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Abstract 

We define the notion of an interesting nugget in a document. Such nuggets attract a user's attention 

and lead them to explore more information around that nugget. In order to measure and model 

interestingness, we look at browsing sessions within Wikipedia and we build a data set of transi-

tions (clickthrough) from a source Wikipedia page to a destination Wikipedia page through anchor 

clicks. We investigate factors that influence the probability of a click on an anchor in a Wikipedia 

page. We propose a topic modeling approach which jointly models the contents of the source and 

destination pages. We then use the estimated posterior on latent variables as features, along with 

page structure and user metadata features to build a model of interestingness. Finally, we evaluate 

this model using different feature sets and we demonstrate the model's effectiveness at predicting 

interesting nuggets. Experimental results show that the latent semantic features are effective in 

predicting interestingness and can outperform baseline features. 

1. Introduction 

While an enormous amount of research has been done on information-seeking or, more recently, sense-

making in a decision process (Evans & Chi, 2001), there has been much less emphasis on what we call 

interestingness: the – sometimes serendipitous – encounter of a concept, entity, or fact (henceforth 

dubbed nugget) during content consumption that leads the user to investigate a particular interesting 

nugget further. Sometimes this behavior leads to the exploration of a single nugget, sometimes the user 

is enticed into a lengthy chain of following one interesting nugget to another and so on. For example, 

the user might consume content about an actress and her recent and successful TV series. They might 

then click on a link to a biography of the actress, where they might find links to other TV shows that 

now pique their interest. 

Being able to predict what is interesting in the context of some specific content is useful in a number 

of ways. We can enrich the content consumption experience for a user by providing augmentation of 

document content: We can automatically turn the interesting nuggets into anchors which link to a URL 

with relevant information. This kind of augmentation invites the user to explore interesting avenues 
                                                           
* This work was conducted at Microsoft Research. 
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from the current document without cluttering the content with uninteresting anchors. From a purely text 

content based perspective, knowing interesting and uninteresting entities in a document can improve 

concept decomposition for large scale text clustering, building improved concept dictionaries/associa-

tions (Okumura & Hovy, 1994) and concept ontologies (Maedche & Staab, 2000). Within a web con-

text, characterization of interesting concepts/anchors in a page has promising applications in concept 

clustering/representation (Huang et al., 2009), building concept hierarchies (Sanderson & Croft, 1999), 

latent concept expansion (Metzler & Croft, 2007), and tagged web clustering (Ramage et al., 2009). 

Further, since discovering interesting anchors is an instance of web page annotation/augmentation with 

additional metadata, it holds promise for various downstream tasks like improved web search relevance 

(Bao et al., 2007), topic-link based document retrieval using language models (Chang et al., 2009), and 

improved information presentation for browsing (McKeown et al., 2002) where augmentation has been 

shown to be very successful. 

Upon closer reflection it becomes clear that this notion of interestingness is not a static concept. What 

is perceived as interesting in the context of some specific content depends on the current content 

(source), the content that could be provided for a nugget (destination) and the user. An item may be 

interesting to most readers in one document, but not in another. Consider our previous example, a pop-

ular actress who is mentioned in a document about her latest successful TV series. Users might find it 

interesting to follow up on her in this context, while the same actor mentioned in a document about 

actors who have worked for a specific film studio in the 1990s might elicit less of an interest from a 

general audience. Similarly, content about the actress and her acting career might be of higher interest 

than content about her clothing line. 

Figure 1 illustrates our view of content consumption and interestingness. While consuming content, 

the user is interested in learning more about some nugget in the current context. This interest leads to 

an observable user action, which can take many different forms. For example, the user might issue a 

query to a search engine, consult a printed reference such as a dictionary, consult with friends over a 

social network, or (in web content consumption) click on an anchor on the current page. All these ob-

servable user actions can be used as indication that the user shows interest in the given nugget. 

A central concept for our modeling of interestingness is a transition t(S, D) from a source page S to 

a destination page D, mediated by an anchor. We take these transitions as driven by the interestingness 

of the anchor in S that links to D. 

 

 

 

Figure 1: Content Consumption and Interestingness.  
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The main contributions of this paper are: 

 We introduce a notion of interestingness that is grounded in observable behavior during content 

consumption. 

 We propose a probabilistic model of interestingness, which captures the latent aspects that drive 

a user to be interested in browsing from one document to another, by jointly combining the latent 

semantics of the source and destination documents with the intent of the transition. 

 We pose the problem of predicting interesting browsing transitions as a discriminative model 

combining evidence from our model of interestingness, contextual features in the source docu-

ment, and geospatial and time features. We train our models on millions of real-world browsing 

events. 

 We empirically show that our model is effective and that the latent semantic features contribute 

significantly on the task of predicting the most interesting links to a user in a web browsing sce-

nario. 

2. Related Work 

Our work focuses on building models of interestingness, based on contextual information from both the 

currently consumed document and the document that could be linked to from an interesting nugget. 

There are several areas of related work which we summarize below under specific research heads. 

2.1. Click Prediction 

Click modeling aims to interpret the users’ click data in order to predict their clicking behavior. Click 

prediction models are usually built using click-through logs from search engines for applications like 

Web search ranking, ad click-through rate (CTR) prediction and personalized click recommendation 

models. 

One of the main foci of click prediction models is query based click prediction which aims at com-

puting the probability that a given document in a search-result page is clicked on after a user enters some 

query. The main technique is to learn the user-perceived relevance for query-document pairs. This has 

attracted significant amount of attention and several attempts have been made to improve the overall 

search results (Agichtein et al., 2006; Guo et al., 2009; Joachims, 2002; Joachims et al., 2005). In most 

click prediction models, dwell time is used as an intrinsic relevance signal (Buscher et al., 2009; Kelly 

& Belkin, 2004; Morita & Shinoda, 1994; White & Kelly, 2006). Yet there is other work that has in-

vestigated the position bias problem (Granka et al., 2004), revisiting behaviors (Xu et al., 2012), post-

click behaviors (Guo & Agichtein, 2012), and freshness for news search (Wang et al., 2012). 

