Human Skeletal Tracking, and the Development of KINECT

Jamie Shotton Senior Researcher

Microsoft Research

- Plugs into your Xbox or PC
- Combines new technologies:
 - depth sensing camera
 - real time human skeletal tracking
 - face and voice recognition
- Applications in both gaming and much more

Kinect: Human Motion Tracking

Talk roadmap

Background: visual recognition

"Project Natal": a call to action

 Machine learning for body part recognition

Other applications

Visual object recognition


```
0.2, 0.1, 0.1 0.1, 0.1, 0.4 0.0, 0.2, 0.7 0.1, 0.4, 0.3 1.0, 0.3, 0.3
0.2, 0.9, 0.4 0.9, 0.8, 0.7 0.3, 0.2, 0.1 0.5, 0.0, 0.2 0.5, 0.5, 0.0
0.1, 0.3, 0.5 0.3, 0.6, 0.1 0.1, 1.0, 0.5 0.9, 0.8, 0.7 0.2, 0.6, 0.7
0.3, 0.7, 0.3 0.2, 0.9, 0.5 0.1, 0.5, 0.0 1.0, 0.0, 0.9 0.1, 0.8, 0.8
0.1, 0.2, 0.7, 0.6, 0.7, 0.0, 0.7, 0.7, 0.9, 0.2, 0.1, 0.0, 0.8, 0.4, 0.5
0.6, 0.4, 0.2 0.0, 0.7, 0.2 1.0, 0.1, 1.0 0.0, 0.6, 1.0 0.3, 0.1, 0.4
0.9, 0.0, 0.0 0.7, 0.8, 0.7 0.5, 0.6, 0.6 0.6, 0.6, 0.3 0.3, 1.0, 1.0
0.9, 0.4, 1.0 0.5, 0.0, 0.7 0.6, 0.0, 0.0 0.8, 0.9, 0.2 0.4, 0.9, 0.0
0.0, 0.3, 0.5 0.2, 0.4, 0.0 0.2, 0.3, 0.1 0.5, 0.9, 0.5 1.0, 0.6, 0.6
0.9, 0.8, 1.0 0.8, 0.7, 0.5 0.2, 0.8, 0.4 0.6, 0.9, 0.8 0.9, 0.8, 0.9
0.5, 0.9, 0.7 1.0, 0.1, 0.0 0.5, 0.6, 0.7 0.4, 0.5, 0.8 0.4, 0.8, 0.7
0.7, 0.6, 0.6 0.6, 0.2, 0.1 0.4, 0.7, 0.3 0.1, 0.2, 0.4 0.9, 1.0, 0.2
0.3, 0.3, 0.1 1.0, 0.3, 0.1 0.6, 0.4, 0.9 0.3, 0.7, 0.2 0.8, 0.1, 0.0
0.1, 0.4, 1.0 0.9, 0.9, 0.2 1.0, 0.4, 0.4 1.0, 1.0, 0.5 0.4, 0.8, 0.5
0.0, 0.7, 0.6 0.6, 0.1, 0.9 0.0, 1.0, 0.8 0.2, 0.7, 0.8 0.7, 0.0, 0.2
0.3, 0.0, 0.4 0.9, 0.7, 0.5 0.0, 0.1, 1.0 0.6, 0.2, 0.4 0.6, 0.4, 0.6
0.0, 0.2, 0.4 1.0, 0.9, 0.3 0.8, 0.2, 0.3 1.0, 0.0, 0.6 0.2, 0.1, 0.1
0.4, 0.6, 0.0 0.7, 0.8, 0.8 0.5, 0.7, 0.5 0.7, 0.4, 0.5 0.2, 0.3, 0.4
0.5, 0.1, 0.1 1.0, 0.9, 0.4 0.6, 0.6, 0.3 0.5, 1.0, 0.6 0.8, 0.9, 0.1
0.0, 0.5, 0.3 0.4, 0.5, 0.1 0.6, 0.1, 0.2 0.5, 0.6, 0.7 1.0, 0.9, 0.5
1.0, 0.1, 0.5 0.4, 0.1, 0.6 1.0, 0.4, 0.4 0.9, 0.3, 0.5 0.6, 0.8, 0.0
0.7, 0.9, 0.3 0.6, 0.5, 0.0 0.3, 0.9, 0.6 0.3, 0.6, 0.7 0.0, 0.0, 0.5
1.0, 0.8, 0.1 0.0, 0.3, 0.0 0.4, 1.0, 0.3 0.7, 0.3, 1.0 0.4, 0.6, 1.0
0.1, 0.5, 0.3 0.8, 0.1, 0.1 0.5, 0.1, 0.2 0.1, 0.4, 1.0 0.6, 0.4, 0.7
0.3, 0.2, 0.3 0.9, 0.9, 0.4 0.7, 0.8, 0.1 0.6, 0.8, 0.0 0.4, 0.0, 0.2
0.1, 0.3, 0.0 0.2, 0.7, 0.9 0.8, 0.4, 0.8 0.0, 0.1, 0.0 0.6, 0.7, 0.8
0.7, 0.5, 0.3 0.0, 0.2, 0.6 0.5, 0.5, 0.2 0.3, 0.9, 1.0 0.8, 0.2, 0.7
1.0, 0.6, 0.8 0.5, 0.5, 0.0 0.8, 0.4, 1.0 0.1, 0.4, 0.8 1.0, 0.2, 0.9
0.1, 0.5, 0.7 0.2, 0.0, 0.6 0.3, 0.6, 0.8 0.8, 1.0, 0.1 0.5, 0.0, 0.5
1.0, 0.5, 0.4 0.3, 0.2, 1.0 0.4, 0.0, 0.5 0.8, 0.9, 0.7 0.5, 0.1, 0.7
```

