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ABSTRACT
Past studies of user behavior in Web search have correlated
eye-gaze and mouse cursor positions, and other lines of re-
search have found cursor interactions to be useful in deter-
mining user intent and relevant parts of Web pages. How-
ever, cursor interactions are not all the same; different types
of cursor behavior patterns exist, such as reading, hesitating,
scrolling and clicking, each of which has a different meaning.
We conduct a search study with 36 subjects and 32 search
tasks to determine when gaze and cursor are aligned, and
thus when the cursor position is a good proxy for gaze posi-
tion. We study the effect of time, behavior patterns, user, and
search task on the gaze-cursor alignment, findings which lead
us to question the maxim that “gaze is well approximated by
cursor.” These lessons inform an experiment in which we pre-
dict the gaze position with better accuracy than simply using
the cursor position, improving the state-of-the-art technique
for approximating visual attention with the cursor. Our new
technique can help make better use of large-scale cursor data
in identifying how users examine Web search pages.
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INTRODUCTION
Billions of people navigate the Web as part of their daily lives
by looking, finding, reading, pointing, and clicking. Because
the flow of using a site is such a fundamental experience
for so many people, usability professionals and site design-
ers seek to optimize the experience by analyzing which parts
of the page grab a visitor’s attention, and what information
people read on the page. To achieve this, they conduct labora-
tory studies using eye-tracking equipment to track users’ gaze
while they navigate the site. Research studies have shown
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gaze to be useful in determining what people are reading from
their fixation [5, 26], in determining salient regions of Web
pages [4], and in identifying the effects of changes to search
engine results pages (SERPs) [13]. But could the mouse cur-
sor be a cheap and scalable alternative to eye-tracking for the
same purposes? If so, cursor tracking systems can be de-
ployed on any website without the need for an eye-tracker.

Most people use a mouse cursor to interact with Web pages;
this interaction data can be efficiently collected at scale in a
natural setting without disrupting the user [2, 20, 22]. There
are reports that the cursor is a suitable substitute for eye-
tracking for determining people’s attention and examination
behavior. Academic studies [1, 2, 31] and commercial offer-
ings (e.g., ClickTale [clicktale.com], Lucky Orange [lucky-
orange.com], Observe.It [observe.it], and Mouse Eye Track-
ing [met.picnet.com.au]) have analyzed the cursor in usabil-
ity settings to learn about engagement on Web pages. Past
research has found a correlation between gaze and cursor po-
sitions [9, 12, 19, 22, 27, 28] and that cursor movements can
be useful for determining relevant parts of the Web page with
varying degrees of success [15, 21, 22, 29]. However, cur-
sor interaction spans a variety of behaviors [1, 12, 25, 27,
28] including reading, hesitating, highlighting, marking, and
actions such as scrolling and clicking. Identifying these be-
haviors is a prerequisite to understanding what meaning the
cursor interactions convey.

In this work, we aim to further quantify the relationship be-
tween cursor and gaze. Prior work has shown that gaze and
cursor are correlated but the goal of our work is to determine
when gaze and cursor are aligned. We want to know when the
cursor position is a good proxy for gaze position and the ef-
fect of various factors such as time, user, cursor behavior pat-
terns, and search task on the gaze-cursor alignment. Through
this, our research will contribute to knowledge of how peo-
ple use their cursor and how they examine Web search pages.
The lessons from this analysis also inform an experiment in
which we predict the gaze position with better accuracy than
simply using the corresponding cursor position. In addition
to the cursor position, we also use dwell time1, temporal fea-
tures relating to cursor behavior, and future cursor positions
to determine the current gaze position.

The findings from this work can be applied to many practi-
cal situations. Predicting gaze will improve state-of-the-art
techniques for approximating visual attention with the mouse
cursor. Current commercial cursor-tracking systems merely
1Dwell time here is the page dwell time as typically measured in
information retrieval literature, rather than cursor dwell time.



present heatmaps of the cursor movements and claim that
the user attention is proximal to the hot areas of the map.
Our findings will inform these and other applications that re-
motely collect large amounts of cursor data at scale by show-
ing how to more effectively use this data. More broadly,
our work supports collecting user attention data in situations
where eye-tracking equipment is costly, such as for large
numbers of Web users. One particular domain that may bene-
fit from this research is Web search, in which searcher exam-
ination behavior represented by probabilistic models [8, 16]
may be improved by uncovering the latent variables repre-
senting which search results the users examine.

We study the gaze-cursor alignment of 36 subjects and 32
search tasks with an eye-tracker in a controlled lab setting.
The findings show that while subjects vary their gaze-cursor
alignment substantially, they lag their cursor behind their
gaze by at least 250 ms and on average by 700 ms. Both dwell
time and the user’s personal style affect the distance between
the cursor and gaze positions. This distance is longer when
the cursor is inactive, shorter when the cursor is used to help
examine or read the page, and even shorter when the user is
performing an action. Finally, we predict the gaze position
using cursor features and achieve 23.5% more accuracy than
simply using the corresponding cursor position alone.

RELATED WORK
Two lines of research relate to this work. One focuses on
inferring user interest and intentions directly from the user’s
interactions with a SERP or a Web page, specifically based
on cursor movements, clicks, and gaze. The second explores
the relationship between cursor position and gaze position in
order to infer users’ visual attention from cursor movements.