A key distinction from the approaches above is that our models are capable of learning notions of 

interestingness from document (semantic) content and browser page transition click logs. 

2.2. Online Advertising and Sponsored Search 

Sponsored search (i.e., search results with recommended ads) is another area where click prediction 

models have been shown to be effective. Ads are ranked according to their likelihood of being relevant 
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to the user and their likelihood of generating high revenue, which are highly correlated with the proba-

bility of a user click. This makes accurate click prediction crucial to sponsored search. Several ap-

proaches have been proposed which include ad click prediction using historical Click Through Ratio 

(CTR) (Graepel et al., 2010; Craswell et al., 2008) and references therein; exploiting the semantic rele-

vance of query and ad content (Hillard et al., 2011; Richardson et al., 2007); exploiting mutual influence 

between ads (Ghosh & Mahdian, 2008; Xu et al., 2010); relation click prediction based on multiple ads 

on a page (Xiong et al. 2012), understanding the positional bias in sponsored search (Chen & Yan, 

2012)0, using multimedia features in ad click prediction (Cheng et al., 2012), etc. In (McMahan et al., 

2013), the authors perform case studies on large scale evaluation of ad click prediction and shed light 

on many practical aspects like efficient memory usage, calibration techniques, and feature management. 

There have also been studies which measure the effectiveness of online targeted advertising (Farahat 

& Bailey, 2012) and dynamics of advertiser bidding (Xu et al., 2013). Also related are personalized 

click models e.g., (Shen et al., 2012) which tend to use user CTR and various browsing metadata (e.g., 

demographic history (Cheng & Cantú-Paz, 2010)) to improve personalized and sponsored search. 

Although ad click prediction is related to our task setting of predicting interesting anchors on a page, 

the methods used in ad click prediction are not directly applicable as they rely on ad query and query 

augmented metadata. Our models are grounded in browsing behavior (Figure 1) and hence can only 

rely on document content and structure. 

2.3. Contextual Advertising 

Contextual advertising (Broder  et al., 2007) places ads within the content of generic third party web 

pages. There is usually some commercial intermediary (ad-network) which is in charge of optimizing 

the ad selection with the dual goal of improving revenue and user experience. Studies have shown that 

its success is closely related to accurate click prediction (Chatterjee et al., 2003). Ad representation with 

word/phrase vectors have been shown to work well (Broder  et al., 2007; Lacerda et al., 2006). Exten-

sions include models which combine click feedback (Chakrabarti et al., 2008), forecasting ad-impres-

sions (Wang et al., 2009), etc. However all models in this thread primarily rely on semantic match of 

the content page and ad which is different from our task setting of predicting interesting browsing tran-

sitions from a page. 

2.4. Use of Probabilistic Models 

The majority of the research summarized above employs probabilistic models owing to the very nature 

of click prediction’s reliance on historical CTR. Our semantic model is built over LDA (Blei et al., 

2003) and has resemblances to Link-LDA (Erosheva et al., 2004) and Comment-LDA (Yano et al., 

2009) models. However, those models are tailored for blogs and associated comment discussions which 

is very different from our source to destination transitions of user browsing from web browser logs. 

Also related are the approach of (Gao et al., 2011) which employs statistical machine translation to learn 

semantic translation of queries to document titles. Guo et al. (2009) used probabilistic models for dis-

covering entity classes from query logs and Lin et al. (2012) studied latent intents in entity centric search. 

The above models apply to individual pages/queries and associated metadata and do not model the joint 

topical/concept mappings that are involved in source to destination page transitions which is the focus 

of our work. 
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2.5. Predicting Popular Content 

Modeling interestingness is also related to work which has focused on predicting popular content in the 

Web. This work mainly focuses on news content popularity and prediction (Lerman & Hogg, 2010; 

Szabo & Huberman, 2010), and popular content in the Web (Bandari et al., 2012). Our models differ in 

the fact that we strive to predict what a user is likely to be interested on a page when consuming content. 

Our models do not rely on prior browsing history from click logs, since we strive to predict interesting-

ness in situations where we have little or no history. Instead, our models make use of learned higher 

level semantic concept mappings learned from article contents. 

3. Interestingness 

As we have outlined in the introduction, interestingness manifests itself in observable click behavior; 

this forms the signal which we utilize as the target for our models. 

We treat the anchors on a page as the set of candidate nuggets. Utilizing the observed click behavior 

as a proxy signal for interestingness, we can build models of interestingness to approximate the nug-

get/anchor click behavior by using features from the current content, the destination content, and the 

user. Note that even though we focus on browsing behavior as our signal, this does not limit the appli-

cation of our models to the web alone. Since we use general document level and semantic features in 

our models, hence the models can also be applied to documents in general, even though they are trained 

on web browsing data. 

Our data consists of randomly sampled browsing transitions (clicks on anchors) from a source page 

to a destination page. In our study, we focus specifically on transitions within Wikipedia, for a number 

of reasons. First, Wikipedia is a popular and much consulted resource, hence there is ample opportunity 

to observe how users click on anchors in one Wikipedia page and land on another while consuming 

content, alleviating problems of sparsity with generic web content. Second, Wikipedia is highly struc-

tured, allowing us to reliably extract content and anchors. 

To obtain a better understanding of the problem, we performed a number of manual studies on a 

small random sample of 200 transitions from our data set and we also performed several simple predic-

tion experiments to assess the predictiveness of several factors. Below, we summarize some of our ob-

servations and results of manual annotation experiments. 

3.1. Only Few Things on a Page are Interesting  

The average number of anchors on a Wikipedia page is 79. Out of these many anchors, only very few 

are actually followed by users. For example, the Wiki article on the popular TV series “The Big Bang 

Theory” leads to transitions to the pages of the actors in that series for the vast majority of transitions. 

