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ABSTRACT

For many automatic speech recognition (ASR) applications, it
is useful to predict the likelihood that the recognized string contains
an error. This paper explores two modifications of a classic design.
First, it replaces the standard maximum likelihood classifier with
a maximum entropy classifier. The maximum entropy framework
carries the dual advantages discriminative training and reasonable
generalization. Second, it includes a number of alternative features.
Our ASR system is heavily pruned, and often produces recognition
lattices with only a single path. These alternate features are meant
to serve as a surrogate for the typical features that can be computed
from a rich lattice. We show that the maximum entropy classifier
easily outperforms the standard baseline system, and the alternative
features provide consistent gains for all of our test sets.

Index Terms— Speech recognition, Speech processing, Maxi-
mum entropy methods

1. INTRODUCTION

In automatic speech recognition (ASR), confidence measures (CM)
predict the reliability of the recognition result. They enable the sys-
tem to discard a result, or prompt the user to repeat herself, rather
than to act on an incorrect transcription.

The standard confidence estimation design consists of a classi-
fier that predicts the probability of error using several observations
taken from the recognition lattice emitted by the ASR engine.

If a rich lattice is available, it can be renormalized to provide
a good confidence estimate (CE)[1, 2]. Alternately, an ASR engine
can produce many types of scores which are used as observations to
train a statistical model. In addition to a typical ASR observation
such as acoustic score, decoders may produce a variety of observa-
tions based on the language model, articulatory observations[3] or
discourse events[4].

The framework of observing events from an output (lattice or
otherwise) to train a model for estimating confidence is also used in
the fields of information extraction[5] and machine translation[6, 7].
The models to be trained have included Gaussian mixture models
(GMM)[8], generalized linear models (GLM)[9], decision trees[10],
support vector machines[11], maximum entropy (MaxEnt) trained
models[12], model combination[13], or a hybrid of these[6, 7, 14].
While the recent trend has been toward discriminative systems[11,
12], many systems still train a generative model based on observa-
tions pulled from a lattice[8, 3].

This paper details two improvements over the standard design.
Both are motivated by the desire to create a system that can reliably
and efficiently estimate confidence for an optimized ASR engine,
across utterances that vary in duration, grammar, and vocabulary.

The first improvement provides significant gains in overall accu-
racy, as well as good generalization behavior. This is accomplished
with the introduction of a maximum entropy classifier. The refer-
ences listed above provide ample motivation for selecting a discrimi-
natively trained system, and maximum entropy has the added benefit
of producing a classifier that is likely to generalize well. Produc-
ing good maximum entropy features from the raw observations is
not trivial, and this paper explores the relative merits of several ap-
proaches.

The second improvement allows the system to provide good
confidence estimates, even when a rich recognition lattice is not
available. In a deployed system, the ASR engine may be set to heav-
ily prune its search for the best transcription. While this makes the
overall system faster, the resulting recognition lattices tend to con-
tain only a single path. This precludes the use of many standard
confidence estimation observations. The solution presented here is
to produce alternate features designed to contain information similar
to what has been pruned from the lattice.

This paper is organized as follows: Section 2 describes the data
set which has been compiled to represent many types of relevant
tasks, the baseline GMM system, and observation selection. Sec-
tion 3 presents the MaxEnt systems and a comparison of different
methods for generating features from the raw observations. We show
that the maximum entropy classifier easily outperforms the standard
baseline system, and that the alternative features provide consistent
gains for all of our test sets.

2. BASELINE SYSTEM

Our baseline system consists of a Gaussian mixture model (GMM)
classifier, built on a data set specifically constructed for this task.

Performance is measured by the sum of false accepts and false
rejects divided by the total number of instances in the set.

2.1. The Data Set

Our goal was to build a system that generates good confidence esti-
mates. This means that it should work transparently across a variety
of recognition grammars. It should be robust to duration, speaker,
channel, and other irrelevant factors. And, it should produce reliable
output, even if rich lattices of the recognition result are unavailable.

