
Sparse-posterior Gaussian Processes for general likelihoods

Abstract
Gaussian processes (GPs) provide a probabilis-
tic nonparametric representation of functions in
regression, classification, and other problems.
Unfortunately, exact learning with GPs is in-
tractable for large datasets. A variety of approx-
imate GP methods have been proposed that es-
sentially map the large dataset into a small set of
basis points. Among them, two state-of-the-art
methods are sparse pseudo-input Gaussian pro-
cess (SPGP) (Snelson & Ghahramani, 2006) and
variable-sigma GP (VSGP) Walder et al. (2008),
which generalizes SPGP and allows each basis
point to have its own length scale. However,
VSGP was only derived for regression. In this
paper, we propose a new sparse GP framework
that uses expectation propagation to directly ap-
proximate general GP likelihoods using a sparse
and smooth basis. It includes both SPGP and
VSGP for regression as special cases. Plus as
an EP algorithm, it inherits the ability to process
data online. As a particular choice of approxi-
mating family, we blur each basis point with a
Gaussian distribution that has a full covariance
matrix representing the data distribution around
that basis point; as a result, we can summarize lo-
cal data manifold information with a small set of
basis points. Our experiments demonstrate that
this framework outperforms previous GP classi-
fication methods on benchmark datasets in terms
of minimizing divergence to the non-sparse GP
solution as well as lower misclassification rate.

1. Introduction
Gaussian processes (GP) are powerful nonparametric
Bayesian approach to modelling unknown functions. As
such, they can be directly used for classification and re-
gression (Rasmussen & Williams, 2006), or embedded into
a larger model such as factor analysis (Teh et al., 2005), re-
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lational learning (Chu et al., 2006), or reinforcement learn-
ing (Deisenroth et al., 2009). Unfortunately, the cost of
GPs can be prohibitive for large datasets. Even for the re-
gression case where the GP prediction formula is analytic,
training the exact GP model with N points demands an
O(N3) cost for inverting the covariance matrix and pre-
dicting a new output requires O(N2) cost in addition to
storing all of the training points.

Ideally, we would like a compact representation, much
smaller than the number of training points, of the poste-
rior distribution for the unknown function. This compact
representation could be used to summarize training data
for Bayesian learning, or it could be passed around as a
message in order to do inference in a larger probabilistic
model. One successful approach is to map the training data
into a small set of basis points, then compute the exact
posterior that results from those points. The basis points
could literally be a subset of the training instances (Csató,
2002; Lawrence et al., 2002) or they could be artifi-
cial “pseudo-inputs” that represent the training set (Snel-
son & Ghahramani, 2006). A general framework pro-
posed by Quiñonero-Candela & Rasmussen (2005) shows
that many sparse GP regression algorithms, including the
“pseudo-inputs” approach, can viewed as exact inference
methods with an approximate, sparse GP prior.

Furthermore, the GP that is used to for inference on the
basis points need not match the original GP, so that a
more compact representation can be used without degen-
erating the approximation quality. In particular, as shown
by Walder et al. Walder et al. (2008), the GP applied to
the basis points should have a longer length scale than the
original (since the data is now sparser). Their “variable
sigma Gaussian process” (VSGP) algorithm (Walder et al.,
2008) allows a different length scale for each basis point.
Lázaro-Gredilla & Figueiras-Vidal (2009) generalized this
idea to allow an arbitrary set of extra parameters (such as a
frequency-scale) for each basis point. However, this exten-
sion as well as VSGP is limited to linear regression.

In this paper, we provide a new framework, Sparse And
Smooth Posterior Approximation (SASPA), for learning
sparse GP models with arbitrary likelihoods. Unlike
Quiñonero-Candela & Rasmussen (2005)’s work, this new
framework is constructed from a different perspective, the
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posterior-approximation perspective: we directly approx-
imates the posterior distributions of exact full GPs by a
sparse, blurred GP using expectation propagation (Minka,
2001b). The SASPA framework gives new insight to previ-
ous sparse GP models, for example, VSGP, generalize over
them to handle flexible likelihoods, and provides conve-
nient practical tools for designing new GP learning meth-
ods.

