CHI 2010: Tangible Ul

April 10-15, 2010, Atlanta, GA, USA

Touch-Display Keyboards: Transforming Keyboards into
Interactive Surfaces

Florian Block!, Hans Gellersen' and Nicolas Villar?
Lancaster University, 2Microsoft Research Cambridge
Lfblock, hwg} @comp.lancs.ac.uk, ?nvillar@microsoft.com

ABSTRACT

In spite of many advances in GUI workstations, the keyboard
has remained limited to text entry and basic command invo-
cation. In this work, we introduce the Touch-Display Key-
board (TDK), a novel keyboard that combines the physical-
ergonomic qualities of the conventional keyboard with dy-
namic display and touch-sensing embedded in each key. The
TDK effectively transforms the keyboard into an interac-
tive surface that is seamlessly integrated with the interaction
space of GUIs, extending graphical output, mouse interac-
tion and three-state input to the keyboard. This gives rise
to an entirely new design space of interaction across key-
board, mouse and screen, for which we provide a first sys-
tematic analysis in this paper. We illustrate the emerging de-
sign opportunities with a host of novel interaction concepts
and techniques, and show how these contribute to expres-
siveness of GUISs, exploration and learning of keyboard in-
terfaces, and interface customization across graphics display
and physical keyboard.

Author Keywords: Touch-Display Keyboard, I/O Device,
Interactive Surface, Interface Customization, GUI.

ACM Classification Keywords: Input devices and strate-
gies; Graphical user interfaces.

General Terms: Design, Human Factors.

INTRODUCTION

Despite improvements in displays and input devices, GUIs
still suffer from a chronic lack of power and expressiveness:
simple tasks are often laborious to carry out with a mouse,
there is never enough display space available to make com-
mands easy to reach, and customization and tailoring are dif-
ficult to do. To address these issues we propose to rethink the
role of the keyboard in GUI workstations — arguing that it
is currently underutilized and limited to text entry and ba-
sic command invocation. We introduce the Touch-Display
Keyboard (TDK) that seamlessly extends the GUI, provides
novel and rich interactions, and facilitates a new quality of
interface customization across keyboard and display.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CHI 2010, April 10 — 15, 2010, Atlanta, Georgia, USA

Copyright 2010 ACM 978-1-60558-929-9/10/04...$10.00.

The keyboard is a highly evolved input device. Its physical
properties (embossed keys, force feedback, spring thresh-
old) support tactile acquisition and operation of keys, while
users can rest their fingers on the keys without triggering,
and maintain a focus on the screen [9]. Grounded in these
ergonomic qualities, users can touch-type at high speeds for
text and data entry and access commands efficiently via hot-
keys. The principal idea of the TDK is to combine these
qualities with the flexibility of the graphical user interface.

In terms of device hardware, a TDK is a keyboard that re-
tains the physical and mechanical properties of the state of
the art keyboard, and that has two extensions: a dynamic
display embedded in each key, and a touch-sensor in each
key. Related keyboard hardware has been developed in re-
cent products, albeit separately for display [3] and touch
[1]. These developments demonstrate the technical and eco-
nomic feasibility of the proposed device. With this hardware
as platform, we conceptualize TDKSs to leverage touch and
display in four fundamental ways:

e The matrix of key-displays is conceived as a coherent dis-
play surface that can extend the primary display in a user
interface.

e Graphical elements can be distributed between and moved
across keyboard and primary display.

e Mouse interaction is extended across the keyboard dis-
play.

e Touch-sensing adds an additional layer and state of input
on the keyboard.

A TDK can be viewed as a keyboard that has additional ca-
pabilities to improve and expand its core utility as text and
command input device. This is the viewpoint from which
prior work has investigated keyboard extensions: embedded
displays to make key labels dynamic [3]; touch-sensing to
add a state for previewing of key actions [17]; and multi-
touch gestures to expand the input space of keyboards [1].

However, a TDK can also be viewed as an interactive touch-
display. From this perspective, a TDK has very distinctive
properties as a result of retaining the physical form of a key-
board. Some of these may appear more as a constraint than
as a design opportunity — the uneven surface; the fixed key
layout; and the coarse-grained resolution of touch sensing.
Other features though expand beyond what an interactive
surface commonly supports — tactile feedback; three-state

1145

CHI 2010: Tangible Ul

touch input; and the complementary input spaces of mouse
and touch (discrete versus continuous). The result is an in-
triguing design space, for which we provide a first investiga-
tion in this paper.

The contributions of this paper are thus threefold. First, we
introduce the concept of the TDK together with a proof-of-
concept implementation. Secondly, we provide a system-
atic exploration of the interaction design space of dynamic
keyboards. This covers keyboards extended with displays,
mouse interaction, touch sensing, and combinations of these,
and is of relevance not only for understanding the potential
of the TDK, but also for understanding what ‘just display’ or
‘just touch’ can add to a keyboard. Thirdly, we demonstrate
a range of novel interaction techniques in this design space.
These leverage the TDK for innovative command input and
control, for interaction with dynamic content on keyboards,
and for customization of interfaces across keyboard and pri-
mary display.

RELATED WORK

Studies have consistently shown that keyboards with me-
chanical keys outperform alternative input devices for text
entry, including soft-keyboards on touch-displays [13, 19,
20]. In GUISs, they improve command input performance
with reduction of required physical movement and with bi-
manual interaction [7, 14, 15, 16]. The tactile nature of the
keys allows users to locate keys by touch, which is known
to improve keying performance [9] and enables tactile input
modes, such as touch-typing. A significant ergonomic qual-
ity and advantage of the physical keyboard is that users can
rest their fingers on the keyboard surface without trigger-
ing input [22]. These findings are important to our work, as
they highlight the value of maintaining the physical charac-
teristics of the conventional keyboard in the design of novel
keyboard concepts.