viewing angle

object pose

lighting

occlusion

scale

environment

[Shotton, Winn, Rother, Criminisi o6 + o8] [Winn & Shotton o6]

[Shotton, Johnson, Cipolla o8]

A call to action

Thu 11/09/2008 20:19

Hi Jamie,

I work on Xbox Incubation and I noticed some work you've done on visual recognition using contours (http://jamie.shotton.org/work/research.html). I was hoping to be able to discuss an important scenario we are trying to solve with you. Would you be able to chat?

Thanks,

- Mark

A call to action

Hey Jamie,

Can you talk right now? ☺

- Mark

Thu 11/09/2008 21:50

Human pose estimation

Why is it hard?

Motion capture

- ✓ very accurate
- ✓ high frame rate
- suit / sensors
- expensive

- Iarge spaceIarge spaceIarge space

Computer vision approaches

[Mori et al. 04]

Monocular, natural images

Stereo & 3D images

[Agarwal & Triggs o4]

Tracking motion

Frameby-frame

Okada & Stenger o8]

Whole body

Parts models

Requirements

PROJECT NATAL

- Human pose estimation
 - any pose
 - any body shape & size
- No calibration or instrumentation of the user
- Must "never fail"
- Must run at real time in 10% of Xbox 360 (2005 era hardware)

Must ship "Holiday 2010"

The depth camera

Structured light

The Kinect camera

RGB vs depth for pose estimation

RGB

DEPTH

Only works well lit

Works in low light

■ Background clutter

Person 'pops' out from bg

■ Scale unknown

✓ Scale known

☑ Clothing & skin colour

✓ No colour or texture variation

Related work using 3D input

[Anguelov et al. 05]

[Grest et al. 05]

[Knoop et al. o6]

[Zhu & Fujimura 07]

[Kalogerakis et al. 10]

[Siddiqui & Medioni 10]

[Plagemann et al. 10]

[Ganapathi et al. 10]

[Baak et al. 11]

Problems remaining

Tracking

Tracking

- Initialisation
- Prone to catastrophic failure

Our mission

Auto-initialise tracking algorithm

Detect and recover from failures

Matching whole poses

An image of a whole person is very indicative of the person's pose

- Massive search space of whole poses
 - exponential in number of joints
 - ➤ hard to scale up

Matching whole poses

- Massive search space of whole poses
 - exponential in number of joints
 - ➤ hard to scale up

