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Abstract We describe a mechanism for connecting GPU
and FPGA devices directly via the PCI Express bus, en-
abling the transfer of data between these heterogeneous
computing units without the intermediate use of system
memory. We evaluate the performance benefits of this ap-
proach over a range of transfer sizes, and demonstrate its
utility in a computer vision application. We find that by-
passing system memory yields improvements as high as
2.2x in data transfer speed, and 1.9x in application per-
formance.
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1 Introduction

The world of computing is experiencing an upheaval. The
end of clock scaling has forced developers and users alike
to begin to fully explore parallel computation in the main-
stream. Multi-core CPUs, GPUs and to a lesser extent, FP-
GAs, fill the computational gap left between clock rate and
predicted performance increases.

The members of this parallel trifecta are not created
equal. The main characteristics of each are:
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e CPUs—ease of programming and native floating point
support with complex multi-tiered memory systems, as
well as significant operating system overhead.

e GPUs—fine grain SIMD processing and native floating
point, with a streaming memory architecture and a more
difficult programming environment.

e FPGAs—ultimate flexibility in processing, control and
interfacing; at the extreme end of programming difficulty
and lower clock rates, with resource intensive floating
point support.

Each has its strengths and weaknesses, thus motivating
the use of multiple device types in heterogeneous comput-
ing systems. A key requirement of such systems is the ability
to transfer data between components at high bandwidth and
low latency. Several GPGPU abstractions [3, 5-7] support
explicit transfers between the CPU and GPU, and it has re-
cently been shown that this is also possible between CPU
and FPGA [1]. In CUDA 5.0, nVidia recently announced
GPUDirect RDMA [12], which enables its high-end profes-
sional GPUs to access the memory spaces of other PCle [8]
devices having suitably modified Linux drivers. The work
in [15] uses an FPGA to implement peer-to-peer GPU com-
munications over a custom interconnect. The work in [14]
describes a high-level toolflow for building such applica-
tions that span GPU and FPGA; their implementation is cur-
rently bottlenecked precisely by the GPU-FPGA data trans-
fer path.

Existing facilities may be used to implement GPU to
FPGA communication by transferring data through CPU
memory as illustrated by the red lines in Fig. 1. With this in-
direct approach, data must traverse the PCI Express (PCle)
switch twice and suffer the latency penalties of both the op-
erating system and the CPU memory hardware. We refer to
this as a GPU-CPU-FPGA transfer. This additional indirec-
tion adds communication latency and operating system over-
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head to the computation, as well as consuming bandwidth
that could otherwise be used by other elements sharing the
same communication network.

In this paper, we describe and evaluate a mechanism for
implementing the green line in Fig. 1, creating a direct,
bidirectional GPU-FPGA communication over the PCle bus
[2]. With this new approach, data moves through the PCle
switch only once and it is never copied into system mem-
ory, thus enabling more efficient communication between
these two computing elements. We refer to this as a di-
rect GPU-FPGA transfer. This capability enables scalable
heterogeneous computing systems, algorithm migration be-
tween GPUs and FPGAs, as well as a migration path from
GPUs to ASIC implementations.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the FPGA’s PCle implementation. Section
4 describes the mechanism that enables direct GPU-FPGA
transfers. Section 4 describes our experimental methodol-
ogy. Section 5 presents the experimental results, which are
discussed in Sect. 6. Section 7 describes how a real-world
computer vision application benefits from the direct path.
Sections 8 and 9 describe future work and the conclusion.

2 The speedy PCle core

Interfacing an FPGA to the PCle bus is not a simple task and,
while there are numerous PCle cores available, these often
fall short of a complete implementation or are prohibitively
expensive. Fortunately, the Speedy PCle core [1] has deliv-
ered a viable solution at no cost that can be made to serve
for the problem at hand.