The extension of keyboards with additional input/output ca-
pabilities has been demonstrated in a number of recent de-
velopments. Art Lebedev have produced a keyboard that has
a 48x48 pixel OLED display in each of the keys, to sup-
port different input languages and application command sets
[3]. United Keys provide a keyboard with a smaller set of
display-enabled function keys [2]. Fingerworks produced
specialist keyboards with embedded touch-sensing, to sup-
port multi-touch input gestures on the keyboard surface [1].
Capacitative touch-sensing in keyboards and keypads has
also been demonstrated for finger-sensing and preview of
key input [17], for key-touch as additional input mode [11],
and for use of the keyboard surface for touchpad-like point-
ing [4]. Beyond these works, we demonstrate integration of
both display and touch into mechanical keyboards.

Conversely to adding touch and display to a keyboard, a va-
riety of works have investigated how physical input and tac-
tile feedback can be added to touch-display devices. In the
context of mobile interactions, researchers have shown that
tactile feedback improves performance with soft-keyboards,
while performance with physical keyboards is still signifi-
cantly better [10]. A different approach, possible on ver-
tical display surfaces, is to use transparent devices for tac-

April 10-15, 2010, Atlanta, GA, USA

|

Figure 1. The Touch-Display Keyboard: each key is augmented with
a touch-sensor and a graphics display. This enables interaction with
graphical elements across keyboard and primary display device.

tile manipulation of underlying dynamic content. Data Tiles
demonstrated this with acrylic tiles that afforded certain di-
rect manipulations [18]. SLAP provides transparent widgets
made of silicone, including a keyboard to add physicality to
interaction with soft-keyboards [23]. Hartmann et al. added
conventional keyboards and mice on an interactive table, and
explored techniques that leverage location and orientation
sensing of these devices for co-location of soft inputs and
displayed information [8]. A TDK can also be used on inter-
active tables, but is more generally conceived for use in any
setting in which the conventional keyboard is found now.

A TDK is, in effect, an array of physical keys that can be dy-
namically adapted. Greenberg and Boyle introduced mech-
anisms for dynamic mapping of graphical controls to phid-
gets, and demonstrated a variety of benefits of end-user cus-
tomization of interfaces with physical controls [5]. A TDK
is more rigid in physical control layout than an interface con-
structed with a physical UI toolkit, but the keys on a TDK are
adaptable in both their function and appearance. Moreover,
the keys are seamlessly integrated in a mouse and display
space that extends over the primary screen and keyboard sur-
face. This enables their customization using powerful direct
manipulation techniques that have previously been confined
to adaptation of screen-based interface elements [21].

TOUCH-DISPLAY KEYBOARD PRINCIPLES
The TDK is a new type of device for human-computer inter-
action that is defined by three characteristics:

e A TDK retains the physical form, tactile quality and input
functionality of the conventional computer keyboard.

e Each key on a TDK is augmented with a graphics display
on its surface.

e Each key is also augmented with a touch sensor that is
capable of detecting whether or not a finger touches its
surface.

The keyboard extensions of the TDK are illustrated in Fig-
ure 1. As indicated, the keyboard is transformed into an in-
teractive surface on which graphical elements can be placed
and manipulated. In a conventional interface configuration,

1146

CHI 2010: Tangible Ul

a keyboard can only provide input to a graphics display. A
TDK, in contrast, enables new forms of interaction and cus-
tomization between the keyboard and a primary display, as
graphical user interfaces can now be mapped across the two
devices. In order to facilitate such novel interactions, we
conceive the TDK with four properties that extend over the
‘raw’ addition of display and touch to each key:

e The matrix of individual key-displays is supported as a
coherent keyboard display. The keyboard display can be
manipulated on the level of key regions (predefined by
the keyboard layout) as well as pixel-level. The keyboard
display seamlessly extends a primary graphics display, in
the same manner as secondary screens do in contemporary
interfaces.

e Graphical elements can be distributed between keyboard
and primary display. Any graphical element displayed on
a screen can also be displayed on the keyboard display.
On the keyboard, graphical elements become associated
with the key regions they occupy.

e Mouse interaction is seamlessly extended from the pri-
mary display across the keyboard. The mouse can be used
to select and manipulate graphical elements, key regions
and individual pixels on the keyboard, and to drag&drop
objects across the display space, including across the bound-
ary of keyboard and primary display areas.

e Touch is supported on the keyboard as a third state for
manual key input, to the effect that three-state input is sup-
ported consistently across both finger and mouse modali-
ties, and across both keyboard and the primary display.

With these properties, a keyboard is turned into an interac-
tive surface that users can in principle interact with in the
same ways as with a GUI on a conventional display device.
However, the keyboard surface naturally differs significantly
from a conventional GUI surface, as it remains optimized
for efficient text and command input. These differences are
important for consideration of the novel interactions that a
TDK enables in a keyboard-mouse-display configuration:

e Discontinuous surface: The keyboard surface is uneven
and has gaps between the keys. This compromises the
quality of display across the surface, with discontinuities
between the individual keys.

e Fixed layout: in order to make graphical elements accessi-
ble via key input, their arrangement must match the phys-
ical layout and sizes of the keys.

e Relative spatial arrangement: a TDK is a vertical interac-
tive display whereas a primary display is commonly hor-
izontal. The relative spatial arrangement can impact on
ease of interaction across the two surfaces (e.g., switching
of visual focus).

o Different input/ output resolutions: the resolution of graph-
ical output and mouse input is consistent across TDK and
primary display, but touch and key input are of lower gran-
ularity (dictated by size and arrangement of the keys).
Consequently, graphical elements can only be accessed by

April 10-15, 2010, Atlanta, GA, USA

touch if they occupy at least one key region fully. Smaller
elements can only be accessed using the mouse.

e Discrete versus continuous input: keyboard input is dis-
crete and limited to three-state interaction with graphical
elements on the TDK (touch, press, release). Graphical el-
ements and operations with more complex input require-
ments can only be manipulated with the mouse.

