (iso, 1 SG) 1024×1024 7.2MB 17k 8 20 min. 30D (25 min.) 2MB 171 250

Dragon: Fig.1b, Fig.11cd Ward (iso, 1 SG) 512×512 1.8MB 37k 8 50 min. 30D (35 min.) 4.4MB 165 231

Dish+Balls: Fig.1c, Fig.12abc Ashikhmin-Shirley (aniso, 7 SGs) 512×1024 4.1MB 28.5k 6 45 min. 20D (30 min.) 2.3MB 55 30

Dish+Cloth: Fig.1d, Fig.12efg
measured card (iso, 2 SGs) 512×512 4.2MB

20k 6 25 min. 10D (20 min.) 0.8MBmeasured satin (aniso, 5 SGs) 850×850 22.4MB 48 35
measured velvet (aniso, 2 SGs) 850×850 9.4MB 168 145

Table 1: Experimental performance. “# E.L.” is the number of SG lobes fit to environmental light for rendering the diffuse component. “SSDF Samp.” is
the total time for sampling the visibility function at each vertex, converting to an SSDF, and down-sampling. “SSDF Comp.” lists the reduced dimension and
the total computation time (in parentheses) for SSDF compression using PCA. The rightmost two columns show rendering performance with environmental
lighting, “Env. FPS”, and two point light sources, “Pt. FPS”.

Figure 9: PCA compression of SSDFs.

Figure 10: Results with local point and distant environmental lights.

reasonable result even with a small number of terms. Without com-
pression, our result (b) matches the ray-traced ground truth with
minimal visual difference.

Figure 10 shows rendering results illuminated with both nearby
point light sources and distant environmental light. Our rendering
algorithm supports dynamic local light sources; no additional pre-
computation is needed. Note the colored shadows and reflections,
and high-frequency shadow edges.

Figure 11 shows results for isotropic parametric BRDF models.
Realistic reflectance is generated as well as detailed spatial vari-
ation in the engraved mark on the teapot and rust pattern on the
dragon. Bump maps can be adjusted at runtime as shown in (b).
BRDF parameters can also be changed on the fly as shown in (d).
Notice the all-frequency shadows on the floor (a,c) and on the neck
and mouth of the dragon (c,d). Refer to the video for animations of
bump maps and rust.

Figure 12abc shows results for anisotropic parametric BRDF
models. Fan-shaped highlights are convincingly captured from the
circular brush marks on the metal platter. Shadows in both dif-
fuse and specular reflection are also reproduced. Note especially
the deformed shadow of the white ball on the platter in (c), due

to anisotropic reflection. User-specified local tangent rotation via
interactive painting is also demonstrated in (b,c).

Figure 12d-h shows measured and tabulated SVBRDFs from real
materials. The cloth is red satin (e,f,g) and velvet (d,h); fine features
in the needlework and anisotropic reflectance are well-preserved.
The greeting card is isotropic with spatially varying specularity, and
changes its appearance realistically as the viewing/lighting condi-
tions are animated. We also support real-time editing of SVBRDFs
as shown in (f,g). In this example, we adjusted the shininess by
changing the sharpness parameter of the fitted lobes to simulate a
wetting effect within the painted region. Refer to the video and
supplement for further results.

9 Conclusion
Illumination effects from highly specular, spatially varying, and dy-
namic materials under natural lighting add realism to synthetic im-
agery but have so far been too expensive for real-time rendering.
We introduce two new, nonlinear representations to solve this prob-
lem: SG mixtures for microfacet-based reflectance and SSDFs for
visibility. Fitting a small number of SG lobes to the microfacet NDF
represents both parametric and measured BRDFs, including highly
specular ones, compactly and accurately. It also allows fast rota-
tion, warping, and products that speed up rendering. Compressed
SSDFs compactly represent spatially-varying visibility and provide
ghost-free, per-pixel interpolation from a sparse, per-vertex set of
samples.

