
A TPM Diffie-Hellman Oracle

Tolga Acar Lan Nguyen Greg Zaverucha
Microsoft Research, Redmond, WA

October 23, 2013

Abstract

This note describes a Diffie-Hellman oracle, constructed using standard Trusted
Platform Module (TPM) signature APIs. The oracle allows one to compute the ex-
ponentiation of an arbitrary group element to a specified TPM-protected private key.
By employing the oracle, the security provided by a group of order p is reduced by
log k bits, provided k oracle queries are made and p± 1 is divisible by k. The security
reduction follows from a straightforward application of results from Brown and Gal-
lant (IACR ePrint 2004/306) and Cheon (Eurocrypt 2006) on the strong Diffie-Hellman
problem. On a more positive note, the oracle may allow a wider range of cryptographic
protocols to make use of the TPM.

1 Introduction

Trusted Computing Group (TCG) recently published an updated draft for Trusted Plat-
form Module (TPM) Family 2.0 [1]. For convenience, we loosely call this TPMv2. TPMv2
allows, amongst other things, the generation of DSA and ECDSA key pairs with unex-
tractable private keys. Such private keys never leave the TPM security boundary unen-
crypted. TPMv2 also added ECDAA (ECC-based Direct Anonymous Attestation) sup-
port along with a version of elliptic curve Schnorr signatures to handle protocols like U-
Prove [3, 8]. The Schnorr signature generation is possible by using two TPM commands:
TPM Commit and TPM Sign [2]. Depending on inputs to the TPM Commit command, the
resulting signature is either exactly Schnorr’s scheme, or a variant of the scheme where a
different group element is used in signature generation.

We show that this capability provides a TPM Diffie-Hellman Oracle: Given any ar-
bitrary group element input, TPMv2 allows exponentiation of the group element to a
specified TPM private key. This is possible because the TPMv2 commands can actually
do more than just generate Schnorr signatures. More specifically, the TPM Commit com-
mand allows committing to a random value r as gr using any group element g, whereas the
Schnorr signature scheme specifies that g must be the base element used to generate the

1

signer’s public key (usually the generator of the group. We exploit this to help construct
the oracle.

The DH oracle has both constructive and destructive aspects. On one hand, it poten-
tially reduces the complexity of recovering TPM-protected DSA and ECDSA private keys.
Previously, it was expected that recovering these keys would be as difficult as solving an
instance of the discrete logarithm problem (DLP) (i.e., parameters are chosen to ensure
the difficulty of the DLP). We note that the reduced complexity is still asymptotically
exponential, which means that these TPM keys could still be secure with larger security
parameters. On the other hand, as we can now exponentiate any base to a TPMv2 private
key, more crypto protocols can be potentially integrated with TPMv2. This increases the
possibility of adding hardware-supported security to more crypto protocols (in addition
to those explicitly supported by TPM APIs), as TPMs are becoming available in more
devices.

We have reported this finding to TCG. TCG has updated the TPMv2 standard to limit
the use of the TPM Commit and TPM Sign functions; they can now only be used with keys
explicitly flagged for use with certain protocols (anonynimity protocols such as ECDAA).

2 TPM APIs for Schnorr Signatures

We consider the following TPMv2 API commands with Schnorr signatures: TPM Create,
TPM CreatePrimary, TPM Commit, and TPM Sign. A TPM ECC signing key can be used
with a number of schemes, including but not limited to ECDSA, ECDAA, ECSCHNORR,
and SM2. Thus, the oracle is applicable to TPMv2 ECC signing keys and those schemes.
(Note that, SM2 algorithm does not need to use the TPM Commit command.) TPMv2
offers the two-command signature with TPM Commit and TPM Sign (as opposed to a
single commnad) to enable anonymity protocols such as ECDAA. For TPMv2 keys used
with more common signature algorithms, the TPM Sign command generates a signature
without the TPM Commit command [2]. In the following descriptions, TPMv2 commands
accept a handle of an appropriate key.

Parameters. The scheme is defined with respect to a cyclic group G of prime order p,
and a hash function H.

Key Generation. The TPM generates a TPM private key x ∈R Zp, and computes the
public key y := gx, using the TPM Create or TPM CreatePrimary commands. The
public key y is output, and the private key x never leaves the TPM unencrypted.

Signature Generation. The signature generation uses the ECDAA scheme on TPMv2.
The TPM Commit command computes W := gw for a random w, generated inter-
nally, and kept private on the TPM. The TPM Sign command accepts an arbitrary
challenge c to compute r = cx + w (mod p). The signature output is (c, r). TPMv2

2

maintains w internally across the TPM Commit and TPM Sign calls. (This is done by
using a counter, TPM-internal secret, and a KDF. The details are not important for
this analysis; only the effect that the same random number is used in TPM Commit
and TPM Sign commands). In order to create a valid Schnorr signature, c must be
H(W ||m) for an arbitrary message m.

Signature Verification. Verification is done externally, without any TPM commands.
To verify that (c, r) is a valid signature on m, check that c = H(gr/yc||m).