To meet and prove these design requirements, we merged exist-
ing data to construct a new corpus. It contains over 250,000 utter-
ances pulled from source corpora covering different acoustic chan-
nels, additive noise, and accents. The utterances are parsed by 280
grammars, including everything from spelling and digits to “how
may I help you” style grammars.



The utterances in the corpus were divided according to Table 1.
Approximately 80% of the utterances used for training, 10% for
designing our system (development), and 10% were reserved for a
held-out evaluation set.

Data Partition Utterances Unq Alt
Training 199,282 157,372 41,910
Development 26,023 20,840 5,183
Evaluation 29,551 20,759 5,232

Table 1. The distribution of data used for our experiments.

Each major division of the corpus is further divided into two
parts, according to the result returned by our recognition engine. If
our engine returns more than one alternate hypothesis for an utter-
ance, it is placed in the ‘Alt’ partition. Otherwise, there is a unique
recognition result, and it belongs in the ‘Unq’ partition.

The data in the ‘Unq’ and ‘Alt’ partitions behave quite differ-
ently. For example, in the training set, approximately 85% of the
‘Unq’ examples were correct. In the ‘Alt’ partition, the top hypothe-
sis was only 50% of the time. Because of this discrepancy, we build
a separate classifier for each partition.

2.2. Observation Selection

The topology of the engine and the constraints of the task limit ob-
servation selection options. Due to our desire for language indepen-
dence, many popular observations in the literature which depend on
the lexicon are excluded. Also, we focus on observations extracted
from the 1-best hypothesis for most of our experiments including
many typical observations such as acoustic score. In general the
model should get most of the information from core features and
feature processing. The features used are listed below in Table 2,
with lattice features denoted with an *, and augmented-set features
denoted with a **. Features used in the ‘Unq’ case are denoted with
a ‘U’, ‘Alt’ with a ‘A’.

Observation Set Description
AN AU Acoustic Normalized
BN AU Background Normalized
NN AU Noise Normalized

AAN AU Arc Acoustic Normalized
LMN AU Language Model Normalized
DN AU Duration Normalized

LMP AU Language Model Perplexity
LMF AU Language Model Fanout
AS AU Active Senones
AC AU Active Channels
C *A First Alternate Delta AN

NB **A Number NBest
CN **A Number of Nodes
CA **A Number of Arcs
CB **A Number of Bytes

EMD **A E[MaxAN - MinAN] (node)

Table 2. Observations for all systems

In Table 2, some of the scores are normalized. The acoustic
scores are normalized by subtracting the likelihood generated by a
“best senone” model. It is the likelihood that would have been pro-
duced by the engine, if it weren’t as constrained by grammar and

pronunciation rules. Each normalized observation likelihood is fur-
ther divided by its duration.

Most of the observations in Table 2 are self-explanatory.
The acoustic scores measure how well the acoustic data matches

the grammar and acoustic model, unconstrained speech-like sounds,
and noise. There is an acoustic score associated with the most likely
transcription, an acoustic score generated by a monophone-loop (back-
ground) acoustic model, one generated by a noise model, and for the
‘Alt’ case, a measure of how different the first and second most likely
hypotheses were (First Alternate Delta AN).

Observations taken from the language model are included to
help the classifier adapt to different recognition grammars. There
are observations taken from the language model scores, as well as
observations of its perplexity and average fanout.

Some observations are included to measure the state of the recog-
nition process itself. For instance, how hard the recognizer had to
work to produce the result (active senones and channels), how many
entries are in the n-best list, and the size (in nodes, arcs, and bytes)
of the recognition result.

2.3. The GMM Baseline

The baseline system consists of two GMMs, one that models cor-
rectly recognized utterances (c) and one that models incorrectly recog-
nized utterances (i). The GMM models the output distribution as
being generated from a linear combination of M components. For
example, the p.d.f. of the observationsy given the classc is given
by

p(y|c) =

MX
k=1

p(y|k, c)p(k|c), (1)

wherep(k|c) is the prior probability of being generated from the kth
mixture component for classc, andp(y|k, c) has the form
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whereµk,c andΣk,c are the mean and covariance matrix of thekth
mixture component of the classc.

