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Representation Learning

« Good input features essential for successtul ML (feature
engineering = 90% of effort in industrial ML)

 Handcrafting features vs learning them

 Representation learning: guesses
the features / factors / causes =
good representation.




Deep Representation Learning

Learn multiple levels of representation of
increasing complexity/abstraction

 potentially exponential gain in expressive power
* brains are deep

» humans organize knowledge in a compositional way
« Better mixing in the space of deeper representations

(Bengio et al, ICML 2013)
* They work! SOTA on industrial-scale Al tasks
(object recognition, speech recognition,

language modeling, music modeling)
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The need for distributed representations
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Learning a set of features that are not mutually exclusive can be
exponentially more statistically efficient than nearest-neighbor-

like or clustering-like models ,
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Learning multiple levels of representation

(Lee, Largman, Pham & Ng, NIPS 2009)
(Lee, Grosse, Ranganath & Ng, ICML 2009)

Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

Layer 2
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Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction
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“Shallow” computer program




Deep Supervised Neural Nets

« We can now train them even without
unsupervised pre-training, thanks to better
initialization and non-linearities (rectifiers,
maxout) and they can generalize well with
large labeled sets and dropout.

 Unsupervised pre-training still usetul for rare
classes, transfer, smaller labeled sets, or as an
extra regularizer.




Unsupervised and Transfer Learning Challenge + Transfer
Learning Challenge: Deep Learning 1st Place
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Denoising Auto-Encoder

(Vincent et al 2008)

KL(reconstruction | raw input)
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Corrupted input Raw input reconstruction
» Corrupt the input
» Try to reconstruct the uncorrupted input

Hidden code (representation)

« Models the input density through a form of score matching (Vincent 2011,
Alain & Bengio ICLR 2013) or as the transition kernel of a Markov chain
(Bengio et al, arxiv 2013 “Generalized Denoising Auto-Encoders as Generative

Models")



Regularized Auto-Encoc

IS

non-linear PCA with sharead

* Minimizing reconstruction error forces to keep

variations along manifold.

_earn Salient Variations, like

Darameters

* Reqgularizer wants to throw away all variations.
« With both: keep ONLY sensitivity to variations

ON the manifold.
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Regularized Auto-Encoders
a Markov Chain Transition Di

 (Bengio, Vincent & Courville, TPAMI 2013) review paper
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» (Alain & Bengio ICLR 2013; Bengio et al, arxiv 2013)
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Stochastic Neurons as Regularizer: mproving neural

networks by preventing co-adaptation of feature detectors (Hinton et al 2012, arXiv)

» Dropouts trick: during training multiply neuron output by
random bit (p=0.5), during test by 0.5

« Used in deep supervised networks
» Similar to denoising auto-encoder, but corrupting every layer

« Works better with rectifiers, even better with maxout (Goodfellow et
al. ICML 2013)

 Equivalent to averaging over exponentially many architectures

« Used by Krizhevsky et al to break through ImageNet SOTA

 Also improves SOTA on CIFAR-10 (18>16% err)

- Knowledge-free MNIST with DBMs (.95->.79% err)

 TIMIT phoneme classification (22.7->19.7% err) 0O
|
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Temporal & Spatial Inputs: Convolutional & Recurrent Nets

» Local connectivity across time/space

Sharing weights across time/space (translation equivariance)

» Pooling (translation invariance, cross-channel pooling for others)
« Recurrent nets can summarize information from the past

« Bidirectional recurrent nets can also summarize information from the
future




The Optimization Challenge in Deep / Recurrent Nets

« Higher-level abstractions require highly non-linear
transformations to be learned

» Sharp non-linearities are difficult to learn by gradient

« Composition of many non-linearities = sharp non- Imeanty
» Exploding or vanishing gradients
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Deep Learning Challenges @engio, arxiv

1305.0445 Deep learning of representations: looking forward)

« Computational Scaling
 Optimization & Underfitting
 Approximate Inference & Sampling
» Disentangling Factors of Variation
* Reasoning & One-Shot Learning of Facts

L]
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Conditional Computation

« Deep nets vs decision trees
« Hard mixtures of experts

» Conditional computation for deep nets: sparse distributed gaters
selecting combinatorial subsets of a deep net

 Challenges:

« Back-prop through hard decisions
« Gated architectures exploration

Output softmax

Gated units (experts)

« Symmetry breaking to reduce < =2A Gating units- ®
ilI-conditioning ‘ -




Optimization & Undertfitting

« On large datasets, major obstacle is underfitting

 Marginal utility of wider MLPs decreases quickly below memorization
baseline 1 "
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Marginal utility (MU)

Nb. of hidden units

 Current limitations: local minima or ill-conditioning?
- Adaptive learning rates and stochastic 2" order methods

 Conditional comp. & sparse gradients = better conditioning: when some

, gradients are O, many cross-derivatives are also 0. .Dn




Inference & Sampling

Currently for unsupervised learning & structured output models
P(h|x) intractable because of many important modes
MAP Variational, MCMC approximations limited to 1 or few modes

Approximate inference can hurt learning

(Kulesza & Pereira NIPS'2007)

Mode mixing harder as training progresses

(Bengio et al ICML 2013) Trafr?lng }deates
@aous arcleb

Mixing L]
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Learning Computational Grapns

» Deep Stochastic Generative Networks (GSNs) trainable by
backprop (Bengio & Laufer, arxiv 1306.1091)

 Avoid any explicit latent variables whose marginalization is
intractable, instead train a stochastic computational graph that
generates the right {conditional} distribution.

noise
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- Consecutive Samples

GSN Experiments

in the LHS
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Conclusions

« Deep Learning & Representation Learning have matured

- Int. Conf. on Learning Representation 2013 a huge success!

« Industrial strength applications in place (Google, Microsoft)

« Room for improvement:

« Scaling computation even more

« Better optimization

« Getting rid of intractable inference (in the works!)

« Coaxing the models into more disentangled abstractions
« Learning to reason from incrementally added facts
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Mercil Questions?

LISA team:




