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The Data Flood: Science and the 4th Paradigm 

Thoughts without content are empty,  

intuitions without concepts are blind. 

Immanuel Kant 



From Jim Gray, 2007 Emergence of a Fourth Paradigm 

• Thousand years ago – Experimental Science 

• Description of natural phenomena 

• Last few hundred years – Theoretical Science 

• Newton’s Laws, Maxwell’s Equations… 

• Last few decades – Computational Science 

• Simulation of complex phenomena 

• Today – Data-Intensive Science 

• Scientists overwhelmed with data sets 

 from many different sources  
• Data captured by instruments 

• Data generated by simulations 

• Data generated by sensor networks 

• eScience is the set of tools and technologies 

 to support data federation and collaboration 
• For analysis and data mining 

• For data visualization and exploration 

• For scholarly communication and dissemination 
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From George Djorgovski, LATAM Summit 2010 

Information technology revolution is 
historically unprecedented - in its 
impact it is like the industrial revolution 
and the invention of printing combined 

It is transforming science and scholarship as much as 

any other field of the modern human endeavor, as 

they become data-rich, and computationally enabled  

Through e-Science, we are developing a new 
scientific methodology for the 21st century 



Environmental Data Comes in Many Forms 

Manual Measurement 

Automated Measurement 

Sample Collection 

Historical Photographs 

Counting 

Satellite 

Relatively 

Ubiquitous  

Motes Aircraft Surveys 

Model Output 

Typing 



• Deriving science variables from sensor output often 
active research in its own right 
• Handling day/night or 3-d effects is challenging 

• Observational data has spikes, drift, and gaps 
• Correcting these must be done with knowledge of the 

science as well as the instrument  

• Systematic and random errors introduced by such 
transformations often understood only when data are 
used for analysis.  

• Some data users ignore all of these concerns while 
others pay a lot of attention.  

 

 

Ever Increasing Distance from Observation  

Dataset creation takes work and specialized knowledge. 

Data reuse amortizes that and improves overall quality.  



Bridging the Gap with the Cloud 

• Barriers to Science:  
• Resource: compute, storage, networking, visualization 

capability 

• Complexity: specific cross-domain knowledge 

• Tedium: repetitive data gathering or preprocessing tasks 

• With Cloud Computing, we can:  
• obtain needed storage and compute resources on demand 

without caring or knowing how that happens 

• access living curated datasets without having to find, educate, 
and reward a private data curator 

• run key common algorithms as Software as a Service without 
having to know the coding details or installing software 

• grow a given collaboration or share data and algorithms across 
science collaborations elastically 

Democratizing science analysis by fostering sharing and reuse 

Where do you  

want your data?  

Supercomputer  

users 

Small  

cluster  

owners 
The  

Rest  

of  

Us 



MODISAzure:  
Estimating Water Balance in the Cloud 

You never miss the water ‘til the well has run dry 

Irish Proverb 



ET = Water volume evapotranspired (m3 s-1 m-2)  

Δ = Rate of change of saturation specific humidity with air temp.(Pa K-1)  

λv = Latent heat of vaporization (J/g)  

Rn = Net radiation  (W m-2) 

cp = Specific heat  capacity of air (J kg-1 K-1)  

ρa = dry air density (kg m-3)  

δq = vapor pressure deficit (Pa) 

ga = Conductivity of air (inverse of ra) (m s-1) 

gs = Conductivity of plant stoma, air (inverse of rs) (m s-1)  

 γ = Psychrometric constant  (γ ≈ 66 Pa K-1) 

Computing Water Balance (ET) from First Principles 

• Lots of inputs : big reduction 

• Some of the inputs are not so simple  

• Many have categorical dependencies 

Estimating resistance/conductivity across a 

catchment can be tricky  

𝐸𝑇 =  
∆𝑅𝑛 + 𝜌𝑎  𝑐𝑝 𝛿𝑞 𝑔𝑎

(∆ + 𝛾 1 + 𝑔𝑎 𝑔𝑠  )𝜆𝜐
 

Penman-Monteith (1964) 