PROOF OF CONCEPT IMPLEMENTATION

For proof-of-concept we have built a fully functional proto-
type of a TDK (Fig. 2). The prototype is based on an off-
the-shelf keyboard (ADVENT KBW100). A dynamic dis-
play was added by means of overhead projection, for which
the surface of the keys was spray painted in matte white. An
XVGA projector (1024 x 768) was mounted top down on
a cross bar about 1 meter above the keyboard. In order to
maintain a consistent projection, the keyboard was fixed to
the table at a suitable position. A mask was used to limit the
projection to the area covered by keys. The effective display
area per key was approximately 48x48 pixels.

We integrated 10 Quantum E1103 touch-sensors (with 10
channels each) on custom-built boards into the base of the
keyboard. From there we routed copper wires through the
keyboard to each key, connecting to capacitative tape under
each key cap. The tape was carefully sized and placed to
only generate sufficient capacitance when the finger touches
the center of the key (to avoid unwanted trigger of adjacent
keys). For aggregation of the touch-sensor signals we used a
small external board connected to the computer via USB.

On top of the hardware layer, we developed a TDK frame-
work on .NET and WPF, as software platform for explo-
ration of the interaction design space of dynamic keyboards.
Because we used overhead projection as secondary display
connected to the computer, graphical output and mouse in-
put were implicitly extended to the keyboard surface. The
key regions in the display were managed with a mapping
table associating a key code with a rectangle in the display
coordinate space. On the input side, we detached the key-
board signals from the operating system via a global input
hook, to redirect key events via a custom input layer that in-
tegrated touch-sensing. The key and touch events (pressed,
touched, released) are handled in the same way as mouse
events (click, hover, release) for three-state interaction (but
key and mouse input are maintained separate, i.e. key touch
does not move the mouse pointer).

Figure 2. Proof-of-concept: prototype implementation of a TDK using
capacitive touch-sensing and overhead projection.

1147

CHI 2010: Tangible Ul April 10-15, 2010, Atlanta, GA, USA

(BED I
Ll Ll

LLLI LIl

Display on Display over Keyboard Use as Mouse Interaction Mouse Interaction Touch-Sensing on Simultaneous Touch-Sensing Touch&Mouse Interactions
Individual Keys Multiple Keys Secondary Display with On-Keyboard Widgets across Keyboard & Display Individual Keys on the Keyboard

> > » Touch&Mouse
Graphical Output Mouse Input “e........ Touch INPUt eeeersmeeesssszzzns=® - INPUL

Figure 3. The design space of TDKs is defined by three dimensions of graphical output, mouse input and touch input in addition to conventional key
input. New design opportunities emerge along each dimension and in addition from the novel combination of mouse and touch input on the keyboard.

Handling keyboard events like mouse input has a number of In Figure 3, the new design dimensions are shown in se-
advantages. First of all, we can define generic hover and quence although they do not necessarily built on each other.
invoke behaviors, which abstract from finger versus mouse Mouse techniques by necessity built on graphical output on
input. This allows us to design graphical controls indepen- the keyboard, but touch input can extend the expressiveness
dently of whether they will be placed on a conventional dis- of the keyboard as such, and provide new opportunities both
play or on the keyboard, and also in abstraction from the with and without dynamic display on the keyboard.
modality the user chooses for interaction. Secondly, the key-

board surface can be designed in essentially the same way Subsequently, we provide a systematic analysis of the design
as for conventional GUIs. For instance, several TDK inter- space combined with introduction of novel interaction tech-
faces can stack, while only the top-most interface receives niques. Figure 3 provides a roadmap for our purpose, which
the events, just like with stacked windows. A TDK interface we will traverse from the left (analysis of what display on
can thus simply be activated by bringing it to the front. In keys facilitates) to the right (exploration of touch&mouse
the same way, parts of a TDK interface can be dynamically interaction on the keyboard).

overloaded, for example for context-dependent mapping and

re-labeling of a group of keys. A general advantage is that Display on Individual Keys

existing interface programming tools, such as GUI-builders, Display on individual keys enables dynamic mapping and re-
can be readily applied to TDK interface development. labeling of keys. This can be utilized to improve keyboard

. . s . . : interaction in a number of ways:
Our implementation facilitates integration of the TDK with

many existing applications using Microsoft Interface Au- o Visualization of hidden functionality. Keys are routinely
tomation. This enables us to hook into existing graphical overloaded with hotkeys for fast access to commands. How-
user interfaces, to query detailed information (e.g., screen ever, in contrast to GUI controls (which can be visually
bounds and description of graphical elements) and to inject explored), hotkeys are hidden and difficult to acquire and
events (e.g., invoking graphical controls). We can also copy memorize by the user [7, 24]. Some techniques that ad-
the visual appearance of controls by using the Win32 APL dress this problem are already available in Art Lebedev’s
Our implementation further supports OLE drag&drop, al- display keyboard. This includes display of control icons
lowing us to associate a variety of data, such as images, files when a modifier key is pressed (e.g., displaying the ‘cut’
or audio clips with keys on the TDK. All examples of TDK icon on the ‘X’ key when CTRL is held down), and dy-
interaction techniques that we provide in this paper are im- namic adoption of hotkeys according to the active appli-
plemented using on this framework, and integrated with real cations (e.g., different icons for Photoshop and Word) [3].

applications such as Microsoft Office and Firefox.

e Spatial mapping of keys. On conventional keyboards, map-
pings are commonly mnemonic (e.g., ‘B’ for Brush in
Photoshop) to help users memorize hotkeys. However,
when visualized on the keyboard, such mappings can ap-
pear random, since the association with the original key
is no longer obvious. Instead, spatial mapping strategies
can be implemented, for example arranging related hot-
keys in rows, similarly to toolbars on the screen. Previous
work has shown that such spatial mapping strategies can
improve user performance [15, 16].