90% of the transitions are to the four pages for Kaley Cuoco, Jim Parsons, Kevin Sussman and Johnny 

Galecki. 

3.1.1. The Semantics of Source and Destination Page is Important  

Not surprisingly, we found that our collection of transitions within Wikipedia is governed by general 

popular interests. We manually determined the entity type of the Wikipedia articles in our sample (ac-

cording to schema.org classes). 49% of all source urls in our data sample are of the “Creative Work” 
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category, reflecting the strong popular interest of movies (37%), actors (22%), artists (18%), and tele-

vision series (8%). The next three most prominent categories are “Organization” (12%), “Person” (11%) 

and “Place” (6%). 

We also observed that transitions are influenced by the category of the destination page. If the source 

article category is “CreativeWork.Movie”, the most frequent destination categories are “Actor” (63%) 

and “Character” (13%). For the source category “CreativeWork.TVSeries”, the “Actor” destination ac-

counts for 86%, and the “Artist” category for the remaining 14% of transitions. “CreativeWork.Actor” 

favors the destination article category “Movie” (45%) and “Actor” (26%), while a source category “Cre-

ativeWork.Artist” favors destinations of category “Artist” (29%), “Movie” (17%) and “MusicRecord-

ing” (18%). 

This suggests strongly that the semantics of both source and destination pages play an important role 

in what users find interesting. 

3.1.2. The User Plays a Role 

We were also interested in the question how the user and time information play into interestingness. For 

example, it is a reasonable hypothesis that users from very different geographic (and hence cultural) 

backgrounds might show different patterns in what they find interesting. Similarly, it is not unreasonable 

to assume that browsing behavior during weekends might be different from the behavior on week days. 

To investigate these hypotheses, we trained a series of simple Naïve Bayes models to predict the most 

interesting anchor on a page. Naïve Bayes models took a given feature dimension into consideration by 

modeling , where , ,  denote the destination page, source page, and feature dimension. Our 

Null Model (NM) simply used the prior distribution  observed from the training data. We found 

that adding the user city, and user country feature dimensions in our Naïve Bayes model, respectively 

led to small but significant (p<0.05) improvements in prediction accuracy over the null model. Adding 

the feature dimension time of day (in 24h intervals) and the day of week to the Naïve Bayes model also 

led to statistically significant improvements over the null model. 

3.1.3. The Structure of the Source Page Plays a Role  

It is well known that the position of a link on a page influences user click behavior: links that are higher 

on a page or in more prominent position tend to attract more clicks. We verified that this effect also 

holds for our prediction task. When anchor position was added to the Naïve Bayes model as a feature, 

we observed a significant improvement over the null model baseline. 

4. Predicting Interestingness 

The general objective of identifying interesting nuggets on a page consists of two parts: (1) a set of 

nugget candidates for interestingness is identified; and (2) interestingness scores are assigned to each 

candidate. In this paper, we restrict our scope to the second task, i.e., the assignment of an interestingness 

score to a candidate nugget, where a candidate nugget is an anchor. We observe user clicks on anchors 

in a Wikipedia page, the set of candidate nuggets for us is the set of anchor texts on a source page. We 

believe that this narrower scope is appropriate in order to understand the factors that enter into what is 

perceived as interesting by a content consumer. On the other hand, we also believe that once we have 
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gained an initial understanding of the interestingness scoring problem, there are many intriguing re-

search opportunities in identifying nugget candidates automatically. 

We distinguish two tasks settings where interestingness scores can be used, and we evaluate them 

separately. The first task setting is to propose k anchors on a page that the user will find interesting 

(highlighting task). The second, and more difficult, setting is to predict which anchor the user is going 

to click on next (click prediction task). 

4.1. Data Set 

For our investigation we utilize two data sources. First, we use the full dump of English Wikipedia2 

containing about 4.1 million unique article pages as our universe of content. Second, we use one month 

of web browser log data joined against the Wikipedia data to capture instances where a user transitioned 

from one Wikipedia page to another by clicking on one of the anchors of the article. The browser log 

data provide us with metadata for each such transition from a source ( ) Wikipedia page to a destination 

( ) article, including user time, location, and dwell time. We refer to a pair ( ) of urls where a user 

clicked on an anchor in S and continued browsing the content of D as a transition. Our data set includes 

millions of transitions between many of the Wikipedia pages. 

Using uniform sampling, we split our data into 20% development set, 60% training set and 20% test 

set. We further divide the test set into a HEAD, TORSO, and TAIL set using inverse CDF sampling on 

a traffic-weighted set in order to be able to evaluate the performance of our models on these three seg-

ments separately. Both HEAD and TAIL set account for 20% of the (source) traffic, while the TORSO 

set accounts for the remaining 60%. 

4.2. The Prediction Task 

Let U be the set of all Wikipedia articles and A the set of all anchors in U, respectively. Let   

be the set of anchors in . We formally define the interestingness task as learning the function: 

  (1) 

where  reflects the interestingness of a in u 3. 

For our learning algorithm we use boosted decision trees (Friedman, 1999) to learn a regression 

model. Hyperparameters such as number of iterations, learning rate, minimum instances in leaf nodes, 

and the maximum number of leaves are tuned using 3-fold cross-validation on the training data. 

The observed interestingness scores which our model regresses to are derived from user clicks on 

anchors in a source page  leading to a destination page . Specifically, the regression target is , 

where this probability is estimated using the aggregated click counts on  in  and the total number of 

clicks on any anchor in . 