Parts-based models

- Find parts of the body separately
- Stitch them together efficiently

[loffe & Forsyth o1]

[Fischler & Elschlager 73] [Felzenszwalb & Huttenlocher 05] [Ferrari *et al.* 08]

[Mori *et al.* 04]

[Bourdev & Malik 09]

Our solution: body part recognition

- Local pose estimate of parts
 - each pixel & each body joint treated independently
 - reduced training data and computation time
- No temporal information
 - frame-by-frame
- Very fast
 - simple depth image features
 - parallel decision forest classifier

The Kinect pose estimation pipeline

Classifying pixels

• Compute P(c|w)

body part c

building

road

Train by example to be invariant to:

Training data

Fast depth image features

- Depth comparisons
 - very fast to compute

Background pixels d =large constant

Depth invariance

$$f(I, \mathbf{x}) = d_I(\mathbf{x}) - d_I(\mathbf{x} + \Delta)$$

$$\Delta = \frac{\mathbf{v}}{d_I(\mathbf{x})}$$

scales inversely with depth

Average depth 1m

Average depth 2m

Decision tree classification

Training decision trees

Take (feature, threshold) that most reduces Shanon Entropy

Goal: drive entropy at leaf nodes to zero

Advances in Computer Vision and Pattern Recognition

A. Criminisi
J. Shotton *Editors*

Decision Forests for Computer Vision and Medical Image Analysis

See our new book!

- Theory Tutorial & Reference
 - Practice Invited Chapters
 - Software and Exercises
 - Tricks of the Trade

A. Criminisi & J. Shotton Springer, 2013

Early results

Scaling up: synthetic training data

Record mocap

Retarget to several models

Render (depth, body parts) pairs

Depth of trees

input depth ground truth parts inferred parts (soft) depth 18

Depth of trees

- ••• 900k training images
- 🗱 15k training images

Scaling up

- 31 body parts
- 3 Trees to depth 20
 - ~3 x 2²⁰ nodes
- Training
 - ~1,000,000 training images
 - ~2,000 pixels per image
 - ~10,000 features tested per node

- Very fast at test time
 - only ~60 image feature evaluations per pixel
 - readily parallelisable for GPU [Sharp o8]

input depth

inferred body parts

no tracking or smoothing

The Kinect pose estimation pipeline

front view side view top view inferred joint positions

no tracking or smoothing

The Kinect pose estimation pipeline

KINECTlaunch

Microsoft Kinect 'fastest-selling device on record'

Microsoft has sold more than 10 million Kinect sensor systems since launch on 4 November, and - according to Guinness World Records - is the fastest-selling consumer electronics device on record.

The sales figures outstrip those of both Apple's iPhone and iPad when launched, Guinness said.

Kinect is an infrared camera add-on for Microsoft's Xbox 360 games console that allows it to track body movements.

The popularity of the Kinect has helped to boost sales of games, Microsoft says

for Windows®

KINECT A new world for research

KINECTFusion

Joint work with Shahram Izadi, Richard Newcombe, David Kim, Otmar Hilliges, David Molyneaux, Pushmeet Kohli, Steve Hodges, Andrew Davison, Andrew Fitzgibbon. SIGGRAPH, UIST and ISMAR 2011.

Hand Grip/Release Detection

Hand Grip/Release Detection

Take home thoughts

 Blue skies PhD research contributed heavily to Kinect's success

 Machine learning can solve hard problems through big data

Kinect opening up myriad applications

With thanks to:

Research

Andrew Fitzgibbon, Mat Cook, Andrew Blake, Toby Sharp, Ollie Williams, Sebastian Nowozin, Antonio Criminisi, Mihai Budiu, Ross Girshick, Duncan Robertson, John Winn, Shahram Izadi, Pushmeet Kohli

The whole Kinect team, especially: Mark Finocchio, Alex Kipman, Ryan Geiss, Richard Moore, Robert Craig, Momin Al-Ghosien, Matt Bronder, Craig Peeper

http://www.microsoft.com/en-us/kinectforwindows/

Microsoft[®] Research