Implicit Interest Indicators
In early work, Goecks and Shavlik modified a Web browser
to record themselves browsing hundreds of Web pages [15].
They found that a neural network could predict variables such
as the amount of cursor activity on the SERP, which they con-
sidered surrogate measurements of user interest. Claypool
et al. [10] developed the “curious browser”, a custom Web
browser that recorded activity from 75 students browsing over
2,500 Web pages. They found that cursor travel time was a
positive indicator of a Web page’s relevance, but could only
differentiate highly irrelevant Web pages. They also found
that the number of mouse clicks on a page did not corre-
late with its relevance, despite the intuition that clicks rep-
resent links that users found appealing. Hijikata [21] used
client-side logging to monitor five subjects browsing a total
of 120 Web pages. They recorded actions such as text tracing
and link pointing using the cursor. The findings showed that
these behaviors were good indicators for interesting regions
of the Web page, around 1.5 times more effective than rudi-
mentary term matching between the query and regions of the
page. Shapira et al. [29] developed a special Web browser
and recorded cursor activity from a small number of com-
pany employees browsing the Web. They found that the ratio
of mouse movement to reading time was a better indicator of
page quality than cursor travel distance and overall length of
time that users spent on a page.

In the search domain, Guo and Agichtein [17] captured
mouse movements using a modified browser toolbar and
found differences in cursor travel distances between informa-
tional and navigational queries. Furthermore, a decision tree
could classify the query type using cursor movements more
accurately than using clicks. Guo and Agichtein also used
interactions such as cursor movement, hovers, and scrolling
to accurately infer search intent and interest in search results
[18]. They focused on automatically identifying a searcher’s
research or purchase intent based on features of the inter-
action. Buscher et al. [7] also used scrolling to infer user
interest and compared it to gaze tracking feedback. They
found that scrolling behavior in connection with information
on the browser’s viewport could be as effective as gaze track-
ing feedback in search scenarios comprising query expansion.
By applying a reading detection method, Buscher et al. [5]
used gaze tracking features directly to infer user interest and
show that this can yield great improvements when personaliz-
ing search. Buscher et al. also demonstrated the value of gaze
information to build models for predicting salient regions of
Web pages [4]. Finally, Cole et al. [11] built reading models
operating on gaze tracking data to investigate information ac-
quisition strategies of the searcher for different search tasks.

Gaze-Cursor Relationship
Another line of research examines the relationship between
eye gaze and cursor positions. An early study by Chen et
al. [9] measures this relationship by recording 100 gaze
and cursor positions from five subjects browsing the Web.
They showed that the distance between gaze and cursor was
markedly smaller in regions of encountered pages to which
users attended. Liu and Chung [25] recorded cursor activity
from 28 students browsing the Web and noticed patterns of
viewing behaviors, including reading by tracing text with the
cursor. Their algorithms were capable of predicting users’
cursor behaviors with 79% accuracy. Hauger et al. conducted
a study using a similar method to ours, but over instructional
pages about the game of “Go” [20]. They found that gaze and
cursor positions were better correlated when the cursor was
in motion and in sessions comprising a higher proportion of
motion. Hauger et al. were able to predict which paragraph a
user was reading, and to what extent, with 79% accuracy.

Other work has focused on the relationship between cursor
and gaze in search tasks. In a study involving 32 subjects
performing 16 search tasks each [27, 28], Rodden et al. iden-
tified a strong alignment between cursor and gaze positions.
They found that the distance between cursor and gaze po-
sitions was larger along the x-axis than the y-axis, and was
generally shorter when the cursor was placed over the search
results. Rodden et al. also observed four types of mouse cur-
sor behaviors: neglecting the cursor while reading, using the
cursor as a reading aid to follow text (either horizontally or
vertically), and using the cursor to mark interesting results.
Guo and Agichtein [19] reported similar findings in a smaller
study with ten subjects performing 20 search tasks each. Like
Rodden et al., Guo and Agichtein observed that distances
along the x-axis tended to be larger than the distances along
the y-axis. They could predict with 77% accuracy when gaze
and cursor were strongly aligned using cursor features.



The research presented in this paper extends previous work
in several ways. The focus of previous work was in exam-
ining the relationship of cursor and gaze position by measur-
ing the distance between them. The conclusions were that a
strong correlation existed between them, however there was
little further differentiation of alignment along a temporal di-
mension and no differentiation by cursor behavior patterns.
Here we look at the degree of alignment at different points in
time, quantitatively analyzing behaviors made using the cur-
sor, and we are predicting the gaze position using a variety of
cursor behavior and time features. In addition, our analysis of
the gaze-cursor relationship involves a larger number search
tasks and subjects than prior studies, giving us more leverage
in feature comparisons.

METHOD
We used a Tobii x50 eye tracker with 50 Hz tracking fre-
quency and an accuracy of 0.5° visual angle (corresponding
to 16 pixels in our setting) on a 1280 × 1024 resolution 17
inch monitor (96dpi) and 1040×996 resolution Web browser.
Cursor and gaze coordinates were collected in an eye-tracking
study with 38 subjects (21 female, 17 male), recruited from a
user study pool. They ranged in age between 26 and 60 years
(M = 45.5, SD = 8.2), and possessed a wide variety of back-
grounds and professions. Two subjects had incomplete data
due to technical issues and were dropped from the analysis.