THE DESIGN SPACE OF TOUCH-DISPLAY KEYBOARDS

The design space of TDKSs is defined by the three dimen-
sions of graphical output, mouse input, and touch input in
addition to the conventional key input. As shown in Figure
3, graphical output as such adds new possibilities in terms of
display on individual keys, over multiple keys, and over the
entire keyboard as secondary display complementary to the
primary screen. Mouse input added to graphical output facil-
itates new forms of interaction with widgets on the keyboard,

and interaction across the keyboard and primary display de- o Multiple key maps. A dynamic keyboard can support al-
vice. Touch input adds a further dimension, providing an ternative input languages, as demonstrated in Art Lebe-
additional input state for each individual key, and enabling dev’s product (e.g., enabling users to switch latin and cyril-
multi-touch input across the keyboard. New design oppor- lic character sets [3]). More generally, dynamic labels en-
tunities arise also from the novel combination of mouse and able support of multiple key maps between which the user
touch input on the keyboard. can switch. This can provide access to alternative symbol

1148

CHI 2010: Tangible Ul

(a) Each function key acts as graph- (b) Pie menus allow the tem-
ical tabulators, activating a different porary overloading of adja-
keyboard interface (example from cent keys, eg. to provide re-
Microsoft Word). finement of a command.

Figure 4. TDKs enable dynamic mapping strategies for keyboard in-
terfaces.

sets for text input, and to alternative hotkey allocations for
command input. As a novel technique to support this, we
have developed Keyboard Tabs (see below).

o Context-dependent mapping. Dynamic mapping can be
used to overload keys in a contextualized manner. For ex-
ample, if a command is triggered that requires parameter
input, then adjacent keys can be temporarily overloaded
to display the available parameters (this is exemplified in
Hotkey Pie Menus, a technique we introduce below).

Keyboard Tabs

Keyboards Tabs are designed to provide fast access to differ-
ent keyboard maps. A row of keys at the top of the keyboard,
in our prototype the row of function keys, is treated as tabu-
lators. Each of the tab-keys provides access to an associated
key interface. The technique is illustrated in Figure 4(a),
showing its use in the context of a word processor. When a
tab-key is pressed, the keys are overloaded with an associ-
ated panel of hotkeys. Pressing a tab again hides the inter-
face and brings back the text interface. This concept is sim-
ilar to graphical menus in conventional GUIs, such as tabu-
lator panels (each tab showing a different set of controls), or
‘ribbons’ (switchable interface panels). In our prototype up
to 12 different hotkey panels can be supported (one for each
function key), facilitating fast and uniform access to over a
thousand distinct commands. This has the potential to im-
prove command input in feature-rich software, overcoming
the problem that keyboard shortcuts are only provided for
a subset of commands (which has been found to be prob-
lematic as it requires users to decide whether a shortcut is
available [12]).

Display over Multiple Keys

A group of keys can be used as a coherent area for interaction
with a graphical element. This can be used to provide multi-
key input devices:

April 10-15, 2010, Atlanta, GA, USA

o Multi-Key Buttons. A graphical element can be arranged
over multiple keys that together function as a larger but-
ton, such that pressing of any of the keys triggers the de-
fault action associated with the element. This is useful
when the element itself cannot easily be represented on a
single key (e.g., a URL), and it can also be used to make
a control easier to acquire by increasing its size.

e Keyboard Scalar Controls. Scalar controls can be sup-
ported on the keyboard by grouping adjacent keys that
represent steps on a scale. A keyboard provides only a
low resolution for interaction with scalar controls. How-
ever, this type of control can be useful in cases that do
not require high precision (e.g., zoom control) or where
discrete steps are desirable (e.g., a control for line thick-
ness). Alternatively, finer-grained control can be added
with mouse integration on the keyboard (see Fig. 6).

e Keyboard Menus. A group of keys can implement a menu,
with each key representing an item. As a concrete exam-
ple, we introduce Hotkey Pie Menus, which also demon-
strate context-dependent overloading of keys.

Hotkey Pie Menus

Pie menus are well known from tablet computing. When a
pen is put down on an element, a pie menu appears around
the point of contact, and provides a set of menu items radi-
ally arranged around the pen, for selection with minimized
movement. Figure 4(b) shows how we transferred the con-
cept to keyboard interfaces: when a key is pressed, a pie
menu temporarily overloads the functionality of the surround-
ing keys. In the shown example, the user has selected a
‘draw arrow’ tool, and can then refine the command by se-
lection of line style options. Like the original pie menus,
Hotkey Pie Menus provide a gestural interface. The adja-
cent arrangement of command and options facilitates muscle
memory with frequent use. As the acquisition of adjacent
keys is also guided by tactile feedback, experienced users
could learn to use the technique while maintaining their vi-
sual focus on the primary screen.

Keyboard use as Secondary Display

The keyboard can more generally be considered as a sec-
ondary display. The physical properties of a TDK limit its
utility for general-purpose display, but it provides display
space that is ‘ready to hand’ when the keyboard is not used
for input. From this perspective, it can complement the pri-
mary display with additional, albeit lower-quality, display
real estate. The following are concrete examples for com-
plementary use as secondary display:

Keyboard context display

Keyboard and primary display can be combined as a fo-
cus&context display, to provide simultaneous access to in-
formation detail and surrounding context. For example, map
data can be shown at fine-grained resolution for a small ge-
ographical region area on the primary display, and at lower
resolution for a larger area on the keyboard display. The
keyboard facilitates fast focus switch by key input.

1149

CHI 2010: Tangible Ul

Keyboard palette

Applications such as Photoshop make extensive use of tool
palettes for access to editing tools, but the palettes obstruct
the actual work surface. The keyboard surface can be used to
offload the palettes from the primary work surface. In related
work, external handhelds have been used to offload palettes
[6] but that requires inter-device communication, whereas a
TDK seamlessly extends the primary display space.

Keyboard clipboard

The keyboard can be used as display space for the clipboard.
Clips can be represented by thumbnails, and directly ac-
cessed by key input, for pasting into applications on the pri-
mary display.

