
Code Reviews Do Not Find Bugs
How the Current Code Review Best Practice Slows Us Down

Jacek Czerwonka, Michaela Greiler, Jack Tilford

{ jacekcz, mgreiler, jtilford } @ microsoft.com

Tools for Software Engineers team, Microsoft Corp.

(in collaboration with Christian Bird, Microsoft Research)

http://tse/

The goals of code
reviewing…

Why Code Review?

Find defects

Improve maintainability

Share knowledge

Broadcast progress

It is all about the conversation

Alberto Bacchelli, Christian Bird. Expectations, Outcomes, and Challenges Of
Modern Code Review

What do we achieve
in practice?

Engineering Data Collection

Jacek Czerwonka, Nachiappan Nagappan, Wolfram Schulte, Brendan Murphy, CODEMINE: Building a Software Development Data Analytics Platform at Microsoft, IEEE Software, vol. 30,
no. 4, pp. 64-71, July-Aug., 2013.

Study: Comments Classification

Adapted from : M. Mäntylä and C. Lassenius. What Types of Defects Are Really
Discovered in Code Reviews? IEEE Transactions Software Engineering,
35(3):430–448, 2009

By: Amiangshu Bosu (U of Alabama), Michaela Greiler (TSE), Christian
Bird (Microsoft Research Redmond), Characteristics of Useful Code
Reviews: An Empirical Study at Microsoft (MSR 2015)

15% of all

~50% of all

Study: Code Review Usefulness

Adapted from : M. Mäntylä and C. Lassenius. What Types of Defects Are Really
Discovered in Code Reviews? IEEE Transactions Software Engineering,
35(3):430–448, 2009

By: Amiangshu Bosu (U of Alabama), Michaela Greiler (TSE), Christian
Bird (Microsoft Research Redmond), Characteristics of Useful Code
Reviews: An Empirical Study at Microsoft (MSR 2015)

Smaller Reviews Are Better

Anecdotally: smaller reviews are “better”

From data: <=20 files implies usefulness stability and
predictability

By: Amiangshu Bosu (U of Alabama), Michaela Greiler (TSE), Christian Bird (Microsoft Research Redmond)

Absolute number of useful comments grows with size of
review until 25-30 files, steady until 55-65 and then
starts going down

Relevant Experience Makes for Better Reviewers

Reviewers with prior experience with the changed file produce much more useful feedback

New reviewers learn fast but need 6-12 months to be as productive as the rest of the team

By: Amiangshu Bosu (U of Alabama), Michaela Greiler (TSE), Christian Bird (Microsoft Research Redmond)

Risk of Defects In a Change Can Be Predicted

Prior success with large-scale defect prediction

Expose risk prediction in code review to change the reviewer behavior

Predicting Risk of Pre-Release Code Changes with CheckinMentor, A. Tarvo, N. Nagappan, T. Zimmermann, T. Bhat, J. Czerwonka

CRANE: Failure Prediction, Change Analysis and Test Prioritization in Practice - Experiences from Windows, J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, A. Teterev

Improving the tools

Feature #1: Reviewer Recommendations

• Find potential reviewers based on their previous history with the code

• Consider number of changes and time since last activity

• Default is two reviewers based on most common practice and usefulness data

By: Christian Bird, Birendra Acharya, Michaela Greiler, Trevor Carnahan (Microsoft Research Redmond and TSE)

Feature #2: Change Decomposition

By: Shuvendu Lahiri, Mike Barnett, Christian Bird, Jack Tilford (Microsoft Research Redmond and TSE)

Feature #3: Change Risk Prediction

By: Nachi Nagappan, Jacek Czerwonka, Birendra Acharya (Microsoft Research Redmond and TSE) By: Kim Herzig (Microsoft Research Cambridge)

Improving the
workflow

Code Reviews in Engineering Workflow

Code Review

• Select reviewers

• Review

• Check-in

Coding

• Version control

• Branch/Packages

• IDE & Dev Tools

Local/Buddy
Build

• Unit testing

Pre-checkin
Validation

• Private test env

• Functional tests

• Static analysis

E2E Validation

• Pre-prod deploy

• Scenario tests

• Build drop

Deploy to
Production

• Deployment
targets

Production
Validation

• Watchdogs

• Flighting

Rolling/Official
Build

• Buid verification

• Unit testing

OUTER LOOP

Check-in

INNER LOOP

Study: Comments Classification

Adapted from : M. Mäntylä and C. Lassenius. What Types of Defects Are Really
Discovered in Code Reviews? IEEE Transactions Software Engineering,
35(3):430–448, 2009

By: Amiangshu Bosu (U of Alabama), Michaela Greiler (TSE), Christian
Bird (Microsoft Research Redmond), Characteristics of Useful Code
Reviews: An Empirical Study at Microsoft (MSR 2015)

15% of all

~50% of all

Code Reviewing: It Takes Time and Effort

Peter C. Rigby, and Christian Bird. Convergent contemporary software peer review
practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, ESEC/FSE 2013, ACM, pp. 202–212

Alberto Bacchelli, Christian Bird. Expectations, Outcomes, and
Challenges Of Modern Code Review

The Importance of Speed

Topic: General
Feedback: Please implement a "virtual whip" feature to ping people
who are dragging their feet on a review.
ReviewID: xyz-a723ea9fdc14440586656f9
Project: test
SourceControl: 123456

Effects of delaying:

• Process stalls; impact on dependents

• Costly context switches for engineers

Code Reviewing is a Social Process

• Waiting is not just due to lack of time:
I’m expected to participate but I’m not quite sure how. I’ll wait until someone else
starts.

There are a lot of outstanding comments already. I’ll wait until the next version.

• Code reviewing in social context
Reviewing can be uncomfortable for authors and reviewers

Team's hierarchy influence the outcome

• How many engineers does it take to do a proper code review?
Sometimes reviewers are added as a courtesy

Code Reviewing is Social

Code Reviews Are Not Free

Potential Benefits
• More maintainable designs

• More consistent code base

• Knowledge sharing

• Better awareness of changes

• Additional defects found

Potential Costs
• Time spent by reviewers

• Time spent by author addressing
feedback

• Time spent by change waiting in
process

Do we need to apply the same verification
criteria to all changes?

Opportunities for Optimization

Automate tasks

• Syntax, style conformance, static analysis

Make better use of people and resources

• When is it required to have a senior engineer?

• Since we mostly find maintainability issues,
who is best at that?

• How to best prioritize work for reviewers?

Reorder steps

• Code review after submission not before?

Eliminate steps

• Auto-submit after required reviewers signed
off?

Make reviewing optional

• Does every change need the same level of
reviewing?

• Which types of changes do not benefit little
from code reviewing?

Significant workflow changes require better understanding of how and when
code reviews provide value

Code reviews do not find as many bugs as you may think (they are still very useful)

There is a discrepancy between what developers aim for and what the process does

You can’t use code reviews as a replacement for other verification techniques

Code reviewing is costly as often the longest and most variable part of code integration

Code reviewing is a skill that needs time to hone

Social aspects of code reviewing make it a complex process

Data can influence changes to tools but verify the outcome

Applying the same process to all commits is wasteful but to early to make changes

To improve further we need to understand the process even more

Summary

Mission: “Enable Microsoft to accelerate its software development”

TSE contributes to and innovates on major parts of the engineering system

TSE runs many of the engineering services and works with all engineering teams

TSE collaborates closely with Microsoft Research teams

Collaboration with academia: visiting researchers and PhD interns (10 this summer)

http://research.microsoft.com/tse

jacekcz@microsoft.com
@jacekcz

http://research.microsoft.com/tse
http://tse/