We prepared a set of 32 Web search tasks (information needs)
which each subject completed on the Bing search engine in a
randomized order. Half of the tasks were navigational (i.e.,
they had to find a specific Web page) and half were informa-
tional (i.e., they had to find factual information). Each task
started with a description of what subjects should look for on
the Web. They had to start searching with a predefined query
for each task (e.g., task = “What are some side-effects of
Ibuprofen?”, predefined query = “ibuprofen side effects”) that
we generated from the task, but were then free to interact with
the search results, browse the Web and search further. The
browser cache and cookies were cleared after each subject to
prevent subjects from noticing previously viewed pages (from
hyperlinks turning purple) and search engine personalization
effects. Going through an eye tracker calibration phase in the
beginning, completing all 32 search tasks, as well as filling in
a demographics questionnaire in the end took about one hour
per subject.

Gaze and cursor positions were recorded for each SERP as
well as subsequent Web pages (i.e., pages visited after click-
ing on a search result). In total, we collected data for 1,210
search tasks, which included 1,336,647 gaze positions, and
87,227 cursor positions (whenever the subject moved the cur-
sor). Additional details about the experimental procedure are
described in Buscher et al. [6]. Gaze-specific findings on
this data set, unrelated to cursor features, have been reported
elsewhere [6, 14]. Huang et al. [22] used this data to mea-
sure gaze-cursor alignment (Figure 1), showing that there is
some correlation between gaze and cursor positions, but with
substantial variation. Other studies measuring gaze-cursor
alignment [19, 27] have presented evidence of alignment with
charts nearly identical to Figure 1.
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Figure 1. ∆x, ∆y, and Euclidean distance plotted in a frequency distri-
bution for the search results page.

In the search logs, the gaze positions were recorded approxi-
mately every 20 ms, whereas cursor positions were recorded
approximately every 100 ms. Gaze positions are estimated by
the eye-tracker and given the saccades (rapid movements) of
the eye, recording at a higher frequency can give more accu-
rate positions; but the cursor position is an exact value and
recording at 10 Hz is sufficient—the cursor is not radically
changing directions at sub-second speeds such that we can-
not interpolate them. We had tested different frequencies of
interpolation and found negligible differences.

Since cursor and gaze events did not necessarily have iden-
tical timestamps, a gaze position was interpolated for every
cursor position. Interpolation was performed by computing
gaze x and y coordinates weighted by the coordinates of the
nearest gaze coordinates before and after the cursor position.
For example, the interpolated x-coordinate for eye gaze is
computed as,

xi = x0 + (x1 − x0)
ti − t0
t1 − t0

(1)

where ti is the time for the corresponding cursor position,
x0 is the gaze’s x-coordinate preceding the cursor position,
recorded at time t0, and x1 is the gaze’s x-coordinate follow-
ing the cursor position, recorded at time t1. The interpolated
y-coordinate was computed the same way, substituting x for
y in the above equation. To reduce interpolation inaccuracies
due to noise from the eye-tracker, cursor positions were only
captured if they occurred between gaze positions that were at
most 100 ms apart.

ALIGNMENT EFFECTS FROM TIME, USER, AND TASK
To begin our analysis, we view gaze-cursor alignment
through the lens of time, user, and search task. Different peo-
ple behave differently on the Web in the queries they issue
[33], how they gaze at the page [3, 14], and how they inter-
act with the page [19]. The amount of time spent reviewing
the search results page can affect where they are pointing and
where they are looking. Additionally, we investigate the pos-
sibility that gaze and cursor may not be most aligned at each
instance in time, but may be better aligned when one variable
is temporally shifted.
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Figure 2. The average gaze-cursor distance for each subject with error
bars representing the standard error. The variance between subjects is
high (SD = 33.9). Subjects are sorted by ascending age so that oldest
subjects are on the right.

User and Task Effects
People visually examine Web pages differently [4], and have
individual styles in their control of the cursor. Past findings
have shown that users behave differently depending on search
tasks (e.g., between informational and navigational task types
[13]). Guo and Agichtein analyzed gaze-cursor alignment
[19] on a smaller subject pool and found differences in user
(up to twice the average distance between gaze and cursor for
some users) and search task type (navigational vs. informa-
tional). Here we explore whether search task or individual
differences (including age and gender) have a stronger effect
on alignment. Larger variances in alignment would indicate
that a search system might have difficulty predicting align-
ment for users or queries that have not occurred before.

To study alignment differences among subjects, we macro-
averaged the gaze-cursor distance across their queries (i.e.,
took the average of the average for each of their queries, thus
giving equal weight to each query). The results in Figure 2
show that subjects are fairly distinct in terms of gaze-cursor
alignment. Some keep their cursor within about 130 px of
their gaze, while others average about 280 px. The stan-
dard deviation representing the variation among subjects is
SD = 33.9. We checked for gender differences in gaze-
cursor distance using a two-tailed t-test and found no statisti-
cally significant effect (t(34) = 1.31, p = 0.20). There was
a Spearman correlation of ρ = 0.22 between age and gaze-
cursor alignment, but this was also not statistically significant
(N = 36, p = 0.18). Therefore, we conclude that whether
the subject tracks their gaze closely with their cursor is more
likely to stem from personal habits rather than age or gender.

Next we look at the average differences in gaze-cursor align-
ment for different search tasks. Since the subjects were given
predefined queries to begin with, we filtered out reformulated
queries since they may be reflective of personal style or in-
dividual search skills. A search task is therefore represented
by a single query in this analysis. For each search task, we
first macro-averaged the gaze-cursor distance across subjects
to normalize the data, then took the mean of this value as the
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Figure 3. The average gaze-cursor distance for each search task with
error bars representing the standard error. The variance between search
tasks is modest (SD = 20.2). Queries are sorted by ascending click
entropy so queries with more diverse result clicks are on the right; five
queries with unknown entropy are on the left (shaded lighter).

average distance for each task. The search task averages are
shown in Figure 3, which reveals that there are modest dif-
ferences between tasks. The alignment distance ranges from
about 150 px to about 220 px, and the standard deviation
among search tasks is SD = 20.2.

