
Bus Mastering PCI Express In An FPGA
Ray Bittner

Microsoft Research
One Microsoft Way

Redmond, WA 98052
1-425-703-9605

raybit@microsoft.com

ABSTRACT

This paper describes a bus mastering implementation of the PCI

Express protocol using a Xilinx FPGA. While the theoretical

peak performance of PCI Express is quite high, attaining that

performance is a complex endeavor on top of an already complex

protocol. The implementation is described and its performance is

analyzed. Source code is offered for free download via the web.

Categories and Subject Descriptors

B.4.3 [Interconnections (Subsystems)] – Interfaces

General Terms

Design, Performance

Keywords

FPGA, PCI Express, PCIe, Bus Mastering, Design, Performance

1. INTRODUCTION
The PCI Express (PCIe) protocol has been prevalent in the PC

industry for a few years, and the cores to implement it in FPGAs

have been available for nearly as long. Offering raw bit rates of

2.5 GBit/Sec to 20 GBit/Sec to the FPGA, PCIe is the highest

bandwidth interface available using PC-like platforms [3]. While

major FPGA companies offer PCI Express implementations

[1][2], the cores stop short of providing the Transaction Layer and

leave that as an exercise to the user. This is not such a bad thing,

since the Transaction Layer really defines the type of device that

is being implemented and how it will behave; however, its

implementation is not trivial. While it is not overly difficult to

develop a programmed I/O Transaction Layer interface, such an

implementation will not even come close to providing the full

bandwidth that is available from PCI Express. In order to achieve

higher bandwidth, a bus mastering interface is required, and the

implementation of that interface is much more complex. This

paper describes a real world bus mastering implementation and

provides the associated Verilog source code with a Microsoft

Windows WDM Driver and testing application for general use. In

addition, the design is analyzed with an eye towards

improvements.

2. THE DESIGN
The test design is an interface between a PC host and DDR

memory as shown in Figure 1, where the bulk of the design effort

is involved in creating the shaded Control State Machine block.

Of course, using this design it would be possible to easily

interface other types of devices by treating the DDR interface as

an address/data bus to which multiple targets could be attached.

From the software point of view, the driver supports the Windows

standard CreateFile(), ReadFile() and WriteFile() API to read and

write the memory from C source code. The file pointer position is

used to address DDR memory base addresses local to the

development board. As this is a bus mastering design, all

references to PCIe reads and writes below are from the

perspective of the FPGA. That is, reads transfer data from the

host to the FPGA and writes transfer data from the FPGA to the

host.

2.1 DESIGN GOALS
At the PCIe level, the design supports bus mastering as an

initiator; meaning that it is capable of initiating reads or writes

onto the PCIe bus independent of the CPU or the system DMA

controller. This is advantageous because it implies that the design

can operate in a standalone system that may or may not have all of

the hardware support amenities of a PC-like host. It also implies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

FPGA’09, February 22–24, 2009, Monterey, California, USA.

Copyright 2009 ACM 978-1-60558-410-2/09/02...$5.00.

PCIe

Core

Packet Buffer

C
o

n
tr

o
l

S
ta

te
 M

a
c
h

in
e

Sync

FIFO

DDR

Interface/Core

Sync

FIFO

R
e

g
is

te
r

F
ile

Host

Figure 1. Design Overview

that the design could operate autonomously on the bus without the

performance reducing effects of depending on software

intervention from the host. However, it should be noted that

while this version does act as a bus mastering initiator, the current

implementation does wait for the host to use programmed I/O to

set source and destination addresses as well as a length parameter

for the transfer. All of the protocol machinery for independent

operation is present in the Verilog, but this implementation

internally polls the aforementioned registers as set by the host

before acting.

2.2 DESIGN OVERVIEW
As illustrated in Figure 1, the PCIe core and the DDR core are

supplied from the FPGA manufacturer; the rest of the blocks are

user code as given by this design. The two synchronization FIFOs

shown are used to cross the clock domains between the PCIe core

sourced clock and the DDR core sourced clock. Everything above

the FIFOs operates based on the clock dictated by the PCIe core,

and everything below the FIFOs operates based on the clock given

by the DDR core. The FIFOs are implemented using distributed

RAM since there is no need for a large buffer, but block RAMs

could have been used in order to save some slice resources.