Each anchor/document pair is represented as a vector of features, where the features fall into four 

basic categories: 
                                                           
2 Our English Wikipedia corpus consists of the May 3, 2013 dump available at http://dumps.wikimedia.org. 
3 We fix  for all . 
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1. Geotemporal features (GeoTemp): country, city, postal code, region, state, timezone, time of 

click, day of click 

2. Anchor features (Anc): position of the anchor in the document, frequency of the anchor, density 

of the anchor in the paragraph where it was clicked, whether the anchor text matches the title of 

the destination page 

3. Semantic features based on manual categorization by the Wikipedia editors (Wiki) 

4. Semantic features derived from an unsupervised joint topic model of source and destination 

pages (as described in detail in Section 5) 

5. The Semantics of Interestingness  

5.1. Motivation and Model Overview 

Our goal in this paper is to learn a model of interestingness that is capable of scoring an anchor text 

according to the probability that this anchor text is of interest to a user when he is consuming/browsing 

the article content. 

As we have seen in Section 3.1.1, the semantics of the source and destination page play a role in 

whether an anchor is perceived as interesting. This reflects the intuition that notions of human interests 

are usually encoded in higher level concepts or semantic spaces which are influenced by article contents. 

For example, recall from Section 3.1.1 that when people are consuming a movie page, they are likely to 

be interested in the lead actor/actresses/director associated with the movie. However, most movie pages 

in Wikipedia almost always have other related information like shooting venue, release budget, sales, 

critics, etc. which are rarely clicked showing a lower interest/learning need of users. Here we can find 

an interest mapping of movie  artist where movie and artist are some higher level semantic abstrac-

tions of all movie and actor pages. 

In Wikipedia, editors assign categories to articles, so we can get semantic information “for free” in 

order to measure the influence of the content semantics of source and destination page on interesting-

ness. As we will see in Section 6.1.1, this information indeed influences interestingness considerably. 

Knowing that semantics does play a big role motivates us to build an unsupervised semantic model of 

source and destination pages that does not rely on manual annotation. Such a model can then serve the 

purpose of providing important semantic signals for interestingness in a general manner without the 

limits of Wikipedia. 

For this purpose, we propose a novel generative model of the semantics of browsing. Referring to 

the notations in Table 1, we start by positing a distribution over joint latent transition topics (as a higher 

level semantic space),  for each transition . The corresponding source,  and destination,  

articles of a given transition  are assumed to be admixtures of latent topics which are conditioned on 

the joint topic transition distribution, . The detailed generative process is given in the following sub-

section. For ease of reference, we will refer to this model as the Joint Transition Topic Model (JTT). 

5.2. Generative Process 

We now detail the full generative process of our Joint Transition Topic Model. The variable names and 

their descriptions are provided in Table 1. Figure 2 shows the plate notation of our model. 
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Variable Description 

 A transition  

,  The source and destination pages of  

~  Joint source/destination topic distribution 

,  Latent topics of ,  respectively 

,  
Observed word tokens of ,  respec-

tively 

 ~  Latent topic-word distributions for topic  

 Dirichlet parameters for ,  

,  
No. of terms in source and destination 

pages of  

 Set of all transitions,  

 No. of topics 

 No. of unique terms in the vocabulary 

,  Set of all topics in source, destination pages 

,  
Set of all word token in source, destination 

pages 

 
Set of all latent joint transition topic distri-

butions 

 Set of all latent topics 

 Contribution of topic  in transition  

 th word of transition  in ,  

  
Latent topic of th word of transition  in 

,  

 No. of words in  assigned to topic  

 No. of words in  assigned to topic  

 
No. of times word  assigned to topic  in 

 

 
No. of times word  assigned to topic  in 

 

Table 1: List of notations 
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            K
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Figure 2: Plate Notation of JTT. 
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For each topic , draw  ~  

1) For each transition : 

a) Draw the joint topic transition distribution,  ~  

b) For each word token : 

i) Draw  ~  

ii) Emit  ~  

c) For each word token : 

i) Draw ~  

ii) Emit   ~  

5.3. Inference 

This section details the model inference. We start by deriving the joint distribution of our model and 

then employ Markov Chain Monte Carlo (MCMC) Gibbs sampling for learning the model from data. 

To derive the joint distribution, we factor our model according to the causalities governed by the Bayes-

ian network of the JTT model. 

 

We employ approximate posterior inference using Monte Carlo Gibbs sampling and use Rao-Black-

wellization to reduce sampling variance by collapsing on the latent variables  and . We first compute 

the second factor as follows: 

 

 

 

where  is 1-of-K encoded and exactly one of its component attains a value of 

1 while rest other 0. Upon careful observation and groupings, these can be replaced with appropriate 

count variables as follows: 

  

As each  is conditionally independent given the hyperparameter , we have: 
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The above simplification can be obtained using techniques for solving Dirichlet integrals (Box & Tiao, 

1973) and consequently reduced. Omission of a latter index in the count variables denoted by  corre-

sponds to the row vector spanning over the latter index. The function  refers to the multinomial 

beta function given below: 

  

Using similar techniques as above, it is not hard to show that the first factor simplifies as follows: 

  

Thus, the full joint can be written succinctly as follows: 

 

 

Having obtained the joint, it is straightforward to derive the Gibbs sampler for learning the model. We 

start with the Gibbs conditional distribution for . 

 

 

 

where the subscript  denotes the value of the expression excluding the counts of the term . 

Further, noting that 

 

where  is a candidate topic assigned to , we can simplify the above expression further as follows: 

 

Using derivation techniques similar to above, one can derive the Gibbs conditional for  as follows: 

 

5.4. Posterior 

Having sampled latent variable  and observed , we now detail the posterior pre-

dictive distribution for our model. Using the fact that Dirichlet is conjugate to the Multinomial, the point 

estimates of the posterior distributions can be computed as follows: 
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5.5. Training Settings 

We learned our joint topic model from a random traffic-weighted sample of 10,000 transition compris-

ing of source and destination pages. The Dirichlet hyperparameters were set to  = 50/  and  = 0.1 

according to the values suggested in (Griffiths, 2004). The number of topics, , was empirically set to 

50. We also conducted pilot experiments with other hyperparameter settings and larger data-sets and 

more topics. However, these exploratory experiments with varying settings did not make a substantial 

difference. Although increasing the number of topics and modeling more volume usually results in low-

ering of perplexities and better fitting in topic models (Blei et al., 2003), it can also result in redun-

dancy in topics which may not be very useful for downstream applications (Chen et al., 2013). In our 

setting, where the eventual downstream task is modeling interestingness, our pilot experiments showed 

that the value of information contained in the latent semantics of our model reached saturation upon 

increasing number of topics and the data size. For all reported experiments we used the posterior esti-

mates of our joint model learned according to the above mentioned settings. 