To gain some insight into the attributes of the search tasks,
we computed the click entropy for each query, a measure of
result click diversity [33]. The click entropy is computed as
the Shannon entropy of the click distribution on the search
result links. This was done to look for correlation between
click entropy and gaze-cursor alignment; we thought it was
possible that gaze and cursor would align differently depend-
ing on query type. (Typically, queries with high click entropy
are informational or more ambiguous, and navigational oth-
erwise [30].) We used the past year’s search logs of the Bing
search engine to find the click distributions. Five queries had
not appeared in the search logs in the past year and thus had
unknown entropy. From the remaining queries, we found
no Spearman correlation between click entropy and gaze-
cursor alignment (ρ = 0.01, N = 27, p = 0.96). This con-
trasts findings from Guo and Agichtein’s study [19] which
found alignment differences between navigational and infor-
mational queries.

The standard deviation in gaze-cursor alignment across
means for different subjects is higher than across means for
different search tasks. A Levene’s test for homogeneity of
variance shows that the differences in variance are statisti-
cally significant (Levene statistic2 = 4.529, p = 0.037). This
suggests that users have individual preferences and that these
differences are stronger than the differences between search
tasks. We experimented with not normalizing the data when
computing the mean averages (i.e., micro-averaging), but the
differences in standard deviation between search task and
subject were similar.

2Levene’s test is typically used to compare the variance between two
sources rather than between two sets of macro-averaged values.
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Figure 4. The average gaze-cursor distance at 100 ms intervals after the
SERP loads, macro-averaged over subjects. The distance is low just as
the page loads, increases at 0.5–1 seconds, then decreases. The shaded
area is the region representing the standard error of the mean.

Temporal Effects
Users examine the SERP in a sequence of evolving behaviors.
A user may possess the habit of quickly scanning the page
first to see what kinds of items are on the page, then skimming
it quickly to see if there is an answer to their information need
while neglecting the cursor, then finally reading the text word-
by-word. As the time spent dwelling on the SERP increases,
the alignment between gaze and cursor may change due to the
dynamism of the behaviors.

Averaging gaze and cursor distances for different dwell times,
Figure 4 shows the relationship between gaze and cursor over
time for the first five seconds following the pageload. Indeed,
the time since the page has loaded has an effect on alignment.
Specifically, the alignment distance ranges from 170 px to al-
most 240 px. Right when the page loads, gaze and cursor
are closely aligned, perhaps from the previous action that led
to the page. The peak at 240 px is within one second of the
page loading, suggesting that the subject may first scan the
displayed page without moving their cursor. The gaze-cursor
alignment narrows after about two seconds when the subject
may start to examine the page more closely and perhaps pre-
pare to click a link. While the subject’s actions at this stage
change from query-to-query, the aggregate alignments pro-
vide clues of typical examination behavior.

This behavior led us to ask—given that we see the eye moving
within a second of the page loading, does the cursor move as
quickly? We arrived at three credible hypotheses: a) the user
uses the cursor as a reading aid [28] and so the eye follows
the cursor, b) the gaze and cursor positions are best aligned at
each given point in time, c) or the cursor follows gaze because
the user looks at something and then moves their cursor to
interact with it. The last hypothesis is consistent with findings
from early work by Ware and Mikaelian [32] that showed that
the eye fixation was a faster method for target selection than
the mouse. While target selection is not the objective of this
study, the difference between eye and mouse speed may cause
the cursor to lag behind the gaze.

We used a technique similar to cross-correlation in signal pro-
cessing that computes when two waveforms are most aligned
[23]. We first interpolated cursor and gaze positions at 50
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Figure 5. The root-mean-square error for gaze and cursor distance at
different intervals (in 50 ms increments) of gaze-cursor lag, representing
how well gaze positions correlate with future and past cursor positions.
The thick solid line plots the RMSE macro-averaged over subjects, and
thin dashed lines plot the RMSE for three example subjects.

ms intervals again using Equation 1. This equalized the pe-
riods between positional data points, computing the cursor
positions at different time shifts (e.g., 50 ms, 100 ms, 150
ms, ...) after each gaze position. Then we computed the root
mean square error (RMSE) between gaze and cursor3 for each
shifted time interval for each subject. The cursor and gaze
positions are considered most correlated at the time shift with
the lowest RMSE.

Figure 5 shows the macro-averaged RMSE values across sub-
jects compared with three example subjects. The first thing to
note is that for the macro-averaged values, shifting the cursor
positions 700 ms into the future minimizes the RMSE. This
means mouse cursor lags behind eye gaze by about 700 ms, so
the user looks at something and then (almost one second) later
their cursor is moved to that location on the page. Temporal
alignments vary depending on the user and query session; the
per-subject RMSE values showed that different people had
different delays in moving their cursor to their gaze. In the
same manner, the cursor lagged behind the gaze for each in-
dividual subject; the inverse situation—gaze lagging behind
the cursor—did not occur, refuting the hypothesis that some
people lead with the cursor when examining the page. Still,
some subjects were quick, moving their cursor to their gaze
in 350 ms (one subject had a minimum RMSE at 250 ms),
while others took over one second.