In summary, the main contributions of this paper include
the following:

• We present a new framework, SASPA, for sparse
Gaussian process learning. In this framework, VSGP
and other sparse GP algorithms can be obtained by
employing a particular choice of approximating fam-
ily.

• In a richer approximating family, we blur each basis
point with another distribution. In particular, we use
a Gaussian distribution that has a full covariance ma-
trix representing the data distribution around the basis
point. Therefore, the SASPA model can effectively
summarizes local data manifold information with a
small set of basis points.

• We describe how to apply the SASPA framework to
GP models with regression and classification likeli-
hoods in section 3.2.

• Finally, in section 6, we demonstrate the improved ap-
proximation quality of SASPA over previous sparse
GP methods on both synthetic data and standard UCI
benchmark data.

2. Gaussian process models
We denote N independent and identically distributed sam-
ples as D = {(x1, y1), . . . , (xn, yn)}N , where xi is a d
dimensional input and yi is a scalar output. We assume
there is a latent function f that we are modeling and the
noisy realization of latent function f at xi is yi.

A Gaussian process places a prior distribution over the la-
tent function f . Its projection at the samples {xi} defines
a joint Gaussian distribution:

p(f) = N (f |m0,K)

where m0
i = m0(xi) is the mean function and Kij =

K(xi,xj) is the covariance function, which encodes the
prior notation of smoothness. Normally the mean function
is simply set to be zero and we follow this tradition in this
paper. A typical kernel covariance function is the squared
exponential, also know as Radial Basis Function (RBF),

k(x,x′) = exp
(
− ||x

′ − x||2

2η2

)
, (1)

where η is a hyperparameter.

For regression, we use a Gaussian likelihood function

p(yi|f) = N (yi|f(xi), vy) (2)

where vy is the observation noise. For classification, the
data likelihood has the form

p(yi|f) = (1− ε)σ(f(xi)yi) + εσ(−f(xi)yi) (3)

where ε models the labeling error and σ(·) is a nonlin-
ear function, ie., a cumulative Gaussian distribution or a
step function, so that σ(f(xi)yi) = 1 if f(xiyi) ≥ 0 and
σ(f(xi)yi) = 0 otherwise.

Given the Gaussian process prior over f and the data like-
lihood, the posterior process is

p(f |D, t) ∝ GP (f |0,K)
N∏
i=1

p(yi|f) (4)

Since the Gaussian process is grounded on theN examples,
they are called the basis points.

For the regression problem, the posterior process has an an-
alytical form. But to make a prediction on a new sample,
we need to invert a N by N matrix. If the training set is
big, this matrix inversion will be too costly. For classifi-
cation or other nonlinear problems, the computational cost
is even higher since we do not have a analytical solution
to the posterior process and the complexity of the process
grows with the number of training samples.

3. Sparse-posterior GP: a SASPA perspective
In this section we present the SASAP framework, started
with the approximating family.

3.1. Approximating family

To save the computational and memory cost, we approxi-
mate the exact Gaussian process posterior (4) by a sparse
posterior process parameterized by (u,b,Λ):

q(f) ∝ GP (f |0,K)N (u|gB(f),Λ−1) (5)

where u = (u1, . . . , uM ), the subscript B denote the basis
set (b1, . . . , bM ), and

gB(f) =
[ ∫

f(x)φ(x|b1)dx, . . . ,
∫
f(x)φ(x|bM )dx

]T
In this sparse representation, we can change the number of
basis points, M , to regulate its model complexity. Nor-
mally, we set M � N . In general, the basis point bk is
blurred by a convolving function φ(x|bk), which can be a
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Gaussian distribution, representing how the data are dis-
tributed locally around bk. The parameter uk represents a
virtual regression target for bk, and λk is its precision.