Our approach is subject to a number of limitations. Precomputed
visibility restricts us to static scenes. However, our method can be
combined with shadow fields [Zhou et al. 2005], local deformation
[Sloan et al. 2005], or skinned shadowing proxies [Ren et al. 2006]
to handle dynamic geometry. We consider only direct shadow-
ing effects; inter-reflection (both specular and diffuse) is ignored.
Since SGs are isotropic, our model requires many lobes to repre-
sent highly anisotropic BRDFs. Independent fitting of multi-lobe
SG models for measured anisotropic reflectance requires nearest-
neighbor filtering of the encoded texture. We are interested in ad-
dressing these drawbacks in future work, as well as investigating
more sophisticated methods for compressing SSDFs.

References
ARVO, J., TORRANCE, K., AND SMITS, B. 1994. A framework

for the analysis of error in global illumination algorithms. In
Proceedings of SIGGRAPH 1994, ACM, 75–84.

ASHIKHMIN, M., AND SHIRLEY, P. 2000. An anisotropic Phong
BRDF model. Journal of Graphics Tools 5, 2, 25–32.

ASHIKMIN, M., PREMOŽE, S., AND SHIRLEY, P. 2000. A
microfacet-based BRDF generator. In Proceedings of SIG-
GRAPH 2000, ACM, 65–74.

BEN-ARTZI, A., OVERBECK, R., AND RAMAMOORTHI, R. 2006.
Real-time BRDF editing in complex lighting. ACM Transactions
on Graphics 25, 3, 945–954.

Figure 11: Rendering results with isotropic BRDF models. (a/b) Metal teapot using Cook-Torrance, without/with bump map. (c/d) Iron dragon using Ward,
new/rusted.

Figure 12: Rendering results with anisotropic BRDF models. (a) Dishes and balls using Ashikhmin-Shirley model. (b,c) Painted tangent rotation. (d-h)
Measured cloth (5-lobe SG) and greeting card (2-lobe SG). (f,g) Painted SG warp suggesting wet paint.

BEN-ARTZI, A., EGAN, K., RAMAMOORTHI, R., AND DURAND,
F. 2008. A precomputed polynomial representation for interac-
tive BRDF editing with global illumination. ACM Transactions
on Graphics 27, 2, 13:1–13:13.

BLINN, J. F. 1977. Models of light reflection for computer syn-
thesized pictures. In Computer Graphics (Proceedings of SIG-
GRAPH 77), ACM, vol. 11, 192–198.

CHESLACK-POSTAVA, E., WANG, R., AKERLUND, O., AND
PELLACINI, F. 2008. Fast, realistic lighting and material de-
sign using nonlinear cut approximation. ACM Transactions on
Graphics 27, 5, 128:1–128:10.

COOK, R. L., AND TORRANCE, K. E. 1981. A reflectance model
for computer graphics. In Computer Graphics (Proceedings of
SIGGRAPH 81), ACM, vol. 1, 307–316.

GREEN, P., KAUTZ, J., MATUSIK, W., AND DURAND, F. 2006.
View-dependent precomputed light transport using nonlinear
gaussian function approximations. In I3D ’06: Proceedings of
the 2006 Symposium on Interactive 3D Graphics and Games,
ACM, 7–14.

GREEN, P., KAUTZ, J., AND DURAND, F. 2007. Efficient re-
flectance and visibility approximations for environment map ren-
dering. Computer Graphics Forum (Proc. EUROGRAPHICS)
26, 3, 495–502.

HAN, C., SUN, B., RAMAMOORTHI, R., AND GRINSPUN, E.
2007. Frequency domain normal map filtering. ACM Trans-
actions on Graphics 26, 3, 28:1–28:11.

KAUTZ, J., VÁZQUEZ, P.-P., HEIDRICH, W., AND SEIDEL, H.-
P. 2000. Unified approach to prefiltered environment maps. In
Proceedings of the Eurographics Workshop on Rendering Tech-
niques 2000, Springer-Verlag, London, UK, 185–196.

KŘIVÁNEK, J., AND COLBERT, M. 2008. Real-time shading with
filtered importance sampling. Computer Graphics Forum (Proc.
of Eurographics Symposium on Rendering) 27, 4.