Both c andi models use a full covariance matrix and have been
trained using the expectation maximization (EM) algorithm. The
performance was insensitive to the number of mixtures. It produced
reasonable results, as can be seen in the “GMM” row of Table 3.

3. MAXIMUM ENTROPY SYSTEM

This section describes several discriminative classifiers for confi-
dence estimation. In these experiments, the classifiers are condi-
tional models trained using the maximum entropy (MaxEnt) crite-
rion. Conditional maximum entropy models were chosen based on
their history of good performance for speech and language related
tasks including language modeling[15], parsing[16], etc. They have
been applied with mixed results to confidence estimation in informa-
tion extraction[5] and machine translation[6].

Although MaxEnt models have been applied to estimating poste-
rior phone probabilities during a lattice search[12], this work differs
in many respects. For example, they are concerned with estimating
absolute posterior probability for a lattice phone search while we are
estimating a general model of error. Also, they adjust the maximum
entropy criterion to approach precision on a training set using weak-
ened constraints and features entirely based on the word lexicon.



Our model is of the formp(y|x). Here,y is a discrete random
variable representing the class ‘correct’ or ‘incorrect’, andx is a vec-
tor of discrete or continuous random variables. In the conditional
MaxEnt framework, the model interacts with the random variablesx
andy through a vector of feature functionsfi(x, y) and parameters
λi.

pΛ(y|x) =
exp
�PF

i=1 λifi(x, y)
�

P
y′ exp

�PF
i=1 λifi(x, y′)

� (3)

This conditional MaxEnt model is regularized by using a Gaussian
prior on the parametersλi. The performance on the development
data was insensitive to the variance of this prior, which is not sur-
prising given the size of our training data set. As a result, it was
fixed at a value of 100 for all of our experiments.

Training Development Evaluation
Unq Alt Unq Alt Unq Alt

GMM - - 10.92 21.03 10.96 21.25
11c 6.59 20.74 6.26 19.49 6.69 20.30
11b 5.61 16.83 5.86 18.77 6.06 19.55
121b 4.47 10.53 5.75 20.91 6.07 19.71
11+b 5.45 16.15 5.69 18.35 5.97 17.91

Table 3. Error rate of GMM and MaxEnt systems. The error rate is
defined as the total number of false accepts and false rejects, divided
by the number of training examples.

3.1. A Simple MaxEnt System

In building a MaxEnt model, the system designer is free to choose
from a number of methods of generating feature functionsf to rep-
resent the observationsx. For this paper, we explored four different
choices, with varying levels of complexity and parameter count.

The first system, ‘11c’ in Table 3, is meant to approximate a
linear classifier. It has by far the fewest number of parameters out
of any other system presented in this paper, and represents the gain
that can be achieved without the more involved binning techniques
presented later.

The observations for this system consist of the base set of ob-
servations which have been normalized by mean and variance. This
normalization equalizes the dynamic range of each type of observa-
tion, which helps our training process to converge on a good para-
meter estimate.

There are four feature functions created for each dimension of
the observation vector. Because our trainer does not accept negative
features, we create symmetric features based on whether the original
observation was positive or negative:

f+ = max(x, 0) (4)

f− = max(−x, 0) (5)

For each of these, another pair of symmetric features is created: one
for the correct class, and one for the incorrect class.

After adding 1 indicator feature for each class to build a truth-
based prior there are a total of 42 and 46 features for the ‘Unq’ and
‘Alt’ case respectively.

Results for this system are displayed in the “11c” row of Ta-
ble 3. Even though the “11c” system has far fewer parameters than
the “GMM” system, it shows a marked improvement over the base-
line.

3.2. Improved Results with Binning

The second system, row ‘11b’ in Table 3, like ‘11c’, uses the base
set of 10 and 11 observation dimensions. But, instead of using fea-
tures that are linear functions of the observations, it creates a set of
histogram-based binary features. As a result, they allow the model
to take advantage of nonlinear relationships in the data.