The approximate posterior process q(f) is a Gaussian pro-
cess, so it has a mean and covariance function. To deter-
mine these, first consider the following functional:

Z(m0) =
∫
GP (f |m0,K)N (u|gB(f),Λ−1)df

Now gB(f) follows a joint Gaussian distribution with the
mean m̃0

B and Ṽ0
B :

m̃0
Bj =

∫ ∫
f(x)φ(x|bj)GP (f |m0,K)dxdf

=
∫
m0(x)φ(x|bj)dx (6)

Ṽ 0
Bij =

∫ ∫
φ(x|bi)K(x,x′)φ(x′|bj)dxdx′ (7)

Therefore, we can compute Z(m0) as follows:

Z(m0) =
∫
N (u|gB ,Λ−1)N (gB |m̃0

B , Ṽ
0
B)df

= N (u|m̃0
B , β

−1) (8)

where β = (Ṽ0
B + Λ−1)−1. Define α = βu. Then the

mean and the covariance functions of the sparse process are
characterized by α and β. In particular, we derive the fol-
lowing theorem to describe the relationship between them.

Theorem 1 The posterior process q(f) defined in (5) has
the mean functionm(x) and covariance function V (x,x′):

m(x) = K̃(x, B)α (9)

V (x,x′) = K(x,x′)− K̃(x, B)βK̃(B,x′) (10)

where K̃(x, B) = [K̃(x, b1), . . . , K̃(x, bM )], K̃(x, bj) =∫
K(x,x′)φ(x′|bj)dx′, and K̃(B,x) = (K̃(x, B))T.

When using the RBF covariance function (1) and setting
φ(x|bi) = N (x|ai, ci) where bi = (ai, ci) , we have

K̃(x,B) = (2πη2)M/2·
· [N (x|a1, c1 + η2I), . . . ,N (x|aM , cM + η2I)]. (11)

Proof: First, consider the minimization of the KL
divergence between the posterior process q(f) ∝
GP (f |m0,K)N (u|gB(f),Λ−1) for the sparse process
and a process q̄(f) in the exponential family. Since q(f)
also belongs to the exponential family, this minimization
will achieve the optimal solution, i.e., q̄(f) = q(f).

Now to obtain the mean function m(x) and the covariance
function V (x,x′) for q(f), we can solve q̄(f) by the KL
minimization. This leads to the following moment match-
ing equations:

m(x) =m0(x) +
∫
K(x,a′)

d logZ
dm0(a′)

da′ (12)

V (x,x′) =K(x,x′)+∫ ∫
K(x,a)

d2 logZ
dm0(a)dm0(a′)

K(a′,x′)dada′
(13)

Based on (8), it is easy to obtain

d logZ
dm0(a)

=
d

dm̃B

(
− 1

2
(u− m̃B)Tβ(u− m̃B)

) dm̃B

dm0(a)
= [φ(x|b1), . . . , φ(x|bM )]β(u− m̃B) (14)

Combining (12) and (14) gives

m(x) =m0(x) + K̃(x, B)β(u− ρ)

=m0(x) + K̃(x, B)(α− βm̃0
B) (15)

where K̃(x, B) is defined in (11). Setting the prior mean
function m0(x) = 0, we have m̃0

B = 0. As a result, equa-
tion (9) holds.

From (14) it follows that

d2 logZ
dm0(x)dm0(x′)

=− [φ(x|b1), . . . , φ(x|bM )]β
dρ

dm0(x′)
=− [φ(x|b1), . . . , φ(x|bM )]β·
· [φ(x′|b1), . . . , φ(x′|bM )]T (16)

Based on the above equation and (13), we have

V (x,x′) = K(x,x′)− K̃(x, B)βK̃(B,x′)

Thus (10) holds. 2

Based on Theorem 1, we have the following corollary:

Corollary 2 The projection of the blurred Gaussian pos-
terior process q(f) onto B is a Gaussian distribution with
the following mean and covariance:

m̃B = K̂α (17)

ṼB = K̂− K̂βK̂T (18)

where K̂ij =
∫ ∫

φ(x′|bi)K(x,x′)φ(x′|bj)dxdx′.