The Speedy PCle core shown in Fig. 2 is a freely down-
loadable FPGA core designed for Xilinx FPGAs. It lever-
ages the Xilinx PClIe IP [11] to provide the FPGA designer
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Fig. 2 Speedy PCle core

amemory-like interface to the PCle bus that abstracts the ad-
dressing, transfer size and packetization rules of PCle. The
standard distribution includes Verilog source code that turns
this memory interface into a high speed DMA engine that,
together with the supplied Microsoft Windows driver, deliv-
ers up to 1.5 GByte/s between a PC’s system memory and
DDR3 memory that is local to the FPGA.

The Speedy PCle core design emphasizes minimal sys-
tem impact while delivering maximum performance. Data
transfers may be initiated from the CPU via a single write
across the PCle bus, after the setup of a number of transfer
descriptor records that are maintained in the host’s system
memory. Since system memory has much lower latency and
higher bandwidth for the CPU, this arrangement offloads
work from the processor and ultimately results in higher per-
formance by avoiding operating system overhead. Minimiz-
ing the number of CPU initiated reads and writes across the
PCle bus is also helpful because in practice the execution
time for a single 4 byte write is in the range of 250 ns to
1 ps, while reads are in the range of 1 ps to 2.5 ps. The sav-
ings offered by the Speedy PCle core directly contribute to
lower latency transfers at the application level, as we will
show later.

Lastly, the Speedy PCle core was designed with peer to
peer communication in mind. By exposing the FPGA’s DDR
memory on the PCle bus, peer devices may initiate master
reads and writes directly into that memory; a capability that
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Table 1 Master/slave relationships

Transfer PCle master PCle slave
GPU-CPU GPU CPU
FPGA-CPU FPGA CPU
GPU-FPGA GPU FPGA

we exploit when enabling direct GPU-FPGA communica-
tion.

3 Enabling the missing link

On the GPU side, we have somewhat less control, because
all of the hardware functionality remains hidden behind an
opaque, vendor-supplied driver and its associated Applica-
tion Programming Interfaces (APIs). Typically such APIs
support only transfers between GPU and CPU memories,
not between GPU memory and that of arbitrary devices.
In CUDA 4.x, nVidia added a peer-to-peer (GPU-to-GPU)
memory transfer facility to its professional-level Quadro and
Tesla product lines, but transactions involving arbitrary PCle
devices, such as our FPGA development board, are not sup-
ported.

In an implementation such as ours, which targets consum-
er-level GPUs, the GPU must always be the bus master in
any transfer in which it is involved. To use the GPU as a
slave, we would need access to the its internal structures. If
the GPU must always be the bus master, it follows that in
the direct GPU-FPGA data path the FPGA must always be
the slave. This requires the FPGA to map its memory (on
chip or otherwise) onto the PCle bus so that the GPU may
read or write directly to it as needed. Luckily, this function-
ality is already enabled in the user example supplied with
the Speedy PCle design, which demonstrates how to map
DDR3 physical memory addresses onto the PCle bus. The
ensuing master/slave relationships are summarized in Ta-
ble 1 for each transfer type.

We found that some of the CUDA operations intended
for CPU memory access can be repurposed for GPU-FPGA
transfers. In particular, the CUDA API supports the con-
cept of page-locked CPU memory, which maintains a con-
stant physical address and can thus be efficiently accessed
by the GPU’s bus-mastering DMA controller. CUDA pro-
vides malloc()-like functionality for allocating and freeing
blocks of such memory. Crucially, recent versions of CUDA
also provide a routine for page-locking existing CPU virtual
address ranges. Note that the routine succeeds only when the
operating system has allocated contiguous physical pages
for the specified virtual address range. We have found that
this routine does not distinguish between virtual addresses
mapped to physical CPU memory and those mapped to

FPGA memory by the Speedy PCle driver. Furthermore,
since the driver maps FPGA pages in locked mode, the
CUDA locking routine does not fail on these ranges. Thus,
the mapped pointer can be passed to various memcpy()-style
operators in CUDA that require page-locked CPU memory
pointers as arguments.