Mouse Interaction with On-Keyboard Widgets

Support of the mouse on the keyboard is an unusual concept
as both are primarily associated with input. However on a
display-augmented keyboard, mouse interaction can facili-
tate interface behaviors that are standard in GUISs, in order to
adopt their usability benefits for the keyboard context.

o Interface Exploration. An important function of the mouse
in a GUI is interface exploration. A common technique
are tooltips that are triggered when the mouse is moved
over a graphical control. They allow users to inspect what
command or tool an icon represents, and are an aid for
novices to discover and learn interface functionality. Also
common are are context menus for inspection of interface
properties (see below). Extension of mouse support to the
keyboard enables use of these techniques to improve key-
board usability (e.g., exploration of available shortcuts).

e Meta-interaction on widgets. In a GUI, the mouse is also
used for meta-interaction with interface elements. For ex-
ample, ‘right click” on widgets is a standard technique for
opening a context menu or dialog, through which proper-
ties of the widget can be customized. Extension of this
behavior to the keyboard can specifically facilitate cus-
tomization of key mappings and shortcuts, and support
other techniques that we have introduced (e.g., customiza-
tion of the menu items in a keyboard pie menu). A con-
crete example for a context menu is introduced below.

o Continuous Input on Scalar Control. Above, we have pro-
posed mapping of scalar controls onto arrays of keys. The
mouse can complement keyboard input on such controls
for more fine-grained input. A concrete implementation
of such a multimodal control is introduced below.

Context menu for keyboard widgets

We have implemented context menus that can be accessed
with the mouse on keyboard widgets (see Fig. 5). As shown,
context menus can be employed to provide generic access to
the properties of a widget. However context menus can also
be provided for specific keyboard tasks. As a concrete tech-
nique, we have implemented a context menu for text entry
that can be invoked on a key to access variants of the input
character (e.g., versions of the character with different ac-
cent marks). Such techniques have previously been limited
to soft keyboards (e.g., iPhone).

April 10-15, 2010, Atlanta, GA, USA

L1

T
‘ £ MF F

Figure 5. Context menus allow the inspection of on-keyboard widgets.

T o e s, St |

!:ress bujon or dryg with mtuse ! |

Figure 6. Continuous controls (such as sliders) can be operated in dis-
crete steps using the keys, or at finer resolution using the mouse.

Multimodal slider control

Figure 6 shows a multimodal slider we have implemented as
widget for use on keyboards. The slider can be controlled
by key input, for adjustment in discrete steps, and by mouse
input for fine-grained adjustment. Both input modes can be
used interchangeably.

Mouse Interaction across Keyboard & Display

The mouse has a distinct role in the TDK concept, as it
supports continuous input across the combined interaction
space of keyboard and primary display. The seamlessness
of mouse interaction across the two surfaces is significant in
two ways:

e [nterface customization across keyboard and display. The
mouse can be used to customize the extended interface us-
ing direct manipulation techniques. Prior work has demon-
strated advanced customization mechanisms for GUIs that
can in principle be adopted. As a concrete technique, we
have implemented drag&drop to facilitate rearrangement
of TDK interfaces (see below). This enables, for exam-
ple, dragging of graphical control from the primary dis-
play onto the keyboard to create a hotkey.

e Uniform interaction with graphical elements. The mouse
supports uniform interaction with graphical elements, ir-
respective of whether they are located on a screen, or on

Figure 7. Drag&drop of graphical items between primary display
and keyboard. This technique facilitates interface customization by
drag&drop of items such as widgets, browser tabs, and image clips onto
the keyboard to make them physically accessible.

1150

CHI 2010: Tangible Ul

the keyboard. When a user moves a graphical control from
the display onto the keyboard, they can still interact with
it using their accustomed mouse techniques (e.g., for ex-
ploration and editing of properties, as discussed above).

Drag&drop interface customization

In our prototype, we have explored new ways of customiz-
ing graphical interfaces across keyboard and display. Figure
7 shows, how mouse interaction can be used to move graph-
ical elements between display and keyboard. A graphical
element can be picked up by holding down the right mouse
button and moving the mouse, causing the control to be de-
tached from its current location on the screen. The control
can then be dropped onto a key, while size and appearance
are adapted to the new interface slot. The technique can be
applied not only to controls but to any type of graphical el-
ement. Our implementation supports the dragging of differ-
ent types of control (e.g., interface containers such as tabs in
Firefox), hyper-links, items from the task bar, and clips (e.g.
images). This enables very flexible use of a TDK beyond
text and command input, for instance for task switching, ac-
cess to frequently used web sites, and pasting of clips.

Touch-Sensing on Individual Keys

In the context of individual keys, the significance of touch-
sensing is that it adds a third input state. Recent work has
demonstrated the utility of three-state input on keyboards
and keypads [17], however a TDK provides a different con-
text as it also supports dynamic display on keys, affording
the following interactions:

e Proactive preview. The idea of proactive preview is to in-
spect an input before it is triggered. This is useful in par-
ticular for novice users, and is routinely supported with
tooltips in GUIs. Rekimoto et al. have demonstrated
proactive preview for keyboard input, providing tooltips
on a separate display [17]. A TDK, in contrast, enables
tooltip display directly on the keyboard. Touch and mouse-
over can be used interchangeably to invoke the preview.
Instead of a tooltip, it also possible to invoke a live pre-
view by simulating the effect of the input (e.g. touch of
‘CTRL+B’ would show selected text in bold, but if the
keys are not pressed, the formatting is not actually ap-
plied). In addition to these existing forms of preview, we
introduce two new techniques that are specifically moti-
vated by display on keys: Preview of content and Finger
occlusion preview.

o Touch-based actions. Touch can also be used to directly
trigger input [11]. Such a strategy conflicts conceptually
with proactive preview, but there are scenarios for which
touch-based input may be appropriate. In particular, for
keys with fixed and familiar functionality (where preview
may not be necessary) touch can be mapped to actions.
An example might be the arrow keys for scrolling in text
document: ‘touched’ could be mapped to slow scrolling,
and ‘pressed’ to fast scrolling. However, such overloading
has to be designed with care. Keys that are prone to acci-
dental touch, as well as keys that may be touched in rest
position during typing are not suitable for such a mapping.