Assuming b is given, the remaining question is how to esti-
mate (u,Λ) – or equivalently (α, β) – for the sparse poste-
rior process q(f), such that it well approximates the exact
posterior process p(f |D, t).
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3.2. Inference by expectation propagation

We apply expectation propagation to fit q(f). EP has
three steps, message deletion, data projection, and mes-
sage updates, iteratively applied to each training point. In
the message deletion step, we compute the partial belief
q\i(f ;m\i, v\i) by removing a message t̃i (from the i-th
point) from the approximate posterior qold(f |m, v). In the
data projection step, we minimize the KL divergence be-
tween p̃(f) ∝ p(ti; f)q(f ;m\i, v\i) and the new approxi-
mate posterior qold(f |m, v), such that the information from
each data point is incorporated into the model. Finally, the
message t̃i is updated based on the new and old posteriors.

Based on (5), the sparse GP is an exponential family with
features (gB(f),gB(f)gB(f)T). As a result, we can de-
termine the sparse GP that minimizes KL(p̃(f)|q(f)) by
matching the moments on gB(f).

Similar to (12) and (13), the moment matching equations
are

m̃B = m̃\iB + Ṽ \i(B,xi)
d logZ

dm\i(xi)
(19)

ṼB = Ṽ\iB + Ṽ \i(B,xi)
d2 logZ

(dm\i(xi))2
Ṽ \i(xi, B) (20)

where Ṽ \i(B,x)j =
∫
φ(x′|bj)V \i(x′,x)dx′.

Combining (17) and (19) gives

pi = K̂−1K̃(B, xi)

h = K̂−1Ṽ \i(B,xi) = pi − β\iK̃(B, xi)

α = α\i + h
d logZ

dm\i(xi)
(21)

where we use (10) to obtain the last equation in the second
line.

Inserting (18) to (20), we get

β = β\i − hhT d2 logZ
(dm\i(xi))2

(22)

These equations define the projection update. This update
can be equivalently interpreted as multiplying q\i(f) by an
approximate factor t̃i(f) defined as:

t̃i(f) = N (
∑
j

pij

∫
f(x)φ(x|bj)dx|gi, τ−1

i ) (23)

τ−1
i = (−∇2

m logZ)−1 − K̃(xi, B)h (24)

gi = m\i(xi) + (−∇2
m logZ)−1∇m logZ (25)

The approximation factor t̃i(f) can be viewed as a mes-
sage from the i-th data point to the sparse GP. To check the

validity of this update, we compute

Z̃ =
∫
t̃i(f)q\i(f)df ∝ N (ui|pT

i m̃\iB , τ
−1
i + pT

i Ṽ\iBpi)

= N (ui|m\i(xi), τ−1
i + K̃(xi, B)h) (26)

which has the same derivatives as the original Z =∫
ti(f)q\i(f)df . Therefore, the multiplication t̃i(f)q\i(f)

leads to the same q(f |m, v). In other words, we have
t̃i(f) ∝ q(f)/q\i(f).

To delete this message, we multiple its reciprocal with the
current q(f). Using the same trick as before, we can solve
the multiplication using the following moment matching
equations:

h\i = pi − βK̃(B,xi) (27)

Z̃d =
∫

1
t̃i(f)

q\i(f)df

∝ N (ui|pT
i m̃\iB ,−τ

−1
i + K̃(xi, B)h\i)

d2 log Z̃d
(dm(xi))2

= −(−τ−1
i + K̃(xi, B)h\i)−1 (28)

d log Z̃d
dm(xi)

= (− d2 logZ
(dm(xi))2

)(gi − K̃(xi, B)α) (29)

α\i = α+ h\i
d log Z̃d
dm(xi)

(30)

β\i = β − h\i
d2 log Z̃d

(dm(xi))2
(h\i)T (31)

The EP inference for SASPA is summarized in Algo-
rithm 1.

Algorithm 1 SASPA

1. Initialize q(f), gi, and τi all to be 0.
2. Loop until the change over all gi, and τi is smaller

than a threshold
Loop over all training data point xi

Deletion. Compute α\i and β\i for q\i(f)
via (30) and (31).

Projection. Compute α and β for the posterior q(f)
via (21) and (22).