Using this to our advantage, we modified the Speedy
PCle driver to allow a user application to obtain a virtual
pointer to the physical DDR3 memory mapped by the FPGA
onto the PCle bus. Using this pointer, it is possible to di-
rectly access the FPGA’s DDR3 memory using the standard
C* ptr notation or other programmatic forms of direct ma-
nipulation. It is also possible to pass this virtual memory
pointer to the CUDA page-locking and memory copy rou-
tines, causing the GPU to directly write or read data to/from
the FPGA’s DDR3 memory.

Specifically, the function call sequence needed to initiate
a GPU to FPGA transfer is shown in Fig. 5. First, cudaMal-
loc() is called to allocate memory on the GPU. At this point,
the user executes the GPU code run_kernel() that mutates
this memory. The following two steps make the FPGA target
address visible to the GPU. The call to DevicelOControl()
causes the FPGA device driver to return the virtual pointer
fpga_ptr in the user’s address space that directly maps to the
physical addresses for the FPGA’s memory. As mentioned,
this pointer can be used just like any other; resulting in PIO
accesses to the FPGA’s memory on the PCIe bus when ac-
cessed programmatically from the CPU. Subsequently, cud-
aHostRegister() is called on the fpga_ptr pointer to request
page locks on the memory address range associated with it.
This is guaranteed to succeed since the FPGA’s driver locks
the memory range before it is returned to the user. Finally,
cudaMemcpy() is called to cause the GPU’s driver to initi-
ate a bus master DMA from the GPU memory to the FPGA
memory. In practice, the CPU’s involvement is minimal, be-
ing only used to provide the virtual to physical address map-
ping between the two memory regions.

4 Test procedure

For our testing, we chose an nVidia GeForce GTX 580, a
high-end consumer GPU that supports the whole CUDA 4.1
API, with the sole exception of the peer-to-peer functionality
restricted to the more expensive Quadro and Tesla GPUs.
This unit can make use of up to 16 generation 2.0 PCle lanes,
reaching up to 6.2 GByte/s of throughput.

The FPGA platform used in our tests is a Xilinx ML605
development board with an integrated V6LX240T-1 Xilinx
FPGA. This unit supports 8 generation 1.0 PCle lanes, with
a maximum throughput of approximately 1.6 GByte/s [1] (a
factor of four slower than the GPU). Both the graphics and
FPGA development boards were plugged into a commercial
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PC backplane running a modern Intel six core CPU and sup-
porting PCle generation 2.0 x 16.

Transfers between CPU and FPGA memories are imple-
mented using the native functionality of the Speedy PCle
driver, allowing the user application to transfer arbitrary
memory buffers between the CPU and FPGA, using DMA.
The Speedy PCle driver exposes this capability by provid-
ing the user with a file handle that represents the FPGA. The
user calls the standard file system Read and Write operations
with this file handle in order to induce DMA-based memory
transfers between the CPU and FPGA. In this scenario, the
FPGA is always acting as a PCle bus master, sending or re-
questing data as required.

Transfers between GPU and CPU memories are accom-
plished via the same cudaMemcpy() API described before,
but this time it is used in the traditional sense of transfer-
ring to and from a user buffer in system main memory. In
this case the GPU acts as the bus master. Transfers between
GPU and FPGA memories were performed by using cud-
aMemcpy() as described in the code sample of Fig. 5, with
the GPU acting as the PCle bus master.
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5 Results

The data transfer characteristics are asymmetric. In Figs. 3,
4,5, 6, 7, we show separate graphs for each transfer direc-
tion, and separate graphs for small and large transfers. Each
transfer was performed ten times, with the mean elapsed
time used to compute the bandwidth at each transfer size. As
we would expect, the graphs show an increase in bandwidth
as the transfer size increases until reaching an asymptotic
value.

Figures 3 and 4 show the achieved bandwidths in the
GPU to FPGA direction in four curves:

Red (bwGF)—The direct data path from GPU to FPGA.
Black (bwGC)—GPU to CPU bandwidth.

Green (bwCF)—CPU to FPGA bandwidth.

Blue (bwGCF)—the indirect data path from GPU to CPU
to FPGA.