April 10-15, 2010, Atlanta, GA, USA

(a) Finger-occlusion preview: graphical controls occluded by fingers
are shown above the actual key.

(b) Content-preview of clips. (c) Preview of ﬁnger positions
on a virtual on-screen keyboard

Figure 8. Proactive preview techniques on the TDK.

o Touch-based context menus. Generally, it is desirable to
facilitate manual access as alternative to mouse access for
interaction with elements on the keyboard. For example,
context menus that support text entry with access to spe-
cial characters (as introduced above) are more efficient if
they can be opened manually rather than by mouse-over.
A possible way of implementing this is prolonged touch
to open the menu, and layout of the menu items over ad-
jacent keys.

Preview of content

TDKs can act as output device for presentation of content,
but content elements become occluded when users interact
with them via key input. Figure 8(b) shows a content pre-
view technique we have implemented to address this prob-
lem. When the users touches a key that displays content (in
this case an image clip), then the content is displayed in en-
larged form above the key (or next to the key, if it is in the
top row).

Finger occlusion preview

A beneficial ergonomic property of keyboards is that users
can rest their fingers on the surface without triggering func-
tionality (e.g., in a ‘home position’). When a user rests their
fingers in this way, the display of the underlying keys is oc-
cluded. To provide visual guidance in such a context, we
have implemented finger occlusion preview, as shown in Fig-
ure 8(a). This is similar to key preview on the iPhone.

Simultaneous Touch-Sensing on the Keyboard

The keyboard as a whole supports simultaneous touch-sensing
on the granularity of keys. This enables interactions that ex-
ploit sensing of finger positions and multiple touch points:

e Finger sensing as context. Presence/absence of fingers
can be detected and used as context, for example to make

CHI 2010: Tangible Ul

Figure 9. A group of four commands (e.g., undo, cut, copy and paste)
can be assigned to the user’s finger tips. Whenever the fingers touch a
row of adjacent keys, the underlying keys are overloaded accordingly.

the keyboard available for output, when it is not used for
input. Sensing of finger positions can also be used to in-
fer user activity, for instance whether the user is primarily
typing or formatting (which can be used to adapt the in-
terface, e.g. context menus). Finger positions can also be
displayed as context to the user. This has been demon-
strated in related work by Rekimoto et al., and is useful
when keys and visual focus are separated [17]. We have
also implemented this for the TDK, with a soft keyboard
on the primary display for feedback on which keyboard
elements are touched (cf. Figure 8(c)).

o Implicit gestures. Closely related is sensing of gestures
that are implicit or natural with particular uses of the key-
board. For instance, placement of eight fingers on the
home row can be used as an implicit gesture to switch
the keyboard into text-entry mode.

e Motion gestures. The resolution of the touch input space
is coarse-grained but sufficient to detect finger and hand
motions across keys. This can be used to support distinct
motion gestures as input on the keyboard (see below for
examples we prototyped).

o Multipoint input. Multipoint input gestures that have been
developed for multi-touch surfaces can be adopted on the
keyboard, for example for two-handed manipulation of
objects displayed on the primary screen. The uneven sur-
face and segmentation of the keyboard surface can limit
smooth execution of multi-touch gestures but on the other
hand provides opportunities for multi-touch input with tac-
tile feedback. An example is introduced below.

Finger position gestures. The relative positions of fingers
can be interpreted as input. For example, touch with of
two, three or four fingers on adjacent keys can be treated
as different gestures. Below we describe a technique that
exploits this to provide fingertip commands.

Motion gestures for keyboard adaptation

A finger flick gesture across the keyboard has been imple-
mented for ‘flicking’ through different keyboard mappings
(e.g. different input languages in text mode, or different tool
palettes for command input). Complementary, a push ges-
ture is provided as hand motion toward the primary display,
to make the keyboard interface visible within the primary
visual focus (a push in the opposite direction moves the key-
board visualization off the screen).

1152

April 10-15, 2010, Atlanta, GA, USA

Scaling with tactile feedback

This technique supports fine-grained scaling of objects on
the screen with relative input from two fingers on a keyboard
row. When the fingers are moved apart by one key, the object
is scaled up by one pixel, and conversely the object is scaled
down when the fingers are moved together.

Fingertip commands

This technique allows binding of commands to the four fin-
gertips of a hand. For example, undo, cut, copy and paste
might be mapped in this way. When the user touches the
keyboard with the four fingers on adjacent keys, this is treated
as a gesture that temporarily overlays the keys with finger-
tip commands (see Fig. 9). This means that the commands
move with the fingers and can be triggered on any row of
four keys on the keyboard, which makes them particularly
easy to acquire.

Touch&Mouse Interactions
Finger and mouse input can be combined on a TDK:

e Multimodal input. The two modalities can complement
each other for coarse-grained versus fine-grained input
(as demonstrated above, with a Multimodal Slider). The
modalities are used on the same object but separated in
time.

e Hold and move input. Touch naturally affords ‘select and
hold’ due to segmentation of the keyboard, whereas the
mouse can be used more easily for ‘select and move’ in-
teractions. This can be combined for resizing and cloning
of objects on the keyboard, see below.

Combined input. The two modalities can be used simulta-
neously on the same key. This enables four additional in-
put states (key touch versus press, combined with mouse-
over versus mouse-down). Combined input is used in the
two techniques below.

Resizing of keyboard elements

This technique complement drag&drop customization as in-
troduced above. A ‘drop’ maps an element to a single key.
If the element requires more space, then it needs to be re-
sized. This can be fluently supported by combining touch
and mouse, as shown in Figure 10(a): the dropped element
is touched to hold it on the key, while the mouse is dragged
across adjacent keys to ‘stretch’ the control. Elements can
be resized also in two dimensions (cf. Figure 10(c)).