In our interestingness prediction model we use three classes of features from the joint topic model, 

capturing the topic distribution of source, destination, and transition: source topic features ( , labeled 

as JTTsrc in charts), destination topic features ( , labeled as JTTdst), and transition topic features ( , 

labeled as JTTtrans). The value of each topic feature is the probability of the topic. 

6. Experiments 

We evaluate our models on two tasks: highlighting and click prediction. 

6.1. Results: Highlighting 

Highlights. Propose k anchors that the user will find interesting. In this task, a user is reading a 

document  and is interested in learning more about a set of anchors. We formally define the in-

terest function: 

  (2) 

where  reflects the user’s degree of interest in a while consuming  . 

Our goal in this task is to select k anchors that maximize the cumulative degree of interest of the user. 

We consider the ideal selection to consists of the k most interesting anchors, ranked in decreasing order 

of . 

We instantiate our interest models on this task by scoring each source-anchor pair and by ordering 

the anchors in decreasing order of their prediction score. We then select the top-k for each source doc-

ument. Given a source document s, we measure the quality of a system’s ranking against the ideal rank-

ing defined above using the standard nDCG metric 0. In order to compute nDCG, we need to assign a 

relevance score to each anchor  proposed by our model. We consider the degree of interest of the user 

in  as the best measure of relevance, hence we use . 
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Computing  is of course a challenge. Recall our test set described in Section 4.1. Each item 

in the test set consists of a real-world browsing transition denoted , where  represents the 

anchor clicked from document  that led to document . In order to approximate , we compute 

the aggregate average clicks on  from the source page , that is: 

 

where  is the number of transitions from  to  via  in the test set and   is the 

number of transitions in the test set originating from document . 

Table 2 shows the nDCG results for two baselines and a range of different feature sets. The first high-

level observation is that the difficulty of the interestingness prediction problem becomes obvious from 

the two baseline results. Since there are many anchors on an average page, picking a random set of 

anchors yields very low nDCG scores. Note also that nDCG numbers of our baselines increase as we 

move from HEAD to TORSO to TAIL, due to the fact that the average number of links per page de-

creases in these sets from 170 to 94 to 41. The second baseline illustrates that it is not by any means 

sufficient to simply pick the top n anchors on a page. Using our set of anchor features as described in 

Section 4.2 in a regression model greatly improves over the baselines, with the strongest numbers on 

the HEAD set and decreasing effectiveness in TORSO and TAIL. This shows that the distribution of 

interesting anchors on a page actually differs according to the popularity of the content, possibly also 

with the length of the page since popular pages also tend to attract more time from editors and often 

have longer content. Adding geotemporal features to the anchor features leads to slightly degraded re-

sults. This is despite the fact that geotemporal features in our initial exploration in Section 3.1.2 showed 

some impact. We believe that this might be due to overtraining, possibly because of the high number of 

observed values for categorical features such as user city etc. Not shown in Table 2 are additional ex-

periments that consistently showed no positive impact from the geotemporal features in combination 

with other feature sets. Based on these results, we excluded this feature set from subsequent experi-

ments. Our best performing model is the one using anchor features and all three sets of latent semantic 

features (source, destination, and transition topics). The biggest improvement is obtained on the HEAD 

Table 2: nDCG results for different feature sets across HEAD, TORSO, and TAIL. Bold indicates statistically signifi-

cant best systems (with 95% confidence). 

nDCG % HEAD TORSO TAIL 

 @1 @2 @5 @10 @1 @2 @5 @10 @1 @2 @5 @10 

Baseline: random 4.07 4.90 6.24 8.10 3.56 4.83 7.66 10.92 6.20 11.74 19.50 25.82 

Baseline: first n 

anchors 
9.99 12.47 17.72 24.33 7.17 9.87 17.06 23.97 9.06 16.66 27.35 34.82 

Anc 21.46 22.50 25.30 29.47 13.85 16.80 22.85 28.20 10.88 19.16 29.33 36.48 

Anc+GeoTemp 18.99 21.26 25.06 29.80 13.70 16.54 22.52 27.98 10.72 18.90 29.19 36.35 

Anc+JTTdst 13.97 16.33 19.69 23.78 11.37 14.17 19.67 24.66 11.62 19.69 29.69 36.35 

Anc+JTTdst+JTTsrc 26.62 30.03 34.82 39.38 17.05 20.82 27.15 32.48 12.27 21.56 31.88 38.85 

Anc+JTT-

dst+JTTsrc+JTTtrans 
34.49 35.21 38.01 41.80 18.32 21.69 28.03 33.22 13.06 21.68 32.13 39.01 
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data. This is not surprising given that the topic model is trained on a traffic weighted sample of Wikipe-

dia articles and that HEAD pages tend to have more content, making the identification of topics more 

reliable. Regarding the individual contributions of the latent semantic destination, source and transition 

features, the observation is that destination features alone hurt performance on the HEAD set. Latent 

semantic source features lead to a boost across the board, and the addition of latent semantic transition 

topic features produces the best model, with gains especially pronounced on the HEAD data. Figure 3 

shows the performance of our best configuration across ALL, HEAD, TORSO, and TAIL. Interestingly, 

the TAIL exhibits better performance of the model than the TORSO (with the exception of nDCG at 

rank 3 or higher). We attribute this to the observation that the average number of anchors in a TAIL 

page is less than half of that in a TORSO page. 