Of these, the red GPU to FPGA and the blue GPU to CPU
to FPGA lines are the most interesting, as they compare the
benefit of direct GPU to FPGA transfers vs. the trip through
system memory, respectively. For the large transfers shown
in Fig. 4, the black line indicating the GPU to CPU band-
width dominates the graph as the GPU supports generation
2.0 x 16 lane PCle. Since the FPGA (green line) we used
only supports generation 1.0 x 8 lane PCle, it is expected
to support roughly % of the bandwidth that can be achieved
with the GPU. Although as shown in Fig. 3, for small trans-
fers the CPU to FPGA path dominates due to the smaller
latencies as measured in Table 2.

Figures 6 and 7 show the achieved bandwidths in the
FPGA to GPU transfer direction. The color coding and line
symbols have the same meanings as before, except that data
is moving in the opposite direction. Note that the FPGA
to GPU bandwidth (red line) is markedly lower than in the
GPU to FPGA case.

We measure the transfer latency by the elapsed time of
the smallest possible PCle data transfer of 4 bytes as mea-
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Table 2 Four byte transfer latencies

Transfer points and direction Latency (us)

GPU to CPU 41.9
CPU to FPGA 20.7
GPU to CPU to FPGA (Total) 62.6
GPU to FPGA 40

FPGA to CPU 18.9
CPU to GPU 40.4
FPGA to CPU to GPU (Total) 59.3
FPGA to GPU 41.1

sured at the level of the CUDA API. These measured la-
tencies are summarized in Table 2. The CPU-FPGA laten-
cies and bandwidths seen here agree with those reported in
[1], though it is interesting that the GPU-FPGA and GPU-
CPU transfers suffer approximately twice the latency of the
CPU-FPGA transfers. As a result, the indirect transfers go-
ing through CPU memory have an increased total latency
of approximately 50 % (20 ps) over the direct GPU-FPGA
transfers in both directions (Fig. 8).

6 Discussion

The primary limiting factor in our implementation is the
bandwidth supported by the FPGA. The FPGA is only oper-
ating in a generation 1.0, x 8 lane mode, therefore its perfor-
mance reaches a maximum of 1.6 GByte/s regardless of the
transfer partner. It is possible to alleviate this bottleneck by
using a faster —2 speed grade part, however, such parts are
not normally populated on the ML605 Xilinx development
board. The GPU supports generation 2.0 x 16 lane opera-
tion; this gives it a 4 x speed advantage over the FPGA with
a measured maximum of 6.2 GByte/s.

The two graphs show that the two data directions have
asymmetric bandwidth characteristics. This is visualized in

Fig. 5 GPU to FPGA DMA
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Fig. 8 Performance of large FPGA to GPU transfers

Fig. 9, which graphics the relative speedups comparing di-
rect GPU-FPGA transfers and indirect GPU-CPU-FPGA
transfers. These speedup numbers are computed in the tradi-
tional sense where numbers greater than 1 indicate relative
improvement of the direct GPU-FPGA path, and numbers
less than 1 indicate that the GPU-FPGA path degrades per-
formance. In the GPU to FPGA case, the performance im-
provement over GPU to CPU to FPGA settles at 34.6 % for

// Allocate GPU memory

cudaMalloc( MEM SIZE ) ;

// Perform GPU computations that modify GPU memory
run_kernel (gpu_ptr, ..);

// Map FPGA memory to CPU virtual address space

fpga ptr

DeviceIoControl (IOCTL_SPEEDYPCIE GET_DIRECT MAPPED POINTER) ;

// Present FPGA memory to CUDA as CPU locked pages
cudaHostRegister ( fpga ptr, MEM SIZE ) ;

// DMA from GPU memory to FPGA memory
cudaMemcpy ( fpga_ptr, gpu_ptr, MEM SIZE,
cudaMemcpyDeviceToHost ) ;

