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ABSTRACT 

This paper describes a bus mastering implementation of the PCI 

Express protocol using a Xilinx FPGA.  While the theoretical 

peak performance of PCI Express is quite high, attaining that 

performance is a complex endeavor on top of an already complex 

protocol.  The implementation is described and its performance is 

analyzed.  Source code is offered for free download via the web. 

Categories and Subject Descriptors 

B.4.3 [Interconnections (Subsystems)] – Interfaces 

General Terms 

Design, Performance 

Keywords 

FPGA, PCI Express, PCIe, Bus Mastering, Design, Performance 

1. INTRODUCTION 
The PCI Express (PCIe) protocol has been prevalent in the PC 

industry for a few years, and the cores to implement it in FPGAs 

have been available for nearly as long.  Offering raw bit rates of 

2.5 GBit/Sec to 20 GBit/Sec to the FPGA, PCIe is the highest 

bandwidth interface available using PC-like platforms [3].  While 

major FPGA companies offer PCI Express implementations 

[1][2], the cores stop short of providing the Transaction Layer and 

leave that as an exercise to the user.  This is not such a bad thing, 

since the Transaction Layer really defines the type of device that 

is being implemented and how it will behave; however, its 

implementation is not trivial.  While it is not overly difficult to 

develop a programmed I/O Transaction Layer interface, such an 

implementation will not even come close to providing the full 

bandwidth that is available from PCI Express.  In order to achieve 

higher bandwidth, a bus mastering interface is required, and the 

implementation of that interface is much more complex.  This 

paper describes a real world bus mastering implementation and 

provides the associated Verilog source code with a Microsoft 

Windows WDM Driver and testing application for general use.  In 

addition, the design is analyzed with an eye towards 

improvements. 

 

2. THE DESIGN 
The test design is an interface between a PC host and DDR 

memory as shown in Figure 1, where the bulk of the design effort 

is involved in creating the shaded Control State Machine block.  

Of course, using this design it would be possible to easily 

interface other types of devices by treating the DDR interface as 

an address/data bus to which multiple targets could be attached.  

From the software point of view, the driver supports the Windows 

standard CreateFile(), ReadFile() and WriteFile() API to read and 

write the memory from C source code.  The file pointer position is 

used to address DDR memory base addresses local to the 

development board.  As this is a bus mastering design, all 

references to PCIe reads and writes below are from the 

perspective of the FPGA.  That is, reads transfer data from the 

host to the FPGA and writes transfer data from the FPGA to the 

host. 

2.1 DESIGN GOALS 
At the PCIe level, the design supports bus mastering as an 

initiator; meaning that it is capable of initiating reads or writes 

onto the PCIe bus independent of the CPU or the system DMA 

controller.  This is advantageous because it implies that the design 

can operate in a standalone system that may or may not have all of 

the hardware support amenities of a PC-like host.  It also implies 
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Figure 1. Design Overview 

 



that the design could operate autonomously on the bus without the 

performance reducing effects of depending on software 

intervention from the host.  However, it should be noted that 

while this version does act as a bus mastering initiator, the current 

implementation does wait for the host to use programmed I/O to 

set source and destination addresses as well as a length parameter 

for the transfer.  All of the protocol machinery for independent 

operation is present in the Verilog, but this implementation 

internally polls the aforementioned registers as set by the host 

before acting. 

2.2 DESIGN OVERVIEW 
As illustrated in Figure 1, the PCIe core and the DDR core are 

supplied from the FPGA manufacturer; the rest of the blocks are 

user code as given by this design.  The two synchronization FIFOs 

shown are used to cross the clock domains between the PCIe core 

sourced clock and the DDR core sourced clock.  Everything above 

the FIFOs operates based on the clock dictated by the PCIe core, 

and everything below the FIFOs operates based on the clock given 

by the DDR core.  The FIFOs are implemented using distributed 

RAM since there is no need for a large buffer, but block RAMs 

could have been used in order to save some slice resources. 

The Packet Buffer shown is a block RAM that is used both to 

download received packets from the core and is also used as a 

buffer to assemble transmit packets for upload.  Lastly, the 

Register File uses a block RAM to provide a set of control 

registers that are visible to both the Control State Machine and on 

the PCIe bus as a prefetchable memory range.  The Register File 

is a 2K Byte range in the prefetchable memory space and is the 

only address range that is directly accessible from PCIe.  The 

DDR memory is managed as an independent address range local 

to the card via DMA operations. 

The PCIe core itself provides a 64-bit bi-directional data path that 

is used for packet transmit and receive.  The operating frequency 

of the interface to the core is determined by the number of lanes 

that are negotiated with the PCIe link.  This design runs at 62.5 

MHz using the 1 lane (x1) configuration on the Xilinx ML505 

development board with the Xilinx Endpoint Block Plus core. 

2.3 CONTROL STATE MACHINE 
The main loop of the state machine runs down the left side of 

Figure 2.  A number of conditions are polled within the internal 

state and Register File until one of those conditions is triggered by 

an external event.   