6.1.1. The Contribution of Semantic Features  

In further experiments we addressed the question how our unsupervised latent semantic features per-

form compared to editor assigned topics for Wikipedia pages. This is an important question for two 

reasons. First, it is reasonable to consider the manually assigned topics as a (fine-grained) oracle for 

topic assignments and hence as a good comparison for any topic model built on the same data. Each 

article is assigned multiple categories at the discretion of the editor. New categories are constantly added 

 

Figure 3: Overall performance (ALL) versus HEAD, TORSO, 

and TAIL subsets. 
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Figure 4: JTT features versus Wikipedia category features 

over complete test set. 
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to Wikipedia, and the total number is in the hundreds of thousands. Second, note that outside of Wik-

ipedia, the luxury of manually assigned categories/topics does not exist, so it is important to see for a 

model of interestingness how much of the information in manual categories can be recovered through 

an unsupervised topic model. Figure 4 illustrates that Wikipedia categories outperform the JTT topic 

features, but the latter can recover about two thirds of the nDCG gain from Wikipedia categories. 

6.1.2. Access to History 

For the HEAD part of the data, we have enough historical clickthrough data that we can leverage directly 

for prediction. To establish how well this strategy fares we conducted experiments where we used the 

prior probability  obtained from the training data (both smoothed and unsmoothed). Following 

this strategy we can achieve up to 65% nDCG@10 as shown in Figure 5 where the use of prior history 

is compared to our best model and to baselines. In a real-life application scenario, this is not a viable 

option, though. First, it is not suitable for a “cold start” scenario where we need to determine interest-

ingness for a new, unseen page. More importantly, the TORSO and TAIL data sets have no or only very 

sparse histories, hence we cannot resort to this information. Finally, clickthrough history makes sense 

in our experimental setting where Wikipedia anchors and destination pages are static. Any application 

which identifies interesting nuggets in order to trigger a query for that nugget on a search engine would 

not be able to rely on a static result, but would retrieve dynamically produced and ranked content which 

may, for example, contain a link to the latest gossip news which did not exist only a few hours before. 

6.2. Results: Click Prediction 

Our highlights task reflects the main goal of our paper, i.e., to predict interestingness in the context of 

any document, whether it be a web page, an email, or a book. A natural extension of our work, especially 

in our experimental setting with Wikipedia transitions, is to predict the next click of a user, i.e., click 

prediction. 

There is a subtle but important difference between the two tasks. Highlights aims to identify a set of 

interesting nuggets for a source document. A user may ultimately click on only a subset of the nuggets, 

and perhaps not in the order of most interest. Our experimental metric, nDCG, reflects this ranking task 

well. Click prediction is an inherently more difficult task, where we focus on predicting exactly the next 

 

Figure 5: Comparison of best configuration interest model 

against baselines and access to historical transitions. 
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click of a specific user. Unlike in the highlights task, there is no partial credit for retrieving other inter-

esting anchors. Only the exact clicked anchor is considered a correct result. As such, we utilize a differ-

ent metric than nDCG on this task. We measure our model’s performance on the task of click prediction 

using cumulative precision. Given a unique transition event 𝜏(𝑠, 𝑎, 𝑑) by a particular user at a particular 

time, we present the transition, minus the gold anchor a and destination d, to our models, which in turn 

predict an ordered list of most likely anchors on which the user will click. The cumulative precision at 

k of a model, is 1 if any of the predicted anchors matched a, and 0 otherwise. 

Table 3 outlines the results on this task and Figure 6 shows the corresponding chart for our best 

configuration. Note that in the click prediction task, the model performs best on the TAIL, followed by 

TORSO and HEAD. This seems to be a reflection of the fact that in this harder task, the total number 

of anchors per page is the most influential factor in model performance. 

7. Conclusion and Future Directions 

We presented a notion of interestingness of a text nugget on a page that is grounded in observable be-

havior during content consumption. We implemented a model for prediction of interestingness of an-

chor texts that we trained and tested within the domain of Wikipedia. The model design is not tied to 

our experimental choice of using Wikipedia and can be applied to other domains. Our model takes 

Table 3: Click prediction results for different feature sets across HEAD, TORSO, and TAIL. Bold indicates statistically 

significant best systems (with 95% confidence). 

Cumulative Pre-

cision % 
HEAD TORSO TAIL 

 @1 @2 @5 @10 @1 @2 @5 @10 @1 @2 @5 @10 

Baseline: random 1.07 2.08 5.29 10.55 1.94 3.91 9.71 19.00 5.97 11.66 26.43 44.94 

Baseline: first n 

anchors 
2.68 5.77 16.73 33.78 4.10 8.19 22.86 42.08 8.77 16.57 36.80 58.52 

Anc 8.40 12.55 22.04 34.22 8.70 14.37 27.56 42.68 10.59 19.08 38.27 59.04 

Anc+GeoTemp 7.14 11.77 21.81 35.21 8.39 14.00 27.12 42.58 10.42 18.80 38.25 59.11 

Anc+JTTdst 5.48 9.19 17.77 29.14 6.93 12.07 23.90 38.00 11.23 19.59 38.46 57.87 

Anc+JTTdst+JTTsrc 9.02 15.65 30.05 44.72 10.11 17.42 32.08 47.07 11.95 21.47 40.96 61.24 

Anc+JTT-

dst+JTTsrc+JTTtrans 
11.53 18.43 31.93 45.36 10.86 18.19 32.96 47.66 12.64 21.58 41.27 61.28 

 

 

Figure 6: Overall performance (ALL) versus HEAD, TORSO, 

and TAIL subsets. 
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advantage of semantic features that we derive from a powerful and novel joint topic model. The joint 

topic model takes into account topic distributions for source, destination and transitions from source to 

destination. We demonstrated that the latent semantic features from our topic model contribute signifi-

cantly to the performance of interestingness prediction, to the point where they perform nearly as well 

as using manually assigned Wikipedia categories as features. We also showed that the transition topics 

improve results over just using source and destination semantic features alone. 

