
Deep Learning: 
Looking Forward 
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• potentially exponential gain in expressive power 

• brains are deep 

• humans organize knowledge in a compositional way 

• Better mixing in the space of deeper representations 

 (Bengio et al, ICML 2013) 

• They work! SOTA on industrial-scale AI tasks 
(object recognition, speech recognition,  
language modeling, music modeling) 
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exponentially more statistically efficient 

Each parameter influences 

many regions, not just local 

neighbors 

# distinguishable regions 

grows almost exponentially 

with # parameters 
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(Lee, Largman, Pham & Ng, NIPS 2009) 

(Lee, Grosse, Ranganath & Ng, ICML 2009)  
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Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction 
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Raw data 

1 layer 2 layers 

4 layers 
3 layers 
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Paper: 

ICML’2012 



(Vincent et al 2008) 

KL(reconstruction | raw input) Hidden code (representation) 

Corrupted input Raw input reconstruction 

 

• Models the input density through a form of score matching (Vincent 2011, 

Alain & Bengio ICLR 2013) or as the transition kernel of a Markov chain 

(Bengio et al, arxiv 2013 “Generalized Denoising Auto-Encoders as Generative 

Models”) 
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• Minimizing reconstruction error forces to keep 

variations along manifold. 

• Regularizer wants to throw away all variations. 

• With both: keep ONLY sensitivity to variations 

ON the manifold. 
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(Hinton et al 2012, arXiv) 

• Dropouts
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(Bengio, arxiv 

1305.0445 Deep learning of representations: looking forward) 
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• Marginal utility 
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Training updates 

Mixing 

vicious circle 
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Filling-in the LHS 



• Int. Conf. on Learning Representation 2013
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LISA team: 