@ Springer



Cluster Comput
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large transfers. On the other hand, the FPGA to GPU case
actually lowers performance by 52.6 % as compared to the
FPGA to CPU to GPU path. This is due to the implemen-
tation of the Speedy PCle user example Verilog code. This
code gives the example design its “personality” and deter-
mines the exact features that the FPGA implementation will
support including memories, peripherals and transfer char-
acteristics. At the time that the user example was written,
it was believed that all high bandwidth traffic would be ini-
tiated as bus master writes on the PCle bus, since master
writes have inherently lower overhead in the PCle protocol.
However, in our GPU-FPGA situation, the GPU always de-
mands to be the bus master. This is ideal when data is being
transferred from the GPU to the FPGA as the GPU initi-
ates master writes with data and the FPGA can absorb these
at full speed (1.6 GByte/s). When data is being transferred
from the FPGA to the GPU, the GPU initiates master read
requests over the PCle bus and the FPGA faithfully sends
back the data as requested. However, a bottleneck arises be-
cause this slave read data path is not fully optimized in the
FPGA, resulting in a disappointing 0.514 GByte/s.

It should also be noted that the GPU-CPU transfers
themselves also show some degree of asymmetric behav-
ior. In the case of a GPU to CPU transfer, where the GPU
is initiating bus master writes, the GPU reaches a maxi-
mum of 6.18 GByte/s. In the opposite direction from CPU to
GPU, the GPU is initiating bus master reads and the result-
ing bandwidth falls to 5.61 GByte/s. In our observations it
is typically the case that bus master writes are more efficient
than bus master reads for any PCle implementation due to
protocol overhead and the relative complexity of implemen-
tation. While a possible solution to this asymmetry would be
to handle the CPU to GPU direction by using CPU initiated
bus master writes, that hardware facility is not available in
the PC architecture in general.
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The transfer latencies shown in Table 2 are interesting be-
cause they show that the path between the CPU and FPGA
has half of the latency of the path between the CPU and
GPU, in both transfer directions. This is despite the fact that
the GPU hardware supports 4 x the transfer bandwidth of the
FPGA and so the latency is expected to be lower. We do not
have a definitive explanation of this phenomenon, due to the
above mentioned opacity of the GPU APIs. The longer GPU
latency could be caused by more OS overhead, presumably
in the time that the driver needs to setup the transfer. This
could be due to pure software overhead, or it may be that
the GPU hardware requires more I/O reads/writes from the
driver in order to setup the transfer, which may be costly
as described earlier. It isn’t possible to determine the exact
cause without GPU driver source code, GPU hardware spec-
ifications or a PCle bus analyzer; none of which are easily
obtainable.

One final observation is that these performance com-
parisons are slightly deceptive in that they do not account
for potential bottlenecks in the CPU’s system memory, or
in the PCle switch as illustrated in Fig. 1, since only one
GPU-FPGA pair was tested. All of the traffic for an indi-
rect route through the CPU must go through these struc-
tures, which will ultimately saturate if a sufficient number
of transfers are occurring simultaneously. Since PCle is con-
structed with a tree topology and all transfers are point to
point through switches, the direct GPU-FPGA path will cir-
cumvent the system memory bottleneck by taking the di-
rect routes through a local PCle switch. Figure 9 illustrates
this topology in a system that uses three pairs of GPU-
FPGA devices, each pair transferring data simultaneously
over the green line paths. The direct GPU-FPGA commu-
nication scales better, and attains much higher speedups
because multiple transfers are happening simultaneously.
While this possibility is predicated on the hardware de-
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tails of the particular host platform being used, such in-
dependent data paths are also possible through the use of
suitable switches. One such source of PCle switches is
PLDA [10].