Estimating ET from Imagery, Sensors and Field Data 

NASA MODIS imagery archives 

5 TB (600K files) for 10 US years 

FLUXNET 

 curated field dataset 

2 KB (1 file) 

NCEP/NCAR ~100MB  

(4K files) 

Vegetative clumping 

~5MB (1file) 

Climate classification 

~1MB (1file) 

FLUXNET  

Curated 

 sensor 

 dataset 

 30GB 

(960 files) 

Not just a simple matrix 

computation due to 

dry region leaf/air 

temperatures 

differences, snow cover, 

leaf area fill, temporal 

up-scaling, gap fill, 

biome conductance 

lookup, C3/C4 plants, 

etc. etc.  



MODISAzure: Four Stage Image Processing Pipeline 

Data collection (map) stage 

• Downloads requested input 
tiles from NASA ftp sites 

• Includes geospatial lookup 
for non-sinusoidal tiles that 
will contribute to a 
reprojected sinusoidal tile 

Reprojection (map) stage 

• Converts source tile(s) to 
intermediate result 
sinusoidal tiles  

• Simple nearest neighbor or 
spline algorithms 

Derivation reduction stage 

• First stage visible to 
scientist 

• Computes ET in our initial 
use 

Analysis reduction stage 

• Optional second stage 
visible to scientist 

• Enables production of 
science analysis artifacts 
such as maps, tables, virtual 
sensors 

 

Reduction #1 

Queue 

Source 

Metadata  

AzureMODIS  

Service Web Role Portal 

Request 

Queue 

Scientific 

Results  

Download 

Data Collection Stage 

Source Imagery Download Sites  

. . . 

Reprojection 

Queue 

Reduction #2 

Queue 

Download 

Queue 

Scientists 

Science 
results 

Analysis  Reduction Stage Derivation Reduction Stage  Reprojection Stage 

http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx 

http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx
http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx
http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx


MODISAzure: Architectural Big Picture (1/2) 

• ModisAzure Service is the Web 
Role front door 
• Receives all user requests 

• Queues request to appropriate 
Download, Reprojection, or 
Reduction Job Queue 

• Service Monitor is a dedicated 
Worker Role 
• Parses all job requests into tasks – 

recoverable units of work  

• Execution status of all jobs and 
tasks persisted in Tables 

<PipelineStage>  

Request 

… 

<PipelineStage>JobStatus 

Persist 

<PipelineStage>Job Queue 

MODISAzure Service 

(Web Role) 

Service Monitor 

(Worker Role) 

Parse & Persist 
<PipelineStage>TaskStatus 

… 

Dispatch 

<PipelineStage>Task Queue 



MODISAzure: Architectural Big Picture (2/2) 

• All work actually done by a GenericWorker Worker Role 

• Sandboxes science or other executable 

• Obtains all storage from/to Azure blob 
storage to/from local Azure Worker 
instance files 

Service Monitor 

(Worker Role) 

Parse & Persist 
<PipelineStage>TaskStatus 

GenericWorker 

(Worker Role) 

… 

… 

Dispatch 

<PipelineStage>Task Queue 

… 

<Input>Data Storage 

• Dequeues tasks created by the 
Service Monitor 

• Retries failed tasks 3 times 

• Maintains all task status  



Inside A Generic Worker 

• Manages application sandbox 
• Ensures all application binaries such 

as the MatLab runtime are installed 
for “known” application types 

• Stages all input blobs from Azure 
storage to local files  

• Passes any marshalled inputs to 
uploaded application binary 

• Stages all output blobs to Azure 
storage from local files 

• Preserves any marshalled outputs to 
the appropriate Task table 

• Simplifies desktop development 
and cloud deployment 



Storage Management 

Storage separated by usage to simplify management policies 

• Reduction results 
• Older results can be 

aged out over time 

• A zip file blob is created 
for each job to simplify 
download 

 
Source 

Reprojection  

Storage 

Reduction  

Storage 

Metadata  

Storage 

• Original source 
image download 

• Can be deleted when 
all dependent 
reprojections 
complete 

 