3 Construction of a Diffie-Hellman Oracle

This section describes the new TPM oracle, which is a DH oracle. The term static DH
oracle was first used by Brown and Gallant [4] to describe a function, usually in the context
of a cryptographic protocol, which leaks a DH value hx, where h ∈ G is an arbitrary input
value and x is a secret. Our goal is to use the TPMv2 APIs to define a function Ox : G→ G
such that Ox(h) = hx, where (x, y := gx) is a TPM protected key pair. The following steps
define the TPM oracle Ox based on the commands described in Section 2.

DH Oracle Ox

1. Call TPM Commit with input h. The output is W := hw for a random w ∈ Zp.

2. Call TPM Sign with an arbitrary input c. The output is r := cx + w.

3. Compute and output (hr/W)1/c = hx.

4 Implications

We first recognize an observation on page 8 of [4] in the context of smart cards:

Some systems using hardware modules for protecting private keys might
provide an SDHP oracle to an adversary. For example, a smart card is a
highly constrained environment, and sometimes all hashing and key derivation
is done outside the security boundary of the smart card, usually on the smart
card reader. A smart card (holding a user’s private key q) used in an encryption
scheme may be presented with a recipient public key R and the card may simply
return the element qR to the reader, where the subsequent encryption processing
is performed. In this case, a malicious smart card reader could use the smart
card as an SDHP oracle.

3

Our observation confirms the existence of an SDHP oracle in TPMv2, though not as
direct as the smart card case (which ‘simply returns the element qR’). In our context, the
TPM is the relatively constrained environment providing the oracle.

4.1 Security Analysis

We use the complexity analysis of the Strong Diffie-Hellman (SDH) problem of Brown and

Gallant [4], and Cheon [5]. The k-SDH problem is to compute x, given g, gx, gx
2
, . . . , gx

k
.

The TPMv2 DH oracle described here can be used to compute this sequence, an instance
of the SDH problem. Then we can use the SDH algorithms of [4, 5] to recover x, faster
than had we been given only gx, as is normally the case with Schnorr or ECDSA key pairs.
The complexity of the Cheon SDH algorithm is O(2(`p−`k)/2) where `p is the bit length of p
and `k is the bitlength of k. By contrast, the best known algorithm for recovering x given
gx in an elliptic curve group requires O(2`p/2) work.

For example, when G is an elliptic curve group with 256-bit prime order and if 220 ≈
1M TPMv2 oracle queries are allowed, then the expected security of the TPM protected
secret would decrease from 2128 to 2118.

A few remarks are in order.

• TPMs can export secret key material encrypted for import to another TPM. In this
case, multiple TPMs may be queried to construct the SDH instance.

• For the Cheon and Brown-Gallant algorithms to work, there is a technical condition
on the group order p: k must divide p± 1. In practice, since groups are typically not
chosen to constrain p ± 1, there are often many divisors available. In [4], a table of
factorizations of p − 1 are given for the NIST curves. All of them have sufficiently
many small divisors to enable the attack to some degree.

• The TPM queries must be made sequentially. As far as we know, gx
i

is required in
order to compute gx

i+1
with the DH oracle described above.

4.2 Protocol Integration with the TPM

There have been a number of works on enhancing security of existing crypto protocols
using hardware [6, 7]. Given that TPM can now be used to perform exponentiation of
any base to the private key, and exponentiation is a common way to hide secrets, this DH
oracle could allow many cryptographic protocols to take advantage of TPMv2 capabilities.
Integration with U-Prove is one example [8].

5 Acknowledgments

We would like to thank David Wooten (Microsoft), Christian Paquin (Microsoft), Liqun
Chen (HP) and Jiangtao Li (Intel) for TPMv2 intricacies and comments.

4

References

[1] TCG Public Review. Trusted Platform Module Library. Part 1: Architecture. Family
2.0. August 22, 2013, Committee Draft, Level 00 Revision 00.99.

[2] TCG Public Review. Trusted Platform Module Library. Part 3: Commands Family
2.0. August 22, 2013, Committee Draft, Level 00 Revision 00.99.

[3] C.P. Schnorr. Efficient Identification and Signatures for Smart Cards. Proceedings of
CRYPTO’89, pp.239-252, LNCS.435, 1989.

[4] D. Brown and R. Gallant. The Static Diffie-Hellman Problem. IACR ePrint Report
2004/306, November 2004.

[5] J. Cheon. Security Analysis of the Strong Diffie-Hellman Problem. In Proceedings of
EUROCRYPT 2006.

[6] M. Fischlin, B. Pinkas, A. Sadeghi, T. Schneider and I. Visconti. Secure Set Intersection
with Untrusted Hardware Tokens. In Proceedings of CT-RSA 2011.

[7] C. Hazay and Y. Lindell. Constructions of truly practical secure protocols using stan-
dard smartcards. In Proceedings of ACM CCS 2008.

[8] C. Paquin, G. Zaverucha. U-Prove Cryptographic Specification V1.1 (Revision 2).
Microsoft Research Technical Report, April 2013.

5