A number of future directions immediately suggest themselves given the discussion and results in 

this paper. First of all, we did not address the problem of generating a candidate list of nuggets or text 

strings. In our problem setting, the candidate list is the list of anchor texts on a page. For an application 

that marks interesting nuggets on an arbitrary page, however, we would need a detector for nugget 

candidates. A simple first approach would be to use a state-of-the-art Named Entity Recognition (NER) 

system. This does not solve the problem entirely, since we know that named entities are not the only 

interesting nuggets – general terms and concepts can also be of interest to a reader. On the other hand 

we do have reason to believe that entities play a very prominent role in web content consumption, based 

on the frequency with which entities are searched for (see, for example 0 and the references cited 

therein). Recall also from Section 3.1.1 that we made similar observations in the Wikipedia domain 

where “Creative Work”, “Organization”, “Person” and “Place” pages attracted most of the traffic. Using 

an NER system as a candidate generator would also allow us to add another potentially useful feature 

to our interestingness prediction model: the type of the entity. One could also envision a model of inter-

estingness and nugget detection that tackles both problems as a joint objective instead of a two-stage 

pipelined process. A second point concerns the observation from the previous section on the different 

regularities that seem to be at play according to the popularity and possibly the length of an article. More 

detailed experiments are needed to tease out this influence and possibly improve the predictive power 

of the model. It would also be interesting to revisit the user/time features which in our results led to 

overfitting. Pruning categorical features to a smaller number of observed values or eliminating the par-

ticularly fine-grained features such as user city could possibly still benefit the model. Finally, there are 

a number of options regarding our joint topic model that could be explored further. Being trained on a 

traffic-weighted sample of articles, the topic model predominantly picks up on popular topics. This 

could be remedied by training on a non-weighted sample, or, more promisingly, on a larger non-

weighted sample with a larger K, i.e. more permissible total topics. We are also considering training 

different topic models for the HEAD, TORSO and TAIL portions of our data to determine if we can 

improve especially TORSO and TAIL performance with these “customized” topic models. 

References 

Agichtein, E., Brill, E., and Dumais, S. 2006. Improving web search ranking by incorporating user 

behavior information. Proceedings of SIGIR, 19-26. 

Bandari, R., Asur, S., and Huberman, B. A. 2012. The Pulse of News in Social Media: Forecasting 

Popularity. Proceedings of ICWSM. 

Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., and Su, Z. 2007. Optimizing web search using social 

annotations. Proceedings of WWW, 501-510. 

Blei, D. M., Ng, A. Y., and Jordan, M. I. 2003. Latent dirichlet allocation. The Journal of Machine 

Learning Research, 3, 993-1022. 



GAMON ET AL. 

 18 

Box, G. E., and Tiao, G.C. 1973. Bayesian inference in statistical analysis. Addison-Wesely. 

Broder, A., Fontoura, M., Josifovski, V., and Riedel, L. 2007. A semantic approach to contextual 

advertising. Proceedings of SIGIR, 559-566. 

Buscher, G., van Elst, L., and Dengel, A. 2009. Segment-level display time as implicit feedback: a 

comparison to eye tracking. Proceedings of SIGIR, 1-30. 

Chang, J., Boyd-Graber, J., and Blei, D. M. 2009. Connections between the lines: augmenting 

social networks with text. Proceedings of KDD, 169-178. 

Chakrabarti, D., Agarwal, D., and Josifovski, V. 2008. Contextual advertising by combining 

relevance with click feedback. Proceedings of WWW, 417-426. 

Chatterjee, P., Hoffman, D. L., and Novak, T. P. 2003. Modeling the clickstream: Implications for 

web-based advertising efforts. Marketing Science, 22(4), 520-541. 

Chen, Z., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M. and Ghosh, R. 2013. Leveraging Multi-

Domain Prior Knowledge in Topic Models. Proceedings of IJCAI, 2071-2077. 

Chen, Y., and Yan, T. W. 2012. Position-normalized click prediction in search advertising. 

Proceedings of KDD, 795-803. 

Cheng, H. and Cantú -Paz, E. 2010. Personalized click prediction in sponsored search. Proceedings 

of WSDM, 351-360. 

Cheng, H., Zwol, R. V., Azimi, J., Manavoglu, E., Zhang, R., Zhou, Y., and Navalpakkam, V. 

2012. Multimedia features for click prediction of new ads in display advertising. Proceedings 

of KDD, 777-785. 

Craswell, N., Zoeter, O., Taylor, M., and Ramsey, B. 2008. An experimental comparison of click 

position-bias models. Proceedings of WSDM, 87-94. 

Dhillon, I. S., and Modha, D. S. 2001. Concept decompositions for large sparse text data using 

clustering. Machine learning, 42(1-2), 143-175. 

Erosheva, E., Fienberg, S., and Lafferty, J. 2004. Mixed membership models of scientific 

publications. Proceedings of the National Academy of Sciences of the United States of America, 

101(Suppl 1), 5220-5227. 

Evans, B. and Chi, E. 2010. An Elaborated Model of Social Search. Information Processing and 

Management, 46(6):656-678. 

Farahat, A., and Bailey, M. C. 2012. How effective is targeted advertising? Proceedings of WWW, 

111-120. 

Friedman, J. H. 1999. Greedy function approximation: A gradient boosting machine. Annals of 

Statistics, 29:1189-1232, 1999. 

Gao, J., Toutanova, K., and Yih, W. T. 2011. Clickthrough-based latent semantic models for web 

search. Proceedings of SIGIR, 675-684. 

Ghosh, A. and Mahdian, M. 2008. Externalities in online advertising. Proceedings of WWW, 161-

168. 



IDENTIFYING INTERESTING THINGS 

 19 

Graepel, T., Candela, J.Q., Borchert, T., and Herbrich, R. 2010. Web-scale Bayesian Click-Through 

Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine. 

Proceedings of ICML, 13-20. 

Granka, L. A., Joachims, T., and Gay, G. 2004. Eye-tracking analysis of user behavior in www 

search. Proceedings of SIGIR, 478-479. 