Inclusion. Update gi, and τi for the message t̃i
via (24) and (25).
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3.3. Regression

Given the linear regression likelihood (2), the quantities in
the projection step (21)(22) are

d logZ
dm(xi)

=
yi −m\i(xi)
vy + v\i(xi, xi)

(32)

d2 logZ
(dm(xi))2

=
−1

vy + v\i(xi, xi)
(33)

3.4. Classification

Given the classification likelihood (3) where σ(·) is the step
function, the quantities in the projection step (21)(22) are

z =
m\i(xi)yi√
v\i(xi, xi)

(34)

Z = ε+ (1− 2ε)ψ(z) (35)
d logZ
dm(xi)

= γyi (36)

d2 logZ
(dm(xi))2

= −γ(m\i(xi)yi + v\i(xi, xi)γ)
v\i(xi, xi)

(37)

where γ = (1−2ε)N (z|0,1)
Z
√
v\i(xi)

and ψ(·) is the standard Gaus-

sian cumulative distribution function.

4. Related work

One of the simplest and fastest approaches to reducing the
cost of GPs is to train on a subset of the data. For example,
the IVM trains on an intelligently chosen subset. Alterna-
tively, we can train on all points, but approximate the con-
tribution of each point. Quiñonero-Candela & Rasmussen
(2005) compared several such approximations for regres-
sion problems and showed that they can be interpreted as
exact inference on an approximate model. This perspec-
tive allowed them to show that the FITC approximation
was an improvement over DTC. Walder et al. (2008) and
Lázaro-Gredilla & Figueiras-Vidal (2009) later extended
FITC to allow basis-dependent length-scales or frequency-
scales, and showed that these extensions can also be viewed
as exact inference on an approximate model.

However, while the perspective of Quiñonero-Candela &
Rasmussen (2005) is useful for comparing sparse approx-
imations, it has serious limitations as a framework for de-
signing algorithms. First, if we treat the inducing points as
model parameters and train them to maximize likelihood,
then the approximation may overfit and diverge from the
original GP (Titsias, 2009). Second, because the frame-
work relies on exact inference, it only applies to regression
problems with linear-Gaussian likelihoods. For classifica-

tion problems, the inference stage must also be approxi-
mate, leaving us with two separate stages of approximation
(see e.g. Naish-Guzman & Holden (2007)). Thirdly, this
stagewise design is an obstacle to online learning, where
we want to interleave the choice of inducing points with
the acquisition of new data.

Our work is inspired by the work of Csató & Opper (2000),
who showed that online GP classification using EP could be
made sparse, using an approximation equivalent to FITC.
However, the FITC approximation was introduced as a sub-
routine, not presented as a part of EP itself. (Naish-Guzman
& Holden (2007) presented an equivalent batch algorithm,
in which FITC is applied to the GP prior, followed by EP to
approximate the likelihood terms.) If we use linear Gaus-
sian likelihoods and the delta function as the blurring func-
tion, SASPA reduces to FITC for regression. Similarly,
with linear Gaussian likelihoods and sphere Gaussians as
the blurring functions, SASPA reduces to VSGP.

Csató (2002) later gave a batch EP algorithm, where a dif-
ferent sparse GP approximation (DTC) was used as a sub-
routine within EP. The software distributed by Csato can
run either online or batch and has an option to use either
FITC or DTC. In this paper, we clarify Csato and Opper’s
work by showing that the FITC approximation can in fact
be viewed as part of the overall EP approximation. Further-
more we extend it to include basis-dependent length-scales
as in Walder et al. (2008) and Lázaro-Gredilla & Figueiras-
Vidal (2009).

5. model selection
The SASPA framework we have presented works for any
choice of inducing points, and does not specifies how they
should be chosen. Therefore we can use any of the online or
batch selection methods available in the literature. Because
our goal is to approximate the posterior distribution from
the full GP, the optimal strategy would be to minimize the
KL divergence between the two, as done by Titsias (2009).
However, we want to minimize the divergence KL(p || q)
not KL(q || p) as done by Titsias (2009). This remains an
open problem. For the current paper, we are focusing on the
EP component, so we are content to use a simple-minded
batch approach for basis selection that nevertheless works
quite well: clustering the training data. The advantage of
this algorithm is that it provides centers for the inducing
points as well as covariance information that can be used to
choose length-scales.