The first condition tests the two interrupt flags in the interrupt 

control register.  The interrupt control register is contained within 

the Register File and these flags may be set whenever a DMA 

operation has completed. 
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Figure 2.  Control State Machine 



The next check is for any inbound packets that may have arrived.  

These will be indicated by the flow control signals coming from 

the PCIe core.  If present, these must be processed first in order to 

avoid a deadlock condition.  Inbound packets can be one of 

several types: Memory Write, Memory Read or Read Reply.  If 

they are Memory Write/Read, then it is assumed that they are 

accesses to the Register File and will be handled accordingly. 

If the received packet is a read reply (completion), then it is 

assumed to be in response to a DMA read request that the card has 

initiated.  The data from the reply is written into the DDR 

memory at the appropriate address.  Since it is legal to have 

multiple read requests active on the bus at the same time, a tag in 

the PCIe packet header is used to associate the read completion 

with the original read request.  The tag is used as an address into a 

small memory that contains the address of the original read 

request so that the data in the read reply can be written to the 

correct locations in the DDR. 

The last two checks in the main loop of the state machine are for 

generating new DMA transactions on the bus.  These are last in 

order to avoid stalling the host while waiting for the card to 

complete a DMA operation.  For example, since received packet 

processing is given priority over DMA generation, it is possible 

for the host to poll the DMA count registers in order to watch the 

progress of the DMA.  DMA in both directions is initiated by the 

host through the act of writing into the Register File.  The host 

fills in the source or destination address in PCIe memory address 

space, the local DDR address for the transaction, and the number 

of DWORDs that are to be transferred.  The Control State 

Machine reads the transfer counts and generates read or write 

requests as needed until the total number of DWORDs has been 

transferred at which point an interrupt will be generated for the 

host. 

3. PERFORMANCE 
The test system consists of the Xilinx ML505 reference board, 

which houses a Virtex 5 XC5VLX50T, a x1 PCIe interface and a 

SODIMM slot with 256 MByte DDR2 RAM standard.  The PCIe 

core used is the Xilinx Endpoint Block Plus version 1.3.  This is 

plugged into a Supermicro X6DAT-G motherboard with dual 

Xeon processors running at 3.4GHz and 4GByte of DDR2-666 

RAM installed.  The operating system is Microsoft Windows XP 

Service Pack 3. 

There are many different variables to consider when attempting to 

achieve maximum performance on PCIe, especially when 

transferring data to/from system memory on a PC-like host.  

Certainly the DMA transfer itself is one possible bottleneck, but 

also important are the design of the device driver, and the method 

by which the host initiates transfers to/from the card. 

3.1 Read Request Performance 
Read requests refer to transfers from host RAM to the FPGA, as 

initiated by a bus master read request from the FPGA.  The 

maximum payload that can be requested is the minimum of 

several system parameters set by the host and the PCIe core.  The 

host polls these parameters and then writes the actual value into 

each device’s Configuration Space at boot time.  Using the Xilinx 

PCIe core and the test system, the maximum transfer request size 

is 512 Bytes. 

Figure 3 shows the completion header and data credit counts 

updating as a 512 Byte transfer is initiated (shown by the X 

marker) until it is complete (shown by the O marker).  These hex 

counts start off at their maximum value on the left side of the 

timing diagram.  At the start of the transfer, the total required 

credits are deducted from each and then the counts increase back 

to their respective maximums as completions return from the host.  

A total of 513 clock cycles elapse in between.  That translates to 

59.49 MByte/Sec maximum throughput if no driver were involved 

using the x1 PCIe core clock rate of 62.5 MHz. 

In practice, the transfer rate as measured from the Window’s test 

application written in C is much less, coming in at between 11 

MByte/Sec and 15 MByte/Sec, depending on driver transfer size 

settings and run to run variance.  The “real” numbers are so much 

lower because of the software overhead of acknowledging the 

interrupt and programming new values into the registers after each 

contiguous transfer.  Since this is running under a real operating 

system (Windows) using paged virtual memory, the physical 

addresses for a large transfer will be non-contiguous and so many 

transfer requests from the driver are necessary. 

In fact, the main performance bottleneck with this implementation 

is Window’s interrupt processing rate.  The average contiguous 

block length was found to be approximately 2KBytes, implying 

that the maximum interrupt service rate is 15MByte/Sec / 

2KBytes = 7680 interrupts per second.  Since this PCIe 

implementation depends on the software to respond to an interrupt 

from the card after each contiguous transfer, this becomes 

problematic.  This model should be changed so that the host does 

not need to respond to an interrupt after every contiguous transfer.  

Typically this is solved by creating a linked list or circular queue 

of transfer requests that the driver can fill up and then leave the 

hardware alone while it services each contiguous transfer in turn. 