CURSOR BEHAVIOR PATTERNS
Several studies have reported different behavioral patterns
when using the cursor. Rodden et al. observed several types
of cursor behavior: neglecting the cursor while reading, using
the cursor as a reading aid to follow text, and using the cursor
to mark interesting results [28]. Liu and Chung also noticed
3Note that RMSE differs from the average alignment distance metric
we use throughout the paper; RMSE takes the root of the mean of
the squared distances which is not the mean distance.



patterns of cursor behaviors, including reading by tracing text
[25]. Arroyo et al. observed users hesitating and reading with
the cursor [1]. Mueller and Lockerd found users hesitating
before clicking and resting the cursor on white space [12].
Finally, Claypool et al. observed the following cursor behav-
iors: ignoring the cursor, examining the page using the cursor,
following the text with the cursor, and using it to interact with
the page or browser [10]. Our taxonomy of cursor behavior
resembles that reported by Claypool et al.

Each of the previously mentioned studies discusses the cursor
behavior qualitatively and most do not have corresponding
gaze data. Our study involved more subjects and search tasks
than the largest prior study, facilitating a quantitative analysis
of the cursor behaviors. Informed by prior work and our own
qualitative observations of user interactions with the SERP,
we separated cursor behaviors into four categories:

Inactive cursors are not moving and are ignored by the user
for some time.

Reading cursors are used to follow the text while the user is
reading the page.

Action cursors are used when the user is about to perform
an action (click on a link, edit the query in the search box,
drag the scrollbar, etc.).

Examining cursors move around while the user is examining
the page, not including time spent in ‘reading’ or ‘action’.

Distinguishing Between Cursor Behaviors
We use a heuristic-based method to classify the different cur-
sor behaviors. This method entails iteratively examining re-
plays of the recorded interaction behaviors, deciding which
behaviors belong to each category, classifying the behaviors
using simple rules, and finally comparing the classified be-
haviors with the judged behaviors. The process is ad-hoc
to develop a simple classification scheme that captures the
essence of each behavior type.

We developed classification rules informed by watching re-
plays of the interaction in a query session. The cursor is con-
sidered inactive if the user leaves it in one location (pausing
it) while they examine the page. We define ‘inactive’ as the
cursor staying still for at least one full second. The behaviors
occurring when the cursor’s position is active can be classi-
fied in three ways. As Claypool et al. noted, users may be
using the cursor to help examine or read the page [10]. How-
ever, the cursor also serves the purpose of interacting with
elements of the page or with the Web browser, typically by
clicking on controls on the browser or Web page. We classify
these ‘action’ behaviors as those occurring in the one second
preceding a click. The remaining interactions were classi-
fied as either examining or reading. Reading was typically
defined as users following the text horizontally (an observed
pattern in Rodden et al. [28]), since the text in a snippet or
advertisements goes from left to right. The movement to the
right was not enough to classify as reading, since the cursor
may be moved to the right for many reasons. We arrived at
three rules for an interaction which if met, would label all

cursor positions within that timeframe as ‘reading’: the cur-
sor could not have moved more than 50 px vertically (about
3 lines of text); the cursor must have moved at least 150 px
to the right (the length of a handful of words); and the cursor
must have moved back to the left at least 50 px. The remain-
ing interactions, in which the cursor was neither inactive nor
reading nor performing an action, were labeled as ‘examin-
ing’. We therefore arrived at five cursor behavioral patterns
(including clicking which was treated as an instantaneous ac-
tion) as behaviors that warranted further analysis. We studied
gaze-cursor alignment in these behaviors next.

Cursor Behavior’s Effect on Alignment
For each of the five cursor behaviors, we computed the dis-
tance between gaze and cursor. Table 1 summarizes the pro-
portion of time spent in each cursor behavior and the corre-
sponding median distance between gaze and cursor. As ex-
pected, gaze and cursor are further apart when the cursor is
inactive, since the eye is still roaming the SERP—233 px.
Alignment is much closer when the cursor is being actively
used to examine, read, or perform an action. The median dis-
tance when examining the page using the cursor is 167 px,
while the alignment is closer when using the cursor to read—
150 px. When the subject is moving the cursor to perform an
action involving a click, alignment is extremely close—77 px,
and even closer at the actual click—74 px. This agrees with
findings from Hauger et al. that being in motion increases the
alignment between cursor and gaze [20].

Behavior Inactive Examining Reading Action Click

Total Time 58.8% 32.9% 2.5% 5.7% -
Distance 233 px 167 px 150 px 77 px 74 px

Table 1. The median gaze-cursor distance for different cursor behaviors.
The total time is summed across all subjects and search tasks.

During the study, the cursor was inactive a total of 18,554
seconds (58.8% of the time), representing time the subject
may have been looking through the page without moving the
mouse or just pausing for a few moments to read or think.
This is more than the combined time of examining, reading,
and performing an action on the page, meaning that a sub-
stantial period exists in which it is difficult to predict the gaze
position. Anecdotally, some people believe they rarely use
the cursor while examining Web pages. But in aggregate, a
large portion of time is still spent actively moving the cursor,
most of which does not produce an action.

Claypool et al. remarked, “Some users move the mouse while
reading the window text or looking at interesting objects on
the page, while others move the mouse only to click on in-
teresting links” [10]. We quantified individual differences in
gaze-cursor alignment and cursor behavior; Table 2 presents
the duration of each cursor behavior and gaze-cursor align-
ment for each subject. The distances were macro-averaged
over search tasks for each subject to negate the effect of a
subject spending more time on certain search tasks.