The Packet Buffer shown is a block RAM that is used both to

download received packets from the core and is also used as a

buffer to assemble transmit packets for upload. Lastly, the

Register File uses a block RAM to provide a set of control

registers that are visible to both the Control State Machine and on

the PCIe bus as a prefetchable memory range. The Register File

is a 2K Byte range in the prefetchable memory space and is the

only address range that is directly accessible from PCIe. The

DDR memory is managed as an independent address range local

to the card via DMA operations.

The PCIe core itself provides a 64-bit bi-directional data path that

is used for packet transmit and receive. The operating frequency

of the interface to the core is determined by the number of lanes

that are negotiated with the PCIe link. This design runs at 62.5

MHz using the 1 lane (x1) configuration on the Xilinx ML505

development board with the Xilinx Endpoint Block Plus core.

2.3 CONTROL STATE MACHINE
The main loop of the state machine runs down the left side of

Figure 2. A number of conditions are polled within the internal

state and Register File until one of those conditions is triggered by

an external event.

The first condition tests the two interrupt flags in the interrupt

control register. The interrupt control register is contained within

the Register File and these flags may be set whenever a DMA

operation has completed.

Generate InterruptInterrupt Pending?

Download PacketRx Packet Pending? Decode Packet

Memory Write?

Write Register(s)

Memory Read?

Read Register(s)

Tx Read Reply

Read Reply?

Write To DDR

Card To PCIe DMA

Request Pending?

Read Registers Read From DDR Tx Write Data

PCIe To Card DMA

Request Pending?

Read Registers Tx Read Request

Read Tag/Address

Generate Tag

Figure 2. Control State Machine

The next check is for any inbound packets that may have arrived.

These will be indicated by the flow control signals coming from

the PCIe core. If present, these must be processed first in order to

avoid a deadlock condition. Inbound packets can be one of

several types: Memory Write, Memory Read or Read Reply. If

they are Memory Write/Read, then it is assumed that they are

accesses to the Register File and will be handled accordingly.

If the received packet is a read reply (completion), then it is

assumed to be in response to a DMA read request that the card has

initiated. The data from the reply is written into the DDR

memory at the appropriate address. Since it is legal to have

multiple read requests active on the bus at the same time, a tag in

the PCIe packet header is used to associate the read completion

with the original read request. The tag is used as an address into a

small memory that contains the address of the original read

request so that the data in the read reply can be written to the

correct locations in the DDR.

The last two checks in the main loop of the state machine are for

generating new DMA transactions on the bus. These are last in

order to avoid stalling the host while waiting for the card to

complete a DMA operation. For example, since received packet

processing is given priority over DMA generation, it is possible

for the host to poll the DMA count registers in order to watch the

progress of the DMA. DMA in both directions is initiated by the

host through the act of writing into the Register File. The host

fills in the source or destination address in PCIe memory address

space, the local DDR address for the transaction, and the number

of DWORDs that are to be transferred. The Control State

Machine reads the transfer counts and generates read or write

requests as needed until the total number of DWORDs has been

transferred at which point an interrupt will be generated for the

host.

3. PERFORMANCE
The test system consists of the Xilinx ML505 reference board,

which houses a Virtex 5 XC5VLX50T, a x1 PCIe interface and a

SODIMM slot with 256 MByte DDR2 RAM standard. The PCIe

core used is the Xilinx Endpoint Block Plus version 1.3. This is

plugged into a Supermicro X6DAT-G motherboard with dual

Xeon processors running at 3.4GHz and 4GByte of DDR2-666

RAM installed. The operating system is Microsoft Windows XP

Service Pack 3.

There are many different variables to consider when attempting to

achieve maximum performance on PCIe, especially when

transferring data to/from system memory on a PC-like host.