It can also be observed in Figure 3 that the header and data credits 

are strictly increasing after the read request, which indicates that 

no read requests are being issued concurrently with the return of 

the completions.  Although the Control State Machine contains 

the logic to generate these requests, the completions are returning 

faster than the Control State Machine can process them and so it 
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never gets far enough in the polling loop to generate another read 

request until all of the completions for a given request have been 

processed.  128 clock cycles elapse from the time that the credits 

are deducted until the first completion returns.  If these requests 

were being issued in parallel with the completions, that latency 

could be hidden, possibly only requiring 385 clock cycles for the 

512 Byte request, and giving a software-free throughput of 79.3 

MByte/Sec.  A parallel state machine design could alleviate this 

problem. 

A more subtle slowing effect is introduced by the Packet Buffer 

shown in Figure 1.  As mentioned previously, every packet that is 

received is clocked into the packet buffer before it is processed.  

Since the completions are returning so quickly, it is entirely 

possible that the latency of buffering the packet is adding to the 

apparent completion processing time.  Unfortunately, it is 

impossible to measure the effect of this added latency.  Since 

there is no way to judge how many completions are buffered 

within the PCIe core, measuring the latency of the Packet Buffer 

alone would not allow an adequate estimation of throughput if the 

Packet Buffer were not present.  However, this implies that the 

peak throughput number could be higher than calculated.  The 

Packet Buffer was included to allow easy access to any part of the 

packet and to ease flow control issues.  As written, random packet 

access was not needed, and the potential slow down is not worth 

the ease of flow control, so the Packet Buffer should be 

eliminated. 

Lastly, the maximum number of completion header credits 

allowed by the PCIe core could be a limitation in that more credits 

could allow for larger read requests in some systems.  This would 

allow a longer period during which read replies were returning 

when new read requests could be transmitted to the host.  Of 

course, this parameter is fixed by the PCIe core and is out of the 

designer’s control.  Using this implementation, it is not possible to 

determine if a larger number of completion header credits would 

be beneficial in the test system. 

3.2 Write Request Performance 
Write requests refer to transfers from the FPGA to the host, as 

initiated by a bus master write request from the FPGA.  Write 

requests are posted, meaning that a header is transmitted with data 

and no reply is required from the target.  This should eliminate 

some overhead time as seen with read requests where a request 

header is transmitted and then the device waits for read replies 

(completions).  The transfer size for write requests is subject to 

the same minimization process used for reads, with a different set 

of rules and parameters.  The allowed maximum transfer size is 

128 Bytes for the test system.  Running at full burst, these 128 

Byte packets require 108 clock cycles back to back for 

transmission, giving a peak throughput of 74.1 MByte/Sec when 

not encumbered by software. The smaller allowed burst size (and 

greater header overhead) is likely hurting the write requests, 

resulting in lower peak bandwidth vs. read requests.  It is also 

possible that the added latency of the Packet Buffer is slowing the 

peak rate, but it is still impossible to determine to what extent this 

affects the transfer rate using this implementation.  Software 

overhead takes its toll on final throughput; and the overhead of 

interrupt processing and register programming drags performance 

down to between 11 MByte/Sec and 15 MByte/Sec as seen from 

the C test application.  As with reads, it is expected that lowering 

interrupt processing overhead and removing the Packet Buffer 

would allow this to be much higher. 

It is important to recognize that all of these performance numbers 

are an amalgamation of software and hardware overhead.  Sources 

of software overhead come mainly from interrupt response times 

and driver efficiency.  Possible sources of hardware overhead are 

the test system’s chipset, the design itself and the PCIe core.  

Likely these numbers would improve or degrade in another 

system using a different motherboard chipset, or faster processor. 

 

4. PRIOR WORK 
After the time of writing it was discovered that Xilinx [6] had 

produced a similar reference design for bus mastering PCIe DMA 

one month prior.  Performance issues were not analyzed, but it 

seems to suffer from the same hobbling problem of interrupt 

service rate as this design since the x1 lane configuration has 

roughly the same throughput and a similar limitation for 

contiguous transfers as this design. 

Altera [7] also provides a reference design for bus mastering 

DMA in which they analyze theoretical maximum transfer rates 

and achieve much better actual transfer rates using a linked list of 

transaction descriptors, thus lowering interrupt overhead. 

5. CONCLUSION 
PCI Express is a complex interface that requires a sophisticated 

state machine to implement.  While there are simpler interfaces 

that can be used, the raw speed offered by PCIe, and its ubiquity, 

make it a good choice for many potential projects that require 

high performance.  This paper has presented one implementation 

of PCIe using the Xilinx PCIe core, and analyzed it for possible 

improvements.  The net effect of the suggested changes could lead 

to measured improvements in read and write transactions that 

more closely approximate the hardware peak performance 

numbers shown in Table 4, and possibly approach the theoretical 

limit of 200 MByte/Sec for a x1 link.  The source code for the 

current design is available on the web at: 

http://research.microsoft.com/people/raybit/ 
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Table 1. PCIe x1 Link Measured Performance 

 Sustained Software 

Performance 

Peak Hardware 

Performance 

Read Request 11-15 MByte/Sec 79.3 MByte/Sec 

Write Request 11-15 MByte/Sec 74.1 MByte/Sec 
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