LAWRENCE, J., BEN-ARTZI, A., DECORO, C., MATUSIK, W.,
PFISTER, H., RAMAMOORTHI, R., AND RUSINKIEWICZ, S.
2006. Inverse shade trees for non-parametric material represen-
tation and editing. ACM Transactions on Graphics 25, 3, 735–
745.

LIU, X., SLOAN, P. P., SHUM, H. Y., AND SNYDER, J. 2004.
All-frequency precomputed radiance transfer for glossy objects.
In Proceedings of the Eurographics Symposium on Rendering,
Eurographics Association, 337–344.

MAHAJAN, D., TSENG, Y.-T., AND RAMAMOORTHI, R. 2008.
An analysis of the in-out BRDF factorization for view-dependent
relighting. In Eurographics Symposium on Rendering, vol. 27.

MATUSIK, W., PFISTER, H., BRAND, M., AND MCMILLAN, L.
2003. A data-driven reflectance model. ACM Transactions on
Graphics 22, 3, 759–769.

MCALLISTER, D. K., LASTRA, A., AND HEIDRICH, W. 2002.
Efficient rendering of spatial bi-directional reflectance distribu-
tion functions. In HWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware,
Eurographics Association, Aire-la-Ville, Switzerland, 79–88.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2003. All-
frequency shadows using non-linear wavelet lighting approxima-
tion. ACM Transactions on Graphics 22, 3, 376–381.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2004. Triple
product wavelet integrals for all-frequency relighting. ACM
Transactions on Graphics 23, 3, 477–487.

NGAN, A., DURAND, F., AND MATUSIK, W. 2005. Experimental
analysis of BRDF models. In Rendering Techniques 2005: 16th
Eurographics Workshop on Rendering, 117–126.

NOCEDAL, J., AND WRIGHT, S. J. 1999. Numerical optimization.
Springer Series in Operations Research, Springer-Verlag.

REN, Z., WANG, R., SNYDER, J., ZHOU, K., LIU, X., SUN, B.,
SLOAN, P.-P., BAO, H., PENG, Q., AND GUO, B. 2006. Real-
time soft shadows in dynamic scenes using spherical harmonic
exponentiation. ACM Transactions on Graphics 25, 3, 977–986.

SHIRLEY, P., AND CHIU, K. 1997. A low distortion map between
disk and square. J. Graph. Tools 2, 3, 45–52.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In Proceedings of SIGGRAPH
2002, ACM, 527–536.

SLOAN, P.-P., LIU, X., SHUM, H.-Y., AND SNYDER, J. 2003.
Bi-scale radiance transfer. ACM Transactions on Graphics 22, 3
(July), 370–375.

SLOAN, P.-P., LUNA, B., AND SNYDER, J. 2005. Local, de-
formable precomputed radiance transfer. ACM Transactions on
Graphics 24, 3, 1216–1224.

SUN, X., ZHOU, K., CHEN, Y., LIN, S., SHI, J., AND GUO,
B. 2007. Interactive relighting with dynamic BRDFs. ACM
Transactions on Graphics 26, 3, 27:1–27:10.

TORRANCE, K. E., AND SPARROW, E. M. 1967. Theory for off-
specular reflection from roughened surfaces. In Journal of the
Oprical Society of America, vol. 57.

TSAI, Y.-T., AND SHIH, Z.-C. 2006. All-frequency precomputed
radiance transfer using spherical radial basis functions and clus-
tered tensor approximation. ACM Transactions on Graphics 25,
3, 967–976.

TSAI, Y.-T., CHANG, C.-C., JIANG, Q.-Z., AND WENG, S.-C.
2008. Importance sampling of products from illumination and
BRDF using spherical radial basis functions. Vis. Comput. 24, 7,
817–826.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K.,
DONIKIAN, M., AND GREENBERG, D. P. 2005. Lightcuts: a
scalable approach to illumination. ACM Transactions on Graph-
ics 24, 3, 1098–1107.

WALTER, B., ARBREE, A., BALA, K., AND GREENBERG, D. P.
2006. Multidimensional lightcuts. ACM Transactions on Graph-
ics 25, 3, 1081–1088.