Certainly the DMA transfer itself is one possible bottleneck, but

also important are the design of the device driver, and the method

by which the host initiates transfers to/from the card.

3.1 Read Request Performance
Read requests refer to transfers from host RAM to the FPGA, as

initiated by a bus master read request from the FPGA. The

maximum payload that can be requested is the minimum of

several system parameters set by the host and the PCIe core. The

host polls these parameters and then writes the actual value into

each device’s Configuration Space at boot time. Using the Xilinx

PCIe core and the test system, the maximum transfer request size

is 512 Bytes.

Figure 3 shows the completion header and data credit counts

updating as a 512 Byte transfer is initiated (shown by the X

marker) until it is complete (shown by the O marker). These hex

counts start off at their maximum value on the left side of the

timing diagram. At the start of the transfer, the total required

credits are deducted from each and then the counts increase back

to their respective maximums as completions return from the host.

A total of 513 clock cycles elapse in between. That translates to

59.49 MByte/Sec maximum throughput if no driver were involved

using the x1 PCIe core clock rate of 62.5 MHz.

In practice, the transfer rate as measured from the Window’s test

application written in C is much less, coming in at between 11

MByte/Sec and 15 MByte/Sec, depending on driver transfer size

settings and run to run variance. The “real” numbers are so much

lower because of the software overhead of acknowledging the

interrupt and programming new values into the registers after each

contiguous transfer. Since this is running under a real operating

system (Windows) using paged virtual memory, the physical

addresses for a large transfer will be non-contiguous and so many

transfer requests from the driver are necessary.

In fact, the main performance bottleneck with this implementation

is Window’s interrupt processing rate. The average contiguous

block length was found to be approximately 2KBytes, implying

that the maximum interrupt service rate is 15MByte/Sec /

2KBytes = 7680 interrupts per second. Since this PCIe

implementation depends on the software to respond to an interrupt

from the card after each contiguous transfer, this becomes

problematic. This model should be changed so that the host does

not need to respond to an interrupt after every contiguous transfer.

Typically this is solved by creating a linked list or circular queue

of transfer requests that the driver can fill up and then leave the

hardware alone while it services each contiguous transfer in turn.

It can also be observed in Figure 3 that the header and data credits

are strictly increasing after the read request, which indicates that

no read requests are being issued concurrently with the return of

the completions. Although the Control State Machine contains

the logic to generate these requests, the completions are returning

faster than the Control State Machine can process them and so it

Figure 3. Read Request Timing (Credit Values In Hexadecimal)

never gets far enough in the polling loop to generate another read

request until all of the completions for a given request have been

processed. 128 clock cycles elapse from the time that the credits

are deducted until the first completion returns. If these requests

were being issued in parallel with the completions, that latency

could be hidden, possibly only requiring 385 clock cycles for the

512 Byte request, and giving a software-free throughput of 79.3

MByte/Sec. A parallel state machine design could alleviate this

problem.

A more subtle slowing effect is introduced by the Packet Buffer

shown in Figure 1. As mentioned previously, every packet that is

received is clocked into the packet buffer before it is processed.

Since the completions are returning so quickly, it is entirely

possible that the latency of buffering the packet is adding to the

apparent completion processing time. Unfortunately, it is

impossible to measure the effect of this added latency. Since

there is no way to judge how many completions are buffered

within the PCIe core, measuring the latency of the Packet Buffer

alone would not allow an adequate estimation of throughput if the

Packet Buffer were not present. However, this implies that the

peak throughput number could be higher than calculated. The

Packet Buffer was included to allow easy access to any part of the

packet and to ease flow control issues. As written, random packet

access was not needed, and the potential slow down is not worth

the ease of flow control, so the Packet Buffer should be

eliminated.

Lastly, the maximum number of completion header credits

allowed by the PCIe core could be a limitation in that more credits

could allow for larger read requests in some systems. This would

allow a longer period during which read replies were returning

when new read requests could be transmitted to the host. Of

course, this parameter is fixed by the PCIe core and is out of the

designer’s control. Using this implementation, it is not possible to

determine if a larger number of completion header credits would

be beneficial in the test system.