Leaving the cursor idle from 50% to 79% of the time was
common, like Subject 29 who left the cursor inactive during
the majority of the time. Other subjects actively moved the



Subject Gender Age Inactive Examining Reading Action Click
Distance Time Distance Time Distance Time Distance Time Distance

1 F 46 188 px 68% 116 px 27% 45 px 0% 46 px 4.8% 49 px
2 M 56 201 px 65% 149 px 28% 133 px 0% 79 px 5.9% 73 px
3 F 35 165 px 47% 144 px 47% 167 px 2% 82 px 4.9% 75 px
4 M 47 162 px 61% 218 px 26% 214 px 6% 113 px 7.2% 106 px
5 F 31 246 px 45% 139 px 42% 134 px 6% 76 px 6.7% 89 px
6 M 44 175 px 59% 163 px 32% 211 px 1% 108 px 7.4% 101 px
7 M 57 144 px 60% 100 px 29% 93 px 6% 76 px 5.9% 81 px
8 F 47 309 px 63% 224 px 30% 143 px 3% 58 px 3.7% 43 px
9 F 50 262 px 56% 150 px 31% 146 px 8% 89 px 5.7% 100 px
10 M 59 180 px 65% 165 px 29% 209 px 1% 139 px 4.6% 126 px
11 M 50 247 px 50% 198 px 36% 256 px 4% 106 px 9.9% 81 px
12 F 39 236 px 29% 140 px 55% 125 px 5% 74 px 10.7% 77 px
13 F 45 177 px 55% 155 px 33% 204 px 4% 95 px 7.3% 71 px
14 M 50 206 px 49% 195 px 41% 177 px 2% 91 px 7.4% 93 px
15 F 38 294 px 68% 202 px 23% 168 px 2% 129 px 6.7% 88 px
16 F 26 152 px 61% 131 px 27% 118 px 2% 98 px 8.8% 84 px
17 F 46 218 px 55% 152 px 36% 145 px 4% 69 px 5.1% 65 px
18 M 50 245 px 58% 244 px 34% 251 px 2% 92 px 6.4% 116 px
19 F 50 185 px 55% 120 px 38% 142 px 2% 58 px 5.1% 46 px
20 M 39 370 px 44% 219 px 47% 140 px 3% 97 px 6.1% 70 px
21 M 38 146 px 39% 164 px 49% 139 px 1% 69 px 10.1% 59 px
22 M 47 216 px 69% 160 px 24% 173 px 3% 92 px 4.4% 71 px
23 F 46 218 px 50% 190 px 42% 196 px 1% 76 px 6.5% 64 px
24 F 48 224 px 61% 178 px 34% 89 px 0% 64 px 4.7% 47 px
25 F 54 228 px 56% 184 px 36% 173 px 1% 39 px 6.8% 26 px
26 F 44 166 px 32% 167 px 58% 116 px 1% 78 px 8.1% 109 px
27 F 28 161 px 58% 142 px 33% 112 px 0% 90 px 8.3% 52 px
28 F 51 259 px 56% 195 px 34% 242 px 2% 76 px 7.5% 72 px
29 F 41 218 px 79% 171 px 15% 148 px 1% 89 px 5.7% 119 px
30 M 48 279 px 50% 138 px 37% 87 px 5% 42 px 7.7% 38 px
31 M 59 192 px 58% 175 px 34% 162 px 3% 152 px 4.5% 133 px
32 F 53 236 px 61% 199 px 35% 77 px 0% 52 px 3.3% 77 px
33 M 60 418 px 62% 305 px 27% 319 px 3% 69 px 8.0% 105 px
34 F 47 245 px 59% 214 px 36% 160 px 1% 44 px 4.2% 34 px
35 M 44 187 px 73% 133 px 22% 167 px 1% 68 px 4.7% 85 px
36 F 37 290 px 76% 231 px 20% 147 px 1% 58 px 2.9% 56 px

Table 2. Basic demographic information for each subject, the proportion of time spent performing each cursor behavior, and the average distance
between gaze and cursor while performing that cursor behavior. Clicks are considered instantaneous events and therefore have no duration.

cursor while examining the page; Subject 12 spent 55% of
their time examining the page with the cursor, and a mere
29% of their time idling the cursor. Reading behavior com-
prised 2% or less of total search time for more than half the
subjects (22 of 36), who exhibited nearly no reading behavior
(per the definition of this behavior that we used). At the other
end of the spectrum, Subject 9 spent 8% of their time reading
with the cursor. Turning to gaze-cursor distance, some sub-
jects had poor alignment (Subject 33) when not performing
an action. While in the aggregate, subjects had stronger align-
ment when the cursor was active, Subject 18 had essentially
unchanged alignment between inactive, examining, and read-
ing behaviors. These differences show that individuals vary
substantially in their cursor behavior usage and gaze-cursor
alignment. We initially thought that perhaps the variation in
users’ gaze-cursor alignment could be explained by choice
of cursor behavior, but for each cursor behavior, gaze-cursor
alignment still varied substantially among our subjects.