7 Hand tracking application

We have chosen computer vision based hand tracking as a
practical test of the direct GPU-FPGA data path. Figure 10
shows the data transfers through the system. On the left side,
a depth camera captures raw IR data from a scene containing
the user’s hands. The camera is connected to the PC system
through USB, so the IR data is first transferred to the sys-
tem DDR memory, and from there to the GPU’s memory.
The GPU decodes the IR image and uses a proprietary al-
gorithm to create a depth map. The picture with the green
background located on the left side of Fig. 10 shows the
result of the GPU computation. In the direct GPU-FPGA
case, the GPU uses master writes to transfer the depth map
directly through the PCle switch into the FPGA’s memory.
In the indirect case, this data goes to system DDR first, and
then from there to the FPGA’s DDR. The FPGA processes
the depth image via a decision tree algorithm [13] followed
by ak-means based centroid calculation. The FPGA uses bus
master writes to transfer the candidate centroids through the
PCle switch again to the CPU. The resulting centroids are
shown in the upper-right side of Fig. 10, as colored dots
identifying the various parts of a hand. Lastly, the CPU ap-
plies a model fitting algorithm to determine the best candi-
date centroids, identify the left and right hands, and label
the centroids with the correct joints names. This results in
the skeletal representation of the user’s hands in the original
scene which is shown at the bottom-right of Fig. 10. Note
that the only difference between the direct and indirect path
realizations is the way the depth map is transferred to the
FPGA; everything else in the application remains the same.

The original GPU algorithms that decode the camera im-
age were written in Microsoft Direct Compute, part of the
DirectX 11 toolkit. DirectX eschews direct pointer manip-
ulation in favor of abstract buffer and view objects that are
transparently copied between devices as needed, meaning
that (given our level of knowledge of the API) we were un-
able to directly obtain a pointer to the resulting depth map
stored on the GPU. To make this possible, we used CUDA’s
interoperability API to view the DirectCompute result (on
the GPU) as a cudaArray object which serves as an input
to a CUDA kernel. The kernel also executes on the GPU—
no physical copying takes place. After some additional fil-
tering, the CUDA kernel writes its results to a GPU buffer.
This final buffer is analogous to the buffer allocated with cu-
daMalloc() in Fig. 5, and it is therefore sent to the FPGA via
the same operations shown in Fig. 5.

To allow for meaningful comparisons between the direct
and indirect paths, we use the same mechanism to send the
filtered data to the CPU, e.g. with a CPU memory address
rather than an FPGA address. By instrumenting the copy
code, we are able to capture more detailed measurements,
as shown in Fig. 11.

The application system was implemented using the
same Xilinx ML605 development board with an integrated
V6LX240T-1 Xilinx FPGA as described in Sect. 4. As
before, the FPGA utilizes PCle v1.0 x8 lane transfers
with an expected maximum throughput of approximately
1.6 GByte/s. The GPU is different, this time it is an nVidia
GTX 480. Compared with the GTX 580 of our previous ex-
periment, it has less compute power but similar PCle bus
bandwidth.

In this application, GPU-FPGA transfers are from the
GPU into the FPGA, corresponding to GPU master write
operations, which is the preferred direction for our FPGA
implementation and therefore we do not incur the penalty
described in Sect. 6. The input image from the camera has
a resolution of 640 by 480 with 16 bits per pixel of en-
coded depth data. This forms an image of size 614,400 bytes
that must be transferred from the camera to the GPU via
the CPU. The GPU processing reduces the image size to
320 x 240 16-bit pixels, so 153,600 bytes are transferred
from the GPU to the FPGA. The centroid data from the
FPGA going to the CPU is small; amounting to 10K bytes
or less per image.

We have measured the computation and transfer times
for the application, averaging the results over 200 frames.
The results are shown in the diagram in Fig. 11. The top
half of the diagram provides the measurements for the in-
direct case, where the data is transferred through the CPU’s
memory using the GPU-CPU-FPGA path. The bottom half
of the diagram provides the measurements when the direct
GPU-FPGA DMA path is utilized. The largest contributor is
the FPGA processing time, which is unfortunately data de-
pendent. Times here range from a few microseconds in the
idle case, to 20 milliseconds in the worst case. A two-hands
image such as shown in Fig. 10 requires about 5 millisec-
onds of processing time. The GPU computation time is in-
stead fixed at 60 ps. If we ignore the FPGA processing time,
the rest of the pipeline requires 555 ps and 285 ps respec-
tively for the two cases. The best application speedup possi-
ble is therefore 1.9, in the idle case. The speedup reduces
quickly with the FPGA processing time growing, and in the
average case we only get a 5 % improvement. In all cases,
the data transfer times are reduced from 495 ps to 225 ps, a
factor of 2.2x.