• Reprojection 
results 

• May include the 
same target tile at 
different spatial 
resolution 

 

• Metadata includes 
geospatial lookup, 
known application 
library binaries, etc 

• Necessary for service 
function 

• Never directly accessed 
by scientist code 

 



Pipeline Stage Priorities and Interactions 

• The Web Portal Role, Service Monitor Role and 5 Generic Worker Roles are 
deployed at most times 
• 5 Generic Workers are sufficient for reduction algorithm testing and development ($20/day) 

• Early results returned to scientist while deploying up to 93 additional Generic Workers; such 
a deployment typically takes 45 minutes 

• Deployment taken down when long periods of idle time are known 

• Heuristic for scaling number of Generic Workers up and down 

• Download stage runs in the deep background in all deployed generic worker 
roles 
• IO, not CPU bound so no competition 

• Reduction tasks that have available inputs run preferentially to Reprojection 
tasks 
• Expedites interactive science result generation 

• If no available inputs and a backlog of reprojection tasks, number of Generic Workers scale 
up naturally until backlog addressed and reduction can continue 

• Second stage reduction runs only after all first stage reductions have completed 



Sizing the 3 year MODISAzure Global Computation 

• 194 sinusoidal cells, each covers 1.2x1.2 KM or 11M 5 KM pixels 

• 1.06 M reprojected tiles and 40.5K source sinusoidal tiles 

• 14 TB (>10 M files) downloaded from NASA ftp  

• Not all files are downloaded or reprojected at first (3 rapid retries) 
attempt or actually available due to satellite outage, polar winter, 
missing tiles, etc. etc.   

 

 

15 seconds on the Cray Jaguar (1.75 PFLOPs),  

but only if we could get the PB in ! 
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US fluxnet fluxtower global not used

• 55 NASA download days 
• 150K reprojection compute 

hours 
• 940 TB moved across Azure 

fabric 
• 1 month result download days 

(est)  KM or 11M 5 KM pixels 
 
 
 
 



Costs for 1 US Year ET Computation 

• Computational costs 
driven by data scale 
and need to run 
reduction multiple 
times 

• Storage costs driven 
by data scale and 6 
month project 
duration 

• Small with respect to 
the people costs even 
at graduate student 
rates !  

Reduction #1 

Queue 

Source 

Metadata  

Request 

Queue 

Scientific 

Results  

Download 

Data Collection Stage 

Source Imagery Download Sites  

. . . 

Reprojection 

Queue 

Reduction #2 

Queue 

Download 

Queue 

Scientists 

Analysis  Reduction Stage Derivation Reduction Stage  Reprojection Stage 

400-500 GB 

60K files 

10 MB/sec 

11 hours 

<10 workers 

$50 upload 

$450 storage 

400 GB 

45K files 

3500 hours 

20-100  

    workers 

5-7 GB 

5.5K files 

1800 hours 

20-100  

   workers 

<10  GB 

~1K files 

1800 hours 

20-100  

  workers 

$420 cpu 

$60 download 

$216 cpu 

$1 download 

$6 storage 

$216 cpu 

$2 download 

$9 storage 

AzureMODIS  

Service Web Role Portal 

Total: $1420 



The MODISAzure “ity” Experience 

Why, I’d like nothing better than to achieve  

some bold adventure, worthy of our trip. 