Griffiths, T.L. 2004. Finding Scientific Topics. Proceedings of the National Academy of Science, 

101, suppl 1, 5228-5235. 

Guo, Q., and Agichtein, E. 2012. Beyond Dwell Time: Estimating Document Relevance from 

Cursor Movements and other Post-click Searcher Behavior. Proceedings of WWW, 569-578. 

Guo, F., Liu, C., Kannan, A., Minka, T., Taylor, M., Wang, Y.-M, and Faloutsos, C. 2009. Click 

chain model in web search. Proceedings of WWW, 11-20. 

Guo, J., Xu, G., Cheng, X., and Li, H. 2009. Named entity recognition in query. Proceedings of 

SIGIR, 267-274. 

Hillard, D., Manavoglu, E., Raghavan, H., Leggetter, C., Cantú-Paz, E., and Iyer, R. 2011. The sum 

of its parts: reducing sparsity in click estimation with query segments. Information Retrieval 

Journal, 14(3), 315-336. Springer, Berlin Heidelberg. 

Huang, A., Milne, D., Frank, E., and Witten, I. H. 2009. Clustering Documents Using a Wikipedia-

Based Concept Representation. Advances in Knowledge Discovery and Data Mining, 628-636. 

Springer, Berlin Heidelberg. 

Joachims, T. 2002. Optimizing search engines using clickthrough data. Proceedings of KDD, 133-

142. 

Joachims, T., Granka, L., Pan, B., Hembrooke, H. and Gay, G. 2005. Accurately interpreting 

clickthrough data as implicit feedback. Proceedings of SIGIR, 154-161. 

Kelly, D. and Belkin, N. J. 2004. Display time as implicit feedback: understanding task effects. 

Proceedings of SIGIR, 377-384. 

Lacerda, A., Cristo, M., Gonçalves, M. A., Fan, W., Ziviani, N., and Ribeiro-Neto, B. 2006. 

Learning to advertise. Proceedings of SIGIR, 549-556. 

Lerman, K., and Hogg, T. 2010. Using a model of social dynamics to predict popularity of news. 

Proceedings of WWW, 621-630. 

Lin, T., Pantel, P., Gamon, M., Kannan, A., and Fuxman, A. 2012. Active objects: actions for 

entity-centric search. Proceedings of WWW, 589-598. 

Maedche, A., and Staab, S. 2000. Mining ontologies from text. Knowledge Engineering and 

Knowledge Management Methods, Models, and Tools, 189-202. Springer, Berlin Heidelberg. 

Manning, C. D., Raghavan, P., and Schutze, H. 2008. Introduction to Information Retrieval. 

Cambridge University Press. 

McKeown, K. R., Barzilay, R., Evans, D., Hatzivassiloglou, V., Klavans, J. L., Nenkova, A., Sable, 

C., Schiffman, B., and Sigelman, S. 2002. Tracking and summarizing news on a daily basis with 

Columbia’s Newsblaster. Proceedings of HLT, 280-285. 



GAMON ET AL. 

 20 

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., and Kubica, J. 2013. Ad 

click prediction: a view from the trenches. Proceedings of KDD, 1222-1230. 

Metzler, D., and Croft, W. B. 2007. Latent concept expansion using markov random fields. 

Proceedings of SIGIR, 311-318. 

Morita, M. and Shinoda, Y. 1994. Information filtering based on user behavior analysis and best 

match text retrieval. Proceedings of SIGIR, 272-281. 

Okumura, A., and Hovy, E. 1994. Lexicon-to-ontology concept association using a bilingual 

dictionary. Proceedings of the First Conference of the Association for Machine Translation in 

the Americans, 177-184. 

Ramage, D., Heymann, P., Manning, C. D., and Garcia-Molina, H. 2009. Clustering the tagged 

web. Proceedings of WSDM, 54-63. 

Richardson, M., Dominowska, E., and Ragno, R. 2007. Predicting clicks: estimating the click-

through rate for new ads. Proceedings of WWW, 521-530. 

Sanderson, M., and Croft, B. 1999. Deriving concept hierarchies from text. Proceedings of SIGIR, 

206-213. 

Shen, S., Hu, B., Chen, W., and Yang, Q. 2012. Personalized click model through collaborative 

filtering. Proceedings of WSDM, 323-333. 

Szabo, G., and Huberman, B. A. 2010. Predicting the popularity of online content. Communications 

of the ACM, 53(8), 80-88. 

Wang, X., Broder, A., Fontoura, M., and Josifovski, V. 2009. A search-based method for 

forecasting ad impression in contextual advertising. Proceedings of WWW, 491-500. 

Wang, H., Dong, A., Li, L., Chang, Y., and Gabrilovich, E. 2012. Joint relevance and freshness 

learning from clickthroughs for news search. Proceedings of WWW, 579-588. 

White, R. W. and Kelly, D. 2006. A study on the effects of personalization and task information on 

implicit feedback performance. Proceediĥngs of CIKM, 297-306. 

Xiong, C., Wang, T., Ding, W., Shen, Y., and Liu, T. Y. 2012. Relational click prediction for 

sponsored search. Proceedings of WSDM, 493-502. 

Xu, D., Liu, Y., Zhang, M., Ma, S., and Ru, L. 2012. Incorporating revisiting behaviors into click 

models. Proceedings of WSDM, 303-312. 

Xu, H., Gao, B., Yang, D., and Liu, T. Y. 2013. Predicting advertiser bidding behaviors in 

sponsored search by rationality modeling. Proceedings of WWW, 1433-1444. 

Xu, W., Manavoglu, E., and Cantú-Paz, E. 2010. Temporal click model for sponsored search. 

Proceedings of SIGIR, 106-113. 

Yano, T., Cohen, W. W., & Smith, N. A. 2009. Predicting response to political blog posts with 

topic models. Proceedings of NAACL, 477-485. 