The FPGA resources consumed by the full design are
summarized in Table 3. The first line indicates the total re-
source count available on the device. While we consume a
relatively small fraction of most of the FPGA’s resources,
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Table 3 FPGA resource utilization
Design unit Slices Flip flops LUTs DSP48 36Kb BRAMs
V6LX240T Available 37,680 301,440 150,720 768 416
Complete Design 29,942 58,406 40,823 23 138
Entire Image Processor 10,149 19,878 14,289 23 20
Decision Tree Eval. 766 1267 1318 6 0
Centroid Calc. 3239 5518 5523 17 16
DMA Engine & SIRC 10,776 23,695 12,959 0 89
Speedy PCle Core 3386 6024 6868 0 13
Xilinx PCle Core 598 941 971 0 16
MIG-based DDR3 4967 7756 5702 0 0

the “Complete Design” line indicates that most of the slices
are occupied. Because of this, we had many problems in co-
ercing the Xilinx tools to meet timing. We had to use a com-
bination of general floor planning, pipelining and individual
location constraints for the block RAMs and DSPs in order
to generate repeatable successful routes using the Xilinx ISE
14.4 tools. The most sensitive parts of the design are the de-
cision tree and centroid computation logic that run at 200
MHZz (to correlate well with the 400 MHz speed of the local
DDR3 memory bus), and the Xilinx core PCle interface that
must run at 250 MHz.

These problem areas were dealt with by running Xilinx’s
SmartExplorer with multiple parallel threads iterating on the
cost table initialization variable. Typically, we obtained 2
or 3 acceptable routes out of 100 runs using this approach.
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Once a good route had been found, we used PlanAhead to
extract the locations of all of the BRAM and DSP blocks
and then used those LOC constraints as guides for further
compilations. Routing was also much easier to achieve with
a reduced clock rate for the application logic, rather than
200 MHz a clock rate of 175 MHz was much more achiev-
able. We made use of the slower clock rate to ease routing
during the debugging phase.

8 Future work
Our next order of business will be to address the bottleneck

in the FPGA to GPU transfer direction. This will require a
detailed analysis of the slave read data path within the FPGA
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likely followed by a number of changes to the Verilog code.
With those changes, we hope to see the bandwidth rise to be
commensurate with the GPU to FPGA direction.

Concurrently, we are exploring other applications that
can benefit from the close synergy between GPU and FPGA
that this technique enables. The GPU offers relative ease of
programming and floating point support while the FPGA
offers extreme flexibility, bit manipulation and interfacing
possibilities. An ongoing project in our lab [9] is making use
of our technology to implement mixed GPU/FPGA strate-
gies for distributed graphics image rendering. This applica-
tion in particular may benefit from reduced usage of system
memory bandwidth and we intend to characterize this fur-
ther.

Other potential investigations include the extension of
our approach to non-nVidia GPUs and to GPU-FPGA in-
teractions beyond memory transfers, such as synchroniza-
tion, that are presently mediated by the CPU. The former
may be at least partially possible via OpenCL, which is sup-
ported on some AMD GPU devices. The OpenCL specifica-
tion [4] hints at initializing device (e.g. GPU) buffers with
“host-accessible (e.g. PCle) memory,” so it is conceivable
that our CPU virtual pointer to the FPGA DDR3 memory
can be used as a source, if not as a target.

Bypassing the CPU for other interactions will likely re-
quire the involvement of GPU vendors, as the relevant mech-
anisms are presently hidden behind black-box driver code.

9 Conclusions

We have presented a mechanism for direct GPU-FPGA
communications via PCI Express, and analyzed its perfor-
mance characteristics and ease of use. Our hope is that this
opens the door to new computation synergies and architec-
tures that were previously unsuitable or perhaps not consid-
ered practical. We have presented a case study with a com-
puter vision application, where the data transfer times are
cut in half when using this new direct path. Our implemen-
tation is available as a free download, making it possible for
other researchers to expand on our initial steps.
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