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CodeContracts provide a language agnostic way to specify and check precon-
ditions, postconditions and object invariants (collectively called contracts [17]).
Specifications take the form of calls to static methods of a Contract library [7].
The authoring library is available out-of-the-box to all .NET programmers from
v4.

An example of CodeContracts usage is reported in Fig. 1. The code illustrates
the specification and the implementation of a simple string sanitizer, which filters
only ASCII letters and converts all the upper cases into lower cases. The sanitizer
also returns the number of lower case and upper case letters in the original string.
Strings are represented as char arrays. The precondition requires the input string
to be not null. The postcondition specifies that the counters are non-negative,
that the total number of letters is no larger than the length of the original
string and the length of returned string is exactly that size. Furthermore the
postcondition also promises the caller that all the elements in the result string
are lower case ASCII characters.

The implementation of the sanitizer is pretty straightforward. The original
string is systematically traversed, and when an ASCII letter is encountered it
is copied into a buffer as it is or if it is upper case, converted to a lower case
and then stored into the buffer. A priori we do not know the number of non-
ASCII characters, thus the temporary buffer is made as large as the original
string. However, on loop exit, we exactly know the length of the sanitized string
(it is lower + upper), so a buffer of the right size is allocated, all the sanitized
elements are copied into it, and then it is returned.

The CodeContracts static checker (codename Clousot [9]), performs an ab-
stract interpretation of Sanitize to verify that the implementation meets its
contract (specification). Clousot analyzes methods in isolation using a classical
assume/guarantee reasoning. Clousot directly analyzes bytecode, so it is inde-
pendent of the particular source language [15]. As a matter of fact Clousot users
include C# as well as VB programmers. All the internals of the analyzer are
hidden to the user, to whom the Clousot is exposed as an extension of the usual
development environment (Fig. 2).

From a high point of view, Clousot has three main phases: inference, checking
and inter-module propagation. In the inference phase the program is analyzed
to infer facts. In the checking phase the facts are used to discharge the proof



public char[] Sanitize(char[] str, ref int lower, ref int upper)

{

Contract.Requires(str != null);

Contract.Ensures(upper >= 0);

Contract.Ensures(lower >= 0);

Contract.Ensures(lower + upper <= str.Length);

Contract.Ensures(lower + upper == Contract.Result<char[]>().Length);

Contract.Ensures(

Contract.ForAll(0, lower + upper, index => ’a’ <= Contract.Result<char[]>()[index]));

Contract.Ensures(

Contract.ForAll(0, lower + upper, index => Contract.Result<char[]>()[index] <= ’z’));

upper = lower = 0;

var tmp = new char[str.Length];

int j = 0;

for (int i = 0; i < str.Length; i++)

{

var ch = str[i];

if (’a’ <= ch && ch <= ’z’) { lower++; tmp[j++] = ch;}

else if (’A’ <= ch && ch<= ’Z’){ upper++; tmp[j++] = (char)(ch | ’ ’);}

}

var result = new char[j];

for (int i = 0; i < j; i++) { result[i] = tmp[i]; }

return result;

}

Fig. 1. A string sanitizer and its specification with CodeContracts. Clousot, the Code-
Contracts static checker, proves that the postcondition holds at the end of the method
and that no runtime exception is ever thrown. The verification is completely automatic,
with Clousot inferring the right loop invariants with no user assistance.



Fig. 2. A screenshot illustrating the user experience with Clousot in Visual Studio.
The user can run the analyzer on the whole project, or she can opt for a selective
method/class verification with a simple right click. The output is reported in the usual
ErrorList window, the same where e.g. the compiler provides its output.

obligations. There are two kinds of proof obligations: explicit (assertions from
contracts) and implicit (assertions from the semantics of the language). If the
checking phase is inconclusive, the analysis is refined by using a more precise
abstract domain and/or a backward goal-directed reasoning. In the inter-module
propagation, inferred contracts are propagated to the callers [5].

Unlike previous approaches based on weakest precondition calculus (e.g. [12,
3, 1, 2, 11]), Clousot is based on abstract interpretation [4]. This provides us
several advantages. First, the analyzer is automatic: Loop invariants are auto-
matically inferred, without requiring the programmer to provide (for instance)
trivial loop invariants. In the example above all the invariants are inferred with-
out user interaction. Similarly, the underlying abstract domains are of infinite
height and width, providing a stronger expressivity than the domains used for



instance in predicate abstraction. For instance in the example the non-trivial
loop invariant lower + upper == j is automatically discovered by the analysis.
Second, the analyzer is performing: The trade-off cost/precision can be finely
tuned by adjusting the precision of the underlying abstract domains. Third, the
analysis is predictable: by performing chaotic iterations following the program
structure, the analysis mimics the intentions of the programmer, so that causes
of false positive can be (more) easily found. Furthermore, termination is guaran-
teed so that annoying causes of analysis non-determinism such as unlucky infinite
quantifier instantiation are ruled out. There are some drawbacks though. The
main one is that Clousot verification focuses only on a certain class of proper-
ties, forgetting for instance general universal quantified or existential quantifiers.
Clousot instead contains abstract domains to check common contracts involv-
ing: non-nullness [8], linear arithmetic [16, 14, 13] and numerical properties in
general [10], simple facts over arrays and containers [6] and un-interpreted facts.
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11. J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In CAV’07.

12. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for java. In ACM PLDI’02.

13. V. Laviron and F. Logozzo. Refining abstract interpretation-based static analyses
with hints. In APLAS’09.



14. V. Laviron and F. Logozzo. Subpolyhedra: A (more) scalable approach to infer
linear inequalities. In VMCAI’09.

15. F. Logozzo and M. Fähndrich. On the relative completeness of bytecode analysis
versus source code analysis. In CC’08.

16. F. Logozzo and M. Fähndrich. Pentagons: a weakly relational abstract domain for
the efficient validation of array accesses. In ACM SAC’08.

17. B. Meyer. Eiffel: The Language. Prentice Hall, 1991.