Adaptive resizing of scalar control

This technique supports adaptive resizing and mapping of
scalar controls. When such a control is dropped onto a key,
it is mapped to on and off states that can be toggled. When
the control is resized across two keys, it is mapped to ‘+” and
‘~’ buttons. When it is further enlarged, it becomes mapped
to a scalar control (cf. Figure 10(b)).

Cloning of graphical keyboard controls
It can also be desirable to replicate graphical objects on the
keyboard. In a GUI this is typically supported by holding

CHI 2010: Tangible Ul

Mouse Over + Finger Touched Resize Mode: Drag with mouse and drop

@ T RS

(a) Controls enter a resizing state when both mouse and finger are
over the associated key, and the mouse can be dragged for resizing.

(b) Adaptive mapping and resizing (c) Elements can be resized
of a continuous control. across keyboard rows.

Figure 10. Touch&Mouse interaction to customize keyboard widgets.

down a modifier key (e.g., CTRL) while the object is se-
lected with the mouse. The mouse can then drag a copy
of the object to a target location. On a keyboard, the same
mouse operation can be used, but in conjunction with lit-
erally holding the original object in place (by pressing the
corresponding key).

DISCUSSION

The analysis of the design space shows that the TDK con-
cept gives rise to a wide spectrum of new and compelling
uses for the keyboard in a GUI workstation. The contribu-
tions of the TDK include rich and expressive interaction and
meta-interaction techniques, novel support for interface ex-
ploration and learning, and a new quality of interface cus-
tomizability.

Expressiveness. In conventional GUIs, many tasks have to
be carried out using the mouse, which is often laborious,
reduces parallelism and limits the user’s general expressive-
ness. We have shown that TDKs address this issue by pro-
viding access to a variety of tasks and allowing the user to
off-load many activities to the keyboard’s surface. We have
demonstrated a series of techniques that go beyond tradi-
tional hotkeys, and explored ways of enabling feature-rich
and expressive keyboard interfaces that combine the flexibil-
ity of graphical elements with the known benefits of physical
and tactile controls.

Exploration and Learning. Conventional keyboard interfaces
are chronically difficult to learn, and many users fail to adopt
keyboard-based input strategies in practice. As demonstrated,
TDKs not only make keyboard interfaces visual but also al-
low the direct application of common tools for exploring
GUIs to keyboard interfaces — conceptually unifying how
users can explore interfaces across keyboard and display.
Additionally, we have presented techniques that can help the
user make the transition from effective to more advanced
techniques. For instance, finger-preview is used to assist
the tactile acquisition of keys while providing visual guid-
ance on the primary screen, close to the current task. Us-
ing these techniques, dynamic keyboards can also assist the

April 10-15, 2010, Atlanta, GA, USA

learning of touch-typing. For novice typists, training appli-
cations could provide visual guidance directly on the key-
board (e.g., arrows pointing from current finger-position to
the target key). Finger-preview can then be utilized to move
the user’s primary focus away from the keyboard.

Interface Customization. TDKs facilitate a new quality of
interface customization across keyboard and display. The
keyboard is enabled as additional space for customization,
and supports customization of graphical elements with phys-
ical features. In principle, any type of graphical element can
be mapped to a physical key using direct manipulation. This
includes intuitive mapping of controls to hotkeys but also
dynamic mapping of elements that are typically not key-
bound, including short-lived elements such as clips or task
items. The keyboard thus becomes a reconfigurable palette
on which users can arrange graphical elements for many pur-
poses beyond the functionality of conventional keyboards,
including as clipboard, taskbar, or drop area for hyper-links.
Elements customized in this way become physically acces-
sible, and the TDK provides distinctive ways of interacting
with graphical elements that are not available on standard
display devices, for example tactile navigation of controls.

From a practical stand-point, we have successfully integrated
the design space in a single working prototype and tested it
with existing applications. Some of the techniques — such
as multi-touch interaction or text input — have to be enabled
or disabled depending on the application requirements, since
they require exclusive access to the keyboard. However, we
have experienced that switching in most cases is very seam-
less, for instance based on the active application, the user’s
activity (using keyboard touch as context), or explicit key-
board switching by the user (e.g., via keyboard tabs). The
majority of the techniques has proven to co-exist without
conflict and to provide many synergies. For instance, we
found that finger preview works well to assist the blind op-
eration of keyboard pie menus. In fact, keyboard pie menus
are easy to use in this mode, since acquiring adjacent keys
based on direction is supported by the keyboard’s physical
features. Overall, we conclude from our practical experi-
ence that TDKs can not only support the diverse techniques
demonstrated in the design space, but integrate these syner-
gistically. Moreover, we found that our implementation of
the TDK worked transparently with existing applications in
a standard operating system environment.

The demonstrated TDK concepts and techniques were im-
plemented using overhead projection for display on the key-
board. For wider deployment, the display needs to be more
tightly integrated with the keyboard. The feasibility of a
fully embedded implementation has already been demon-
strated in an existing display keyboard product [3]. An alter-
native could involve pico-projectors, that might for instance
be integrated into the lid of a notebook and automatically
adjusted to point at the keyboard.

CONCLUSION

We have introduced the TDK as a new concept that trans-
forms the keyboard into an interactive surface, and facilitates
its tight integration with GUIs. The TDK retains the physi-

1153

CHI 2010: Tangible Ul

cal characteristics of a conventional computer keyboard with
its proven advantages for efficient input and combines these
very effectively with the flexibility of graphical direct ma-
nipulation. As shown in this paper, this gives rise to com-
pelling new uses for the keyboard, and to innovative tech-
niques for interaction and meta-interaction across keyboard,
mouse and primary screen. As demonstrated, these tech-
niques contribute very significantly to the expressiveness,
accessibility and customizability of GUI workstations.