These features are created by sorting each of the observation di-
mensions by value and creating bins based on a uniform-occupancy
partitioning. 1 When an observation value falls within the range as-
sociated with one of its features, that feature is activated with a value
of one. Otherwise, its value is zero.

With a maximum of 100 bins (chosen experimentally, see Sec-
tion 3.5 below) and a minimum occupancy of 100, there were 2246
and 1984 binary MaxEnt feature functions for ‘Alt’ and ’Unq’ re-
spectively.

The ‘11b’ row of Table 3 shows a consistent improvement over
the ‘11c’ case for both ‘Unq’ and ‘Alt’ on both dev and eval sets. We
conclude that binning, which allows the MaxEnt classifier to develop
a nonlinear decision surface, is preferable to the simpler system pre-
sented in Section 3.1.

3.3. Quadratic Observation Vector

The third system,121b, attempts to mimic the full covariance aspect
of the GMM system. Instead of the base set of 10 and 11 obser-
vation dimensions, it uses the outer product consisting of 100 and
121 dimensions. After binning, with minimum and maximum occu-
pancy set as above, there were 26,414 and 21,556 features in the two
systems.

The results in row ‘121b’ of Table 3 show no consistent im-
provement, which is most likely due to over-training. The marked
decrease in training set error rate supports this hypothesis. Future
efforts could attempt to balance the very low training error with the
higher development error through different MaxEnt feature selection
strategies such as pruning.

3.4. Incorporating Augmented Features

The fourth system, ‘11b+’ in Table 3, augments the original feature
set with additional lattice based observations (see Table 2).

As the quality of the observation depends on the depth and qual-
ity of the lattice, the augmented set includes mostly observations
which are descriptive of the lattice as a whole rather than individual
pieces or hypotheses. Most of the lattices generated by our engine
on this test have a very small depth, with only 1 or 2 alternates.

After trying several non-lexical observations, those in the aug-
mented set were found to improve the system the most on the de-
velopment set. Therefore this system has 14 observation dimensions
for both cases producing approximately 2800 features after binning
as above.

Results in the ‘11b+’ row of Table 3 show improvement in both
cases on both the development and evaluation set. The success of
this experiment highlights the potential for small but significant im-
provements from smart observation selection.

3.5. Feature Processing

There have been few informative methods in the literature for feature
processing using MaxEnt models. At first, it is not clear that quantiz-
ing observations would help, but the results above show significant

1A minimum occupancy of 100 training examples per bin is enforced for
all MaxEnt experiments using quantization.



improvement with uniform binning and constraints on occupancy
and number of bins.

Figure 1 shows experiments on the development set designed to
find the proper maximum number of bins. Both curves reach their
minimum error rate on the development set near a setting of 100
bins.

To the left and right of this minimum, both systems exhibit over-
training and under-parameterization, respectively. As the number of
bins increases, the model over-trains, increasing the development set
error, while decreasing the training set error. As the number of bins
decreases, eventually the system doesn’t have enough parameters to
do optimal classification. As a result, both training and development
set error increase.
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Fig. 1. Setting Maximum Bins. Experiments were run with min-
imum bin sizes of 10, 50, 100, 300, and 1000. Development set
accuracy was minimized with 100 bins in both cases. The ’Alt’ par-
tition of the data appears to be more sensitive to over-training than
the ’Unq’ partition.

4. CONCLUSIONS

This paper describes how a maximum entropy model can be used
to generate confidence scores for a speech recognition engine on an
array of grammars. Results on an evaluation set of 25,991 examples
that span 280 grammars demonstrate that the methods of observa-
tion selection, feature generation, and model training in this paper
provide a significant improvement over a standard baseline. The sys-
tems might be enhanced with additional observations including those
derived from the grammar, or transformations such as linear discrim-
inant analysis (LDA). This work presents a base set of non-lexical
observations principally derived from a 1-best recognition output. It
also demonstrates the effectiveness of quantizing continuous obser-
vations. Finally, it outlines a successful strategy for building a confi-
dence estimate which can work on a variety of language independent
tasks even in the absence of a lattice.
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