Aristophanes 



• The computation changed over time while Azure just scaled 

Agility  

Continental US 

Global Scale  

Reprojection 

Global Scale  

Reduction 

Archive  

Download 



Predictability 

5 different reprojection tasks run  

daily over 2 weeks 

The same reduction task run on 

different numbers of VMs 

• Performance varies over time: 
rerunning the same task gives 
different timings on different days 

• Performance varies over space:  
satellites are over the poles more 
often  

 

Average reprojection time (after algorithm 

improvements!)  as a function of longitude 

120 

200 240 

160 



• Even with 99.999% reliability, bad things 
happen  
• 1-2 % of MODISAzure tasks fail but succeed on 

retry  

Reliability 

All 62 compute nodes lost 

tasks and then came back 

in a group.  This is an  

Update domain 

~30 mins 

~ 6 nodes in one group 

From AzureBlast  

http://research.microsoft.com/en-us/people/barga/faculty_summit_2010.pdf   

Worst case attempt to start 250 VMs 

Observed VM starts for 76-100 VMs  

http://research.microsoft.com/en-us/people/barga/faculty_summit_2010.pdf
http://research.microsoft.com/en-us/people/barga/faculty_summit_2010.pdf
http://research.microsoft.com/en-us/people/barga/faculty_summit_2010.pdf
http://research.microsoft.com/en-us/people/barga/faculty_summit_2010.pdf
http://research.microsoft.com/en-us/people/barga/faculty_summit_2010.pdf


• Some “Early Adopter” artifacts 
• Generic worker sandbox  

• “dir” for blobs : need to have a parsable list, 
not just browse and many tools simply 
could not scale beyond O(50K) blobs 

• “downloader” for blobs : smaller blobs are 
dwarfed by REST open/close.  

 

 

Maintainability 

• Slow upload (FEDEX disk is still “in plan”; IN2 connections helped download 

tremendously)  

• Can we move catalog and other tracking to SQL Azure for better 

scaling?  

• Current tracking database is 140 GB 

• Partitions naturally, but would mean $300/mo (external) charges.  

 



Conclusion 

Adventure is just bad planning.  

Roald Amundsen 



• We have much work ahead mapping science requirements 
to the new evolving cloud infrastructures. 
• Science computations are becoming much more diverse. 

• Cloud computing is just beginning.  

• Azure means doing some things differently and leveraging 
new capabilities.  
• Virtualized computing resources often are black box resources 

• New capabilities still emerging  

• We need research to develop best practices for scaling up! 
• “Rare” events become more common and consume time 

•  What’s common? What’s specific to the science domain or computation?  

 

 

 

The Data are Coming ! The Cloud is Here !  



Cloud Computing Learnings  

• Clouds are the largest scale computer centers ever 
constructed and have the potential to be 
important to both large and small scale science 
problems. 

• Clouds suitable for “loosely coupled” data parallel 
applications, but tightly coupled low-latency 
applications perform poorly on clouds today. 

• Clouds exploit economies of scale, healthy 
commercial competition, and an active research 
community.  

Chicago, IL 

Dublin, Ireland 

Generation 4 DCs 

Science computations are becoming more diverse. 

We have much work ahead mapping those new needs 

to evolving cloud infrastructures. 



Azure Learnings 

Feb 

• Putting all your eggs in the cloud basket means 
watching that basket 

• Cloud scale resources often mean you still manage 
small numbers of resources: 100 instances over 24 
hours = $288 even if idle 

• Azure is a rapidly moving target and unlike the 
Grid 

• We’ve seen many API changes and new services over 
the last year 

• At scale, understanding even a 0.01% failure rate 
is time consuming 

• Bake in the faults for scaling and resilience  

• Bake in end:end reconciliation of sources and results 

 

Azure means doing some things differently and leveraging new capabilities.  



eScience Learnings 

Feb 

• Science and algorithm debugging benefit 
from the same infrastructure as both need 
to scale up and down 
• Debugging an algorithm on the desktop isn’t 

enough – you have to debug in the cloud too 

• Whenever running at scale in the cloud, you 
must reduce down to the desktop to 
understand the results 

• Developing concrete plans for capacity 
planning prior to having results in hand is 
tricky 
• Precedents break down when scaling up 100x 

or more  

• Don’t forget to include sensitivity and error 
analyses requirements  

 
 

We need research to develop best practices for scaling up!  
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Youngryel was lonely with 1 PC 
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