In this work, we have focused our analysis on how TDKs
transform the conventional use of keyboards in a typical com-
puter work environment with keyboard, mouse and screen.
However, keyboards are also used as input device in many
other contexts, including on mobile devices, embedded with
appliances, and in conjunction with interactive tables. A
challenge for future work is thus to understand how touch-
and display-augmentation can impact in those contexts, for
instance to provide access to larger command sets on smaller
keyboards and keypads, or to support multi-user interactions
via multiple keyboards on a shared interactive surface.

REFERENCES
1. Fingerworks. http://www.fingerworks.com/.

2. OLED Display Keyboard, United Keys Inc.
http://www.unitedkeys.com/.

. Optimus Maximus Keyboard, ArtLebedev Studios.
http://www.artlebedev.com/everything/optimus/.

. W. Fallot-Burghardt, M. Fjeld, C. Speirs,
S. Ziegenspeck, H. Krueger, and T. Laubli.
Touch&type: a novel pointing device for notebook
computers. In Proc. NordiCHI ’06, pages 465-468,
2006.

. S. Greenberg and M. Boyle. Customizable physical
interfaces for interacting with conventional
applications. In Proc. UIST "02, pages 31-40, 2002.

. D. Grolaux, J. Vanderdonckt, and P. V. Roy. Attach me,
detach me, assemble me like you work. In Proc.
INTERACT 05, pages 198-212.

. T. Grossman, P. Dragicevic, and R. Balakrishnan.
Strategies for accelerating on-line learning of hotkeys.
In Proc. CHI 2007, pages 1591-1600, 2007.

. B. Hartmann, M. Ringel Morris, H. Benko, and A. D.
Wilson. Augmenting interactive tables with mice &
keyboards. In Proc. UIST "09, 2009.

. M. Helander. Handbook of Human Computer
Interaction. North-Holland, 1988.

10. E. Hoggan, S. A. Brewster, and J. Johnston.
Investigating the effectiveness of tactile feedback for
mobile touchscreens. In Proc. CHI ’08, pages

1573-1582, 2008.

P. Holleis, J. HEKKkilE, and J. Huhtala. Studying
applications for touch-enabled mobile phone keypads.
In Proc. TEI'08, pages 41-44, 2008.

11.

1154

12

13.

14.

15.

18.

19.

20.

22.

23.

24.

April 10-15, 2010, Atlanta, GA, USA

A. Howes, S. J. Payne, and A. Woodward. The trouble
with shortcuts. In CHI "00 Extended Abstracts, pages
267-268, 2000.

P. Isokoski. A minimal device-independent text input
method. Technical Report A-1999-14, Department of
Computer Science, University of Tampere, 1999.

D. M. Lane, H. A. Napier, S. C. Peres, and A. Sandor.
Hidden costs of graphical user interfaces: Failure to
make the transition from menus and icon toolbars to
keyboard shortcuts. In IJHCI, 18(2), pages 133-144,
2005.

H. McLoone, K. Hinckley, and E. Cutrell. Binamual
interaction on the microsoft office keyboard. In Proc.
Interact "03, pages 49-56, 2003.

. D. L. Odell, R. C. Davis, A. Smith, and P. K. Wright.

Toolglasses, marking menus, and hotkeys: A
comparison of one and two-handed command selection
techniques. In Proc. Graphics Interface 2004, pages
17-24, 2004.

. J. Rekimoto, T. Ishizawa, C. Schwesig, and H. Oba.

Presense: interaction techniques for finger sensing
input devices. In Proc. UIST 03, pages 203-212, New
York, NY, USA, 2003. ACM.

J. Rekimoto, B. Ullmer, and H. Oba. Datatiles: a
modular platform for mixed physical and graphical
interactions. In Proc. CHI "01, pages 269-276, 2001.

H. Roeber, J. Bacus, and C. Tomasi. Typing in thin air:
the canesta projection keyboard - a new method of
interaction with electronic devices. In CHI Extended
Abstracts 2003, pages 712-713, 2003.

A. Sears. Improving touchscreen keyboards: Design
issues and a comparison with other devices. In
Interacting with Computers, 3(3), pages 253-269,
1991.

. W. Stuerzlinger, O. Chapuis, D. Phillips, and

N. Roussel. User interface fagades: towards fully
adaptable user interfaces. In Proc. UIST ’06, pages
309-318, 2006.

C. Tomasi, A. Rafii, and I. Torunoglu. Full-size
projection keyboard for handheld devices. In Com. of
the ACM, 46(7), pages 70-75, 2003.

M. Weiss, J. Wagner, Y. Jansen, R. Jennings,

R. Khoshabeh, J. D. Hollan, and J. Borchers. Slap
widgets: Bridging the gap between virtual and physical
controls on tabletops. In Proc. CHI 09, pages
481-490, 2009.

J. Zhang and D. A. Norman. Representations in
distributed cognitive tasks. In Cognitive Science, 18,
pages 87-122, 1994.

	Introduction
	Related Work
	Touch-Display Keyboard Principles
	Proof of concept Implementation
	The Design Space of Touch-Display Keyboards
	Display on Individual Keys
	Keyboard Tabs

	Display over Multiple Keys
	Hotkey Pie Menus

	Keyboard use as Secondary Display
	Keyboard context display
	Keyboard palette
	Keyboard clipboard

	Mouse Interaction with On-Keyboard Widgets
	Context menu for keyboard widgets
	Multimodal slider control

	Mouse Interaction across Keyboard & Display
	Drag&drop interface customization

	Touch-Sensing on Individual Keys
	Preview of content
	Finger occlusion preview

	Simultaneous Touch-Sensing on the Keyboard
	Motion gestures for keyboard adaptation
	Scaling with tactile feedback
	Fingertip commands

	Touch&Mouse Interactions
	Resizing of keyboard elements
	Adaptive resizing of scalar control
	Cloning of graphical keyboard controls

	Discussion
	Conclusion
	REFERENCES

