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Abstract. The Code Contracts project [3] at Microsoft Research en-
ables programmers on the .NET platform to author specifications in
existing languages such as C# and VisualBasic. To take advantage of
these specifications, we provide tools for documentation generation, run-
time contract checking, and static contract verification.

This talk details the overall approach of the static contract checker and
examines where and how we trade-off soundness in order to obtain a
practical tool that works on a full-fledged object-oriented intermediate
language such as the .NET Common Intermediate Language.

1 Code Contracts

Embedding a specification language in an existing language consists of using a
set of static methods to express specifications inside the body of methods [4].

1 string  TrimSuffix (string original , string suffix )

2

{

s Contract.Requires( original ! = null);

1 Contract. Requires( ! String . IsNullOrEmpty( suffix ));

6 Contract.Ensures(Contract.Result() ! = null);

7 Contract.Ensures( ! Contract. Result (). EndsWith(suffix ));
8

9 var result = original ;

10 while ( result .EndsWith(suffix)) {

11 result = result.Substring (0, result .Length — suffix .Length);
12 }

13 return result ;

14 }

The code above specifies two preconditions using calls to Contract.Requires and
two postconditions using calls to Contract.Ensures. These methods have no intrin-
sic effect and are just used as markers in the resulting compiled code to identify
the preceeding instructions as pre- or postconditions.

2 Verification Steps

Our analysis operates on the compiled .NET Common Intermediate Language [2]
produced by the standard C# compiler. The verification is completely modular
in that we analyze one method at a time, taking into account only the contracts
of called methods. In our example, the contracts of called String methods are:



int Length {
get { Contract.Ensures(Contract. Result<int>() >= 0); }

}

static bool IsNullOrEmpty(string str)

{ Contract.Ensures( Contract. Result<bool>() == (str == null || str.Length == 0) );
}

bool EndsWith(string suffix )

! Contract. Requires( suffix ! = null);

Contract.Ensures( ! Contract. Result<bool>() || value.Length <= this.Length);

}

string Substring(int startindex, int length)

{
Contract. Requires(0 <= startIndex);
Contract.Requires(0 <= length);
Contract. Requires( startindex + length <= this.Length);

Contract.Ensures(Contract. Result<string>() != null);
Contract.Ensures(Contract. Result <string>().Length == length);

}

We factor the code to be analyzed into subroutines: one subroutine per method
body, one subroutine for a method’s preconditions, and one subroutine for a
method’s postconditions. The actual code to be analyzed is then formed by in-
serting calls to appropriate contract subroutines in the method body. In our
example, we insert a subroutine call to TrimSuffix’s precondition on entry of the
method, and a subroutine call to its postcondition on all exits of the method.
Additionally, at each method call-site, we insert a call to the precondition sub-
routine of the called method just prior to the actual call, and a call to the
corresponding postcondition subroutine immediately following the call.

The actual contract calls to Contract.Requires or Contract.Ensures turn into
either assert or assume statements depending on their context. Requires on entry
of a method turn into assume and Ensures on exit of a method turn into assert.
Conversely, at call-sites, Requires turn into assert, and Ensures turn into assume.

Conditional branches are expanded into non-deterministic branches with
assume statements on the outgoing edges. Additional proof obligations for im-
plicit correctness conditions in MSIL, such as null-dereference checks and array
bound checks can be automatically inserted into the analyzed code as asserts
based on user preference.

In this manner, all conditions are simply sequences of MSIL instructions,
no different than ordinary method body code, and all assumptions are assume
statements, and all proof-obligations are assert statements.



2.1 Heap Abstraction

Next, the code is transformed into a scalar program by abstracting away the
heap. This is the step where we allow some assumptions and approximations
that are not safe in general in order to obtain a practical analysis that does
not over-burden the programmer. First, we assume that memory locations not
explicitly aliased by the code under analysis are non-aliasing. This is clearly an
optimistic assumption, but works very well in practice. Second, we guess the set
of heap locations that are modified at call-sites (we don’t require programmers
to write heap modification clauses). Our guesses are often conservative, but
may be optimistic if our non-aliasing assumptions are wrong. These assumptions
allow us to compute a value numbering for all values accessed by the code,
including heap accessing expressions. We also introduce names for uninterpreted
functions marked as [Pure] by the programmer. This provides reasoning over
abstract predicates. Finally, abstracting the heap also removes old-expressions
in postconditions that refer to the state of an expression at the beginning of the
method.

To compute the value numbering, we break the control flow of the analyzed
code into maximal tree fragments. The root of each tree fragment is a join point
(or the method entry point) and is connected by edges to predecessor leafs of
other tree fragments.

The set of names used by the value numbering is unique in each tree fragment.
Edges connecting tree leafs to tree roots contain a set of assignments effectively
rebinding value names from one fragment to the names of the next. The resulting
code is in mostly passive form, where each instruction simply relates a set of
value names. This form is ideal for standard abstract interpretation based on
numerical domains. The assignments on rebinding edges between tree fragments
provide a way to transform abstract domain knowledge prior to the join from
one set of value names to the next, so that the join can operate on a common set
of value names. The rebindings act as a generalization of ¢-nodes. In contrast
to ¢-nodes which provide a join for each value separately, our rebindings form
a join for the entire state simultaneously, which is crucial to maintain relational
properties.

2.2 Abstract Interpretation Fixpoints

On the scalar program, we compute abstract program invariants for each pro-
gram point based on standard abstract interpretation fixpoint techniques [IJ.
Our motivation to use abstract interpretation rather than theorem proving tech-
niques is to enable programmers to use static verification without requiring them
to write loop invariants. It also provides control over cost/precision trade-offs.
We use a variety of novel domains such as Pentagons, Disintervals, and Subpoly-
hedra [5] to deal with relations that arise in practice. We also lift these domains
over sequences in order to deal with universally quantified properties.

For each assert statement in the code, we attempt to discharge the proof
obligation using the computed fixpoint at that program point. If the abstract



state is strong enough to imply the obligation, the obligation is discharged.
Otherwise, we attempt to discharge it using an additional backward analysis.

2.3 Weakest Precondition Analysis

If the abstract state at an assert is too weak to imply the proof obligation,
we transform the obligation using weakest preconditions into obligations for all
predecessor program points and attempt to use the abstract state at those points
to discharge them. This approach is good at handling disjunctive invariants
which our abstract domains typically don’t represent precisely. E.g., an assert
after a join point may not be provable due to loss of precision at the join.
However, the abstract states at the program points just prior to the join may be
strong enough to discharge the obligation. This backwards analysis discharges
an obligation if it can be discharged on all paths leading to the assertion. It thus
acts as a form of on-demand trace partitioning.

3 Conclusion

For the example code, our verification discharges 5 implicit non-null obligations
on the receiver of the calls to EndsWith, Substring, and Length. It also discharges
all preconditions of these methods as well as the postconditions of TrimSuffix.

Our tools have been available to the general public since March 2009 and the
response has been very positive. We received much useful feedback that has been
incorporated back into the tools. We believe that our approach is viable and that
we have made good progress towards our goal of enabling non-verification ex-
perts to start writing specifications and use tools to enforce better programming
discipline. Still, much work remains to be done on the static verification with
respect to better scalability, precision, and automation.
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