PREDICTING GAZE
So far, we have seen the effects of user, query, dwell time, cur-
sor behavior, and future cursor positions on gaze-cursor align-
ment. These features can provide guidance about whether
the alignment is stronger or weaker. Predicting the strength
of alignment is useful in determining the confidence of the
gaze position from only interaction features—without using
an eye-tracker. We now focus on a more aggressive predic-

tion: to find the position of the gaze using only interaction
features, rather than how confident we are that the cursor po-
sition approximates the gaze position. To do this, we extract
four types of features from the interaction data, aiming to se-
lect features that seemed to influence the gaze-cursor align-
ment, as informed by our earlier analysis.

Features
At each time t that we want to predict the gaze position, we
have the cursor position at that time, represented by a tuple
(x, y). The cursor position alone is suggested for approximat-
ing gaze position in some prior literature and current Web an-
alytics services. This approach is the baseline against which
we will compare our performance, but we also use cursor po-
sition as a feature in our gaze prediction model.

Cursor behavior has a strong effect on gaze-cursor alignment.
Both our earlier analysis and a study by Hauger et al. [20]
showed that active cursors are better aligned with gaze than
inactive cursors. To generalize this, we use the idle time fol-
lowing the last movement before t as the behavior feature,
representing activity level.

Each recorded interaction on the Web page has a correspond-
ing timestamp, allowing us to deduce the length of time since
the SERP has loaded. Our analysis has shown that the time
since the SERP loaded influences the gaze-cursor alignment.
This time (currentt − pageloadt) is the dwell feature, which



we incorporate into our model. Guo and Agichtein also use
this feature to predict gaze-cursor alignment [19].

Our analysis showed that for every subject in our study, the
cursor position lagged behind the gaze position, since there
is a stronger correlation between a future cursor position and
the current gaze position. We refer to the most likely later
cursor position for the current gaze as the future feature. The
future cursor positions were only used if the last movement
was within 10 seconds of the target future time.

We also used the interaction effect of cursor position with
dwell and cursor position with behavior, since we know that
behavior and dwell affect alignment. The user or query were
not treated as features for two reasons. First, in practical sit-
uations, a user’s gaze data is not available to train the model.
Second, there is unlikely to be enough gaze data for most
queries to train the model, and in our analysis described ear-
lier in the paper, we found that query only has a modest effect
on gaze-cursor alignment. Our current features are all global
and so require fewer training examples in the form of eye-
tracking data (i.e., actual gaze positions).

Experiment
We predict the subject’s gaze position using a linear model
of interaction features. The ground truth is the gaze posi-
tion measured by the eye-tracking system. The x- and y-
coordinates of the gaze position were predicted separately.
To compute the weights (coefficients) for each feature, we
performed a multiple linear regression. Figure 6 illustrates
the value of gaze prediction in an example query session with
cursor positions, gaze positions, and predicted gaze positions
overlaid on the SERP.
The model for the regression for the x-coordinate is:
gx ∼ cx + log(td) + log(tm) + cx × log(td) + cx × log(tm) + fx (2)

where td is the dwell time, tm is the time since a move-
ment, cx is the x-coordinate of the cursor position, gx is the
x-coordinate of the gaze position, and fx is the most likely x-
coordinate of the gaze based on future cursor positions. The
regression for the y-coordinate was similar, but substituting x
for y in Equation 2.

The evaluation was a 36-fold cross-validation, where each
fold was an individual subject; this is essentially a leave-
one-out evaluation for each subject. By testing each subject
separately with the training data of all 35 other subjects, we
achieve a practical method of predicting the gaze position for
users that we have not seen before (which would be the typi-
cal case in a real deployment). Essentially, we ran a multiple
linear regression on the gaze and interaction data of 35 sub-
jects to compute weights (coefficients), then used those coef-
ficients to predict gaze data from just the interaction data for
the test subject. This process was repeated for every subject
being the test subject. For each subject we tested, we com-
puted the RMSE for their predicted gaze with and without the
future feature, as well as the RMSE for just the cursor posi-
tions. Without using the future feature, there is a potential
application for real-time gaze prediction, while with future
cursor positions, the gaze prediction must be performed of-
fline (after the query session, e.g., for analytics).

Figure 6. The cursor position (orange), the gaze position predicted by the
linear regression model (purple), and the gaze position as determined by
the eye-tracker (green) are drawn over the SERP presented to the sub-
ject following the query “rent a stretch limo hummer” from our study.
The figure omits the right and left columns of the SERP.

Table 3 shows the results of the prediction experiment. When
using only the cursor position for prediction, the distance
RMSE is 236.6 px. But using a multiple linear regression
with cursor position, behavior, and dwell time, the predicted
gaze position is significantly better—186.3 px, a 21.3% de-
crease in RMSE. Adding future cursor data from that query
session to the model reduces RMSE further to an overall
23.5% decrease in RMSE compared to just using the cur-
sor position. The RMSEs in the x- and y-coordinates alone
were similarly improved by the linear model. An ANOVA
shows that the RMSE differed significantly between gaze-
cursor alignment and alignment between gaze and predicted
gaze along the x-axis (F (2, 105) = 59.72, p < 0.001) and
Euclidean distance (F (2, 105) = 41.31, p < 0.001).

The Lindeman, Merenda and Gold (LMG) metric [24] (R2

partitioned by averaging over orders) determined the relative
importance of the features for predicting the x-coordinate.
They were in descending order of importance: log(td), cx,
fx, cx × log(tm), log(tm), and cx × log(td); the relative im-
portance of the features for predicting the y-coordinate in de-
scending order: cy , fy , log(td), log(tm), cy × log(tm), and
cy × log(td).