WANG, R., TRAN, J., AND LUEBKE, D. 2004. All-frequency
relighting of non-diffuse objects using separable BRDF approx-
imation. In Rendering Techniques, Eurographics Association,
345–354.

WANG, R., TRAN, J., AND LUEBKE, D. 2006. All-frequency
relighting of glossy objects. ACM Transactions on Graphics 25,
2, 293–318.

WANG, J., ZHAO, S., TONG, X., SNYDER, J., AND GUO, B.
2008. Modeling anisotropic surface reflectance with example-
based microfacet synthesis. ACM Transactions on Graphics 27,
3, 41:1–41:9.

WARD, G. J. 1992. Measuring and modeling anisotropic reflection.
In Computer Graphics (Proceedings of ACM SIGGRAPH 92),
ACM, vol. 26, 265–272.

XU, K., JIA, Y.-T., FU, H., HU, S., AND TAI, C.-L. 2008. Spher-
ical piecewise constant basis functions for all-frequency precom-
puted radiance transfer. IEEE Transactions on Visualization and
Computer Graphics 14, 2, 454–467.

ZHOU, K., HU, Y., LIN, S., GUO, B., AND SHUM, H.-Y. 2005.
Precomputed shadow fields for dynamic scenes. ACM Transac-
tions on Graphics 24, 3, 1196–1201.

ZHU, C., BYRD, R. H., LU, P., AND NOCEDAL, J. 1997. Al-
gorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization. ACM Transactions on Math-
ematical Software 23, 4, 550–560.

Appendix

Vector Product of Spherical Gaussians in Eq. (5)

The vector product of a pair of SG lobes is given by

G(v;p1,λ1 ,μ1)G(v;p2,λ2 ,μ2)

= μ1 μ2 exp((v ⋅p1 −1)λ1 +(v ⋅p2 −1)λ2)

= μ1 μ2 exp(v ⋅ (λ1p1 +λ2p2)− (λ1 +λ2))

= μ1 μ2 exp

((
v ⋅ λ1p1 +λ2p2

λ1 +λ2
−1

)
(λ1 +λ2)

)
.

Letting pm = (λ1p1 +λ2p2)/(λ1 +λ2) and λm = λ1 +λ2, then

G(v;p1,λ1 ,μ1)G(v;p2,λ2 ,μ2) = μ1 μ2 e(v⋅pm−1)λm . (44)

Equation (44) is almost an SG except that the vector pm is not normalized:

G(v;p1 ,λ1,μ1)G(v;p2 ,λ2,μ2)

= μ1 μ2 exp

((
v ⋅ pm

∥pm∥
)

λm∥pm∥−λm

)

= μ1 μ2 exp

((
v ⋅ pm

∥pm∥ −1

)
λm∥pm∥

)
exp
(
λm∥pm∥−λm

)

= G
(

v;
pm

∥pm∥ , λm∥pm∥, μ1 μ2 e(∥pm∥−1)λm
)
. (45)

Analytic Approximation for fh in Eq. (30)

We define the normalized function

f̂h(θd ,λ) =
fh(θd ,λ)
fh(

π
2 ,λ)

, (46)

where fh(
π
2 ,λ) =

2π
λ (1−e−λ). We then approximate f̂h(θd ,λ) ∈ (0,1) as a sigmoid

function σ of the following form:

f̂h(θd ,λ)≈ σ(θd ,kλ) =
a

1+ kλ eθd
+

1−a
2

. (47)

Since the unscaled (a=1) sigmoid function never reaches 0 or 1, we scale it slightly by
setting a = 1.05. Then we represent kλ as a low-order polynomial in λ :

kλ ≈ fk(λ) = 0.204λ 3 −0.892λ 2 +2.995λ +0.067. (48)

These coefficients were derived using a least-squares fit to a densely sampled tabulation
of f̂h. The final form of our approximation is

fh(θd ,λ)≈ χ
(
θd , fk(λ)

)
fh
(π

2
,λ
)
. (49)

The integrated squared fitting error is

∫ + π
2

− π
2

∫ 105

1

(
f̂h(θd ,λ)−χ

(
θd ; fk(λ)

))2
dλ dθd = 5.5×10−4.