3.2 Write Request Performance
Write requests refer to transfers from the FPGA to the host, as

initiated by a bus master write request from the FPGA. Write

requests are posted, meaning that a header is transmitted with data

and no reply is required from the target. This should eliminate

some overhead time as seen with read requests where a request

header is transmitted and then the device waits for read replies

(completions). The transfer size for write requests is subject to

the same minimization process used for reads, with a different set

of rules and parameters. The allowed maximum transfer size is

128 Bytes for the test system. Running at full burst, these 128

Byte packets require 108 clock cycles back to back for

transmission, giving a peak throughput of 74.1 MByte/Sec when

not encumbered by software. The smaller allowed burst size (and

greater header overhead) is likely hurting the write requests,

resulting in lower peak bandwidth vs. read requests. It is also

possible that the added latency of the Packet Buffer is slowing the

peak rate, but it is still impossible to determine to what extent this

affects the transfer rate using this implementation. Software

overhead takes its toll on final throughput; and the overhead of

interrupt processing and register programming drags performance

down to between 11 MByte/Sec and 15 MByte/Sec as seen from

the C test application. As with reads, it is expected that lowering

interrupt processing overhead and removing the Packet Buffer

would allow this to be much higher.

It is important to recognize that all of these performance numbers

are an amalgamation of software and hardware overhead. Sources

of software overhead come mainly from interrupt response times

and driver efficiency. Possible sources of hardware overhead are

the test system’s chipset, the design itself and the PCIe core.

Likely these numbers would improve or degrade in another

system using a different motherboard chipset, or faster processor.

4. PRIOR WORK
After the time of writing it was discovered that Xilinx [6] had

produced a similar reference design for bus mastering PCIe DMA

one month prior. Performance issues were not analyzed, but it

seems to suffer from the same hobbling problem of interrupt

service rate as this design since the x1 lane configuration has

roughly the same throughput and a similar limitation for

contiguous transfers as this design.

Altera [7] also provides a reference design for bus mastering

DMA in which they analyze theoretical maximum transfer rates

and achieve much better actual transfer rates using a linked list of

transaction descriptors, thus lowering interrupt overhead.

5. CONCLUSION
PCI Express is a complex interface that requires a sophisticated

state machine to implement. While there are simpler interfaces

that can be used, the raw speed offered by PCIe, and its ubiquity,

make it a good choice for many potential projects that require

high performance. This paper has presented one implementation

of PCIe using the Xilinx PCIe core, and analyzed it for possible

improvements. The net effect of the suggested changes could lead

to measured improvements in read and write transactions that

more closely approximate the hardware peak performance

numbers shown in Table 4, and possibly approach the theoretical

limit of 200 MByte/Sec for a x1 link. The source code for the

current design is available on the web at:

http://research.microsoft.com/people/raybit/

6. REFERENCES
[1] LogiCORE Endpoint Block Plus v1.3 for PCI Express User

Guide. Xilinx Corporation, May 17, 2007.

[2] PCI Express Compiler User Guide v8.0. Altera Corporation,

May 2008.

[3] Budruk, R., Anderson, D. and Shanley, T. 2006. PCI Express

System Architecture, Addison Wesley.

[4] Virtex-5 User Guide. Xilinx Corporation, February 2, 2007.

[5] PCI Local Bus Specification Revision 2.1. PCI Special

Interest Group, June 1, 1995.

[6] Wiltgen, J. Bus Master DMA Reference Design for the

Xilinx Endpoint Block Plus Core for PCI Express. Xilinx

Application Note 1052, Xilinx Corporation, August 22,

2008.

[7] PCI Express High Performance Reference Design. Altera

Application Note 456, Altera Corporation, May 2007.

Table 1. PCIe x1 Link Measured Performance

 Sustained Software

Performance

Peak Hardware

Performance

Read Request 11-15 MByte/Sec 79.3 MByte/Sec

Write Request 11-15 MByte/Sec 74.1 MByte/Sec

http://research.microsoft.com/people/raybit/