RMSEx RMSEy RMSEd

Cursor (baseline) 185.0 px 145.0 px 236.6 px
Predicted Gaze with

Cursor+Behavior+Dwell
125.2 px 137.1 px 186.3 px

Predicted Gaze with
Cursor+Behavior+Dwell+Future

125.1 px 129.9 px 181.1 px

Table 3. The computed accuracies in cross-validation evaluations of es-
timating the gaze position using the cursor position, the cursor position
along with behavior and duration using multiple linear regression, and
the cursor position along with behavior, duration, and future cursor po-
sitions using multiple linear regression. The accuracy is measured by
root-mean-square error for the x-axis, y-axis, and Euclidean distance.



DISCUSSION
Our study has shown that gaze-cursor alignment is situa-
tional, as it depends on the time spent on the page, personal
browsing habits, and a user’s current cursor behavior (inac-
tive, examining, reading, action). An experiment showed
that a model using these features could predict the subject’s
gaze significantly better than using the cursor position alone.
These findings have implications for using large-scale cursor
data more effectively, which has already been demonstrated
to be efficiently obtainable at scale [2, 22].

Our findings suggest that for certain circumstances, it may be
possible to predict the actual gaze position on SERPs using
only cursor features. This extends previous work [19] which
attempted the binary prediction task of whether we can be
confident of gaze-cursor alignment within a threshold. Using
a linear model, we show that there is room for improving gaze
prediction by using other factors on top of solely the cursor
position. Our predictive model reduces the RMSE by 60 px in
the x-direction and is 15 px more accurate in the y-direction.
15 px is around two lines of text on a SERP, and 60 px is
around 10 characters of that text. These gains could be sig-
nificant for differentiating between engagement with regions
on the SERP, especially when the cursor is near the boundary
of two or more regions. However, since the linear regression
fits using least squares, the predicted gaze tends to be conser-
vative and often stays around the center of the screen. This
leads us to believe that gaze prediction may be improved fur-
ther by a more complex combination of the features, perhaps
in non-linear models, since we intuit that interaction effects
of time, behavior, and cursor position exist.

The gaze prediction results in Table 3 suggest a counterintu-
itive finding. While several past studies [19, 22, 27] agree
that the cursor is better correlated with the gaze in the y-
direction than the x-direction, the x-coordinate of the gaze is
easier to predict than the y-coordinate. This subverts the ex-
pectation that better correlation leads to better prediction for
gaze. This may be an artifact of our model, but perhaps left-
right eye movement is less surprising than up-down move-
ment. Scrolling may cause the cursor to move down relative
to the page, making it a good estimate of vertical attention,
whereas most SERPs require little horizontal scrolling.

Cursor tracking, deemed the “poor man’s eye tracker” [12],
may approximate gaze tracking without the eye tracker de-
pending on the accuracy required. Although cursor features
would allow us to model many aspects of user attention in situ
as they browse the Web from home, they cannot completely
replace gaze. For example, eye-gaze fixation is a positive sig-
nal of interest because the user pays more attention to that po-
sition, but prolonged cursor fixation may not be since given
our findings in this study, the user’s attention is probably else-
where. Here we elected to focus on understanding different
cursor behaviors rather than gaze fixations to support cursor-
tracking applications that can be remotely deployed on a Web
site. More work is needed to study in more detail the rela-
tionship between cursor and gaze fixations, especially to de-
termine if and when there are cases in which cursor fixations
can be reliably interpreted as attention.

Bringing subjects into an eye-tracking lab creates inherent
limitations to our study. Subjects may behave differently in
the lab with a camera monitoring their gaze than in a natural
setting. They are unlikely to take breaks in the lab or multi-
task by doing other things at the same time, factors which may
affect cursor behavior outside of the lab. We also gave them
artificial search tasks; while we tried to ground the search
tasks in realistic information needs, the tasks might not be a
representative sample. Additionally, though SERPs provide a
controlled environment for our studies (and there are already
several applications if we focus on that domain alone), more
work is also needed to generalize this research beyond SERPs
to any Web page. Previous work has already shown that cur-
sor is less aligned with gaze on non-SERP pages [22], so the
prediction task on such pages may be more challenging and
is reserved for future work.

The results show that we predicted gaze more accurately
when we used past and future cursor movement data, rather
than only past data. Using past data alone would allow us to
build applications that could respond to user attention in real-
time, such as a focus-plus-context view of the SERP, in which
the context could update dynamically with new content based
on where the user had already attended during their engage-
ment with the SERP. More valuable however, is inferring gaze
positions after the user has left the SERP. This would allow
us to accurately model where on the SERP the user exam-
ined and use this data for applications such as building richer
searcher models (improving on existing models, e.g., [8, 16]),
usability assessments [1, 2], or profiling users [2].

CONCLUSION
We have found that user, time, and search task (to a lesser
extent) each contribute to the variation in gaze-cursor align-
ment. The gaze and cursor positions are also better aligned
when the gaze position is compared to a future cursor posi-
tion. Furthermore, by distinguishing between five different
cursor behaviors—inactive, examining, reading, action, and
click—we get a better idea of the strength of alignment. In
fact, we have been able to improve upon using cursor posi-
tion alone to predict the gaze position by using several cursor
features. Cursor movements, scrolling, and other client-side
interactions are easy to collect at scale, which many Web an-
alytics services offer to do. But claiming that the cursor ap-
proximates the gaze is misguided—as we have shown, this is
often not the case depending on time and behavior. Instead, it
is important to predict the real location of the attention when
an eye-tracker is unavailable.
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