6. Experiments

We evaluate SASPA on both synthetic and real world data
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(a). Full GP-EP (b). FITC-EP

(c). SASPAsphere (d). SASPAfull

Figure 1. Illustration on simple circle data. The heatmaps represent the values of the posterior means of different methods. Red ellipses
and crosses are the mean and the standard deviation of local covariances for SASPA. The white dots are the training data points.
SASPAfull uses the full local covariance matrix in (d), significantly improving the approximation quality along the circle.

and compare its predictive performance with alternative
sparse GP methods. We use the RBF kernels for all the
experiments. To all the sparse GP models, we use Kmeans
to choose basis centers and define the covariance matrix ci
based on the data in each cluster.

We first examine the performance of the new method on
a toy regression problem. Since we can control the gen-
erative process of the synthetic data, it is easier for us to
gain insight into how the method performs. For regression,
we sample 100 data points along a circle with some addi-
tive Gaussian noise. The output in different quadrant has
different values plus certain additive Gaussian noise.

The mean of the exact posterior distribution of the GP is
shown in figure 1a, with approximations in the other pan-
els. Each approximation used the same four basis points,
chosen via K-means clustering. Note that when the local
covariance matrices become sphere matrices, our method
reduces to the multiscale method of (Walder et al., 2008).
As shown in the figure, the use of the full local covariance
matrix improves the approximation quality.

The next test is a synthetic classification task. Each class
is sampled from a multivariate Gaussian distribution. Fig-
ure 2 shows an example dataset, with the decision bound-
aries and the basis points used by each algorithm. Full-
GP-EP uses all the training data samples as the basis points
in an EP approximation, as described in (Minka, 2001a).
FITC-EP uses FITC approximation in an EP framework
(Naish-Guzman & Holden, 2007; Csató & Opper, 2000),
implemented as a special case of SASPA with no blur-

ring. Finally we have SASPA with sphere and full lo-
cal covariance matrices for the blurring function φ(x|bi).
Quantitative results are shown in figure 4, where we re-
peatedly sample 200 points for training and 2000 for test-
ing. SOGP (Csató, 2002) corresponds to the DTC ap-
proximation applied to the same basis points as the other
algorithms. The basis points are chosen by K-means in
each case; further improvement is possible by optimizing
these. The KL divergence to Full-GP-EP was computed as∑
i KL(p(yi|xi) || q(yi|xi)) where xi is a test point and

p(yi|xi) is the predictive distribution from Full-GP-EP and
q(yi|xi) is the predictive distribution from the sparse algo-
rithm.

Finally we tested our methods on two standard UCI
datasets, Ionosphere and Heart. The results are summa-
rized in figures 4 and 5. Here we include the Informative
Relevance Machine (IVM) (Lawrence et al., 2002), which
applies one iteration of EP to a subset of the data. We see
that basis points chosen by K-means are competitive with
the ones chosen by IVM.

7. Conclusions
In this paper, we present a new perspective to under-
stand sparse GP methods using the expectation propagation
framework and develop new inference methods based on
this perspective. Empirical results demonstrate improved
approximation quality and prediction accuracy with the
new extensions.
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(a). Full GP-EP (b). FITC-EP

(c). SASPAsphere (d). SASPAfull

Figure 2. Classification on synthetic data. The blue and red ellipses show the standard deviation of local covariances for SASPA. The
black curve is the decision boundary. With only three basis points, the true, complex decision boundary in (a) is well approximated by
an ellipse by our method (d).
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Figure 3. Effect of different approximation families in SASPA. The results are averaged over 20 random datasets. Note that all sparse
GP algorithms used the same basis point locations. Thus we are emphasizing how well each algorithm makes use of its basis points.
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Figure 4. Classification on UCI dataset Ionosphere. The results are averaged over 20 random splits of the dataset. Note that all sparse
GP algorithms, except IVM, used the same basis point locations.
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(a). Results on Heart dataset

Figure 5. Classification on UCI benchmark dataset Heart. Note
that all sparse GP algorithms, except IVM, used the same basis
point locations. Thus we are emphasizing how well each algo-
rithm makes use of its basis points.

References
Chu, W., Sindwhani, S., Ghahramani, Z., and Keerthi, S. S. Rela-

tional learning with Gaussian processes. In Advances in Neural
Information Processing Systems 18, 2006.
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