
Implementing Decision Trees and Forests on a

GPU

Toby Sharp

Microsoft Research, Cambridge, UK
toby.sharp@microsoft.com

Abstract. We describe a method for implementing the evaluation and
training of decision trees and forests entirely on a GPU, and show how
this method can be used in the context of object recognition.

Our strategy for evaluation involves mapping the data structure de-
scribing a decision forest to a 2D texture array. We navigate through the
forest for each point of the input data in parallel using an efficient, non-
branching pixel shader. For training, we compute the responses of the
training data to a set of candidate features, and scatter the responses
into a suitable histogram using a vertex shader. The histograms thus
computed can be used in conjunction with a broad range of tree learning
algorithms.

We demonstrate results for object recognition which are identical to
those obtained on a CPU, obtained in about 1% of the time.

To our knowledge, this is the first time a method has been proposed
which is capable of evaluating or training decision trees on a GPU. Our
method leverages the full parallelism of the GPU.

Although we use features common to computer vision to demonstrate
object recognition, our framework can accommodate other kinds of fea-
tures for more general utility within computer science.

1 Introduction

1.1 Previous Work

Since their introduction, randomized decision forests (or random forests) have
generated considerable interest in the machine learning community as new tools
for efficient discriminative classification [1,2]. Their introduction in the computer
vision community was mostly due to the work of Lepetit et al in [3,4]. This gave
rise to a number of papers using random forests for: object class recognition and
segmentation [5,6], bilayer video segmentation [7], image classification [8] and
person identification [9].

Random forests naturally enable a wide variety of visual cues (e.g. colour,
texture, shape, depth etc.). They yield a probabilistic output, and can be made
computationally efficient. Because of these benefits, random forests are being
established as efficient and general-purpose vision tools. Therefore an optimized
implementation of both their training and testing algorithms is desirable.

D. Forsyth, P. Torr, and A. Zisserman (Eds.): ECCV 2008, Part IV, LNCS 5305, pp. 595–608, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

596 T. Sharp

This work is complementary to that of Shotton et al [6] in which the authors
demonstrate a fast recognition system using forests. Although they demonstrate
real-time CPU performance, they evaluate trees sparsely at 1% of pixels and
still achieve only 8 frames per second, whereas our evaluations are dense and
considerably quicker.

At the time of writing, the premium desktop CPU available is the Intel Core
2 Extreme QX9775 3.2 GHz quad-core. This chip has a theoretical peak perfor-
mance of 51.2 Gflops using SSE instructions (12.8 Gflops without SSE). With
DDR3 SDRAM at 200 MHz, system memory bandwidth peaks at 12.8 GB/s.
In contrast, the premium desktop GPU is the nVidia GeForce GTX 280. With
its 240 stream processors it has a theoretical peak of 933 Gflops and a memory
bandwidth of 141 GB/s.

In [10], the authors demonstrate a simple but effective method for performing
plane-sweep stereo on a GPU and achieve real-time performance. In [11], the
authors present belief propagation with a chequerboard schedule based on [12].
We follow in similar fashion, presenting no new theory but a method for realizing
the GPU’s computational power for decision trees and forests.

To our knowledge, this is the first time a method has been proposed which is
capable of evaluating or training decision trees on a GPU. In [13], the authors
explored the implementation of neural networks for machine learning on a GPU,
but did not explore decision trees.

1.2 Outline

Algorithm 1 describes how a binary decision tree is conceptually evaluated on
input data. In computer vision techniques, the input data typically correspond
to feature values at pixel locations. Each parent node in the tree stores a binary
function. For each data point, the binary function at the root node is evaluated
on the data. The function value determines which child node is visited next.
This continues until reaching a leaf node, which determines the output of the
procedure. A forest is a collection of trees that are evaluated independently.

In §2 we describe the features we use in our application which are useful for
object class recognition. In §3, we show how to map the evaluation of a decision

Fig. 1. Left: A 320 × 213 image from the Microsoft Research recognition database
[14] which consists of 23 labeled object classes. Centre: The mode of the pixelwise
distribution given by a forest of 8 trees, each with 256 leaf nodes, trained on a subset
of the database. This corresponds to the ArgMax output option (§3.3). This result was
generated in 7 ms. Right: The ground truth labelling for the same image.

Implementing Decision Trees and Forests on a GPU 597

Algorithm 1. Evaluate the binary decision tree with root node N on input x

1. while N has valid children do
2. if TestFeature(N,x) = true then
3. N ← N.RightChild
4. else
5. N ← N.LeftChild
6. end if
7. end while
8. return data associated with N

forest to a GPU. The decision forest data structure is mapped to a forest texture
which can be stored in graphics memory. GPUs are highly data parallel machines
and their performance is sensitive to flow control operations. We show how to
evaluate trees with a non-branching pixel shader. Finally, the training of decision
trees involves the construction of histograms – a scatter operation that is not
possible in a pixel shader. In §4, we show how new GPU hardware features
allow these histograms to be computed with a combination of pixel shaders and
vertex shaders. In §5 we show results with speed gains of 100 times over a CPU
implementation.

Our framework allows clients to use any features which can be computed in a
pixel shader on multi-channel input. Our method is therefore applicable to more
general classification tasks within computer science, such as multi-dimensional
approximate nearest neighbour classification. We present no new theory but con-
centrate on the highly parallel implementation of decision forests. Our method
yields very significant performance increases over a standard CPU version, which
we present in §5.

We have chosen Microsoft’s Direct3D SDK and High Level Shader Language
(HLSL) to code our system, compiling for Shader Model 3.

2 Visual Features

2.1 Choice of Features

To demonstrate our method, we have adopted visual features that generalize
those used by many previous works for detection and recognition, including
[15,16,3,17,7]. Given a single-channel input image I and a rectangle R, let σ
represent the sum σ(I, R) =

∑
x∈R I(x).

The features we use are differences of two such sums over rectangles R0, R1

in channels c0, c1 of the input data. The response of a multi-channel image I to
a feature F = {R0, c0, R1, c1} is then ρ(I, F) = σ(I[c0], R0) − σ(I[c1], R1). The
Boolean test at a tree node is given by the threshold function θ0 ≤ ρ(I, F) < θ1.
This formulation generalizes the Haar-like features of [15], the summed rectan-
gular features of [16] and the pixel difference features of [3]. The generalization
of features is important because it allows us to execute the same code for all
the nodes in a decision tree, varying only the values of the parameters. This will
enable us to write a non-branching decision evaluation loop.

598 T. Sharp

(a) (b) (c)

Fig. 2. Processing images for feature computation. Each group of four rectangles rep-
resents a four-component (ARGB) texture, and each outline in the group represents a
single component (channel) of the texture. (a) An original sRGB image. (b) The image
is convolved with 16 filters to produce 16 data channels in 4 four-component textures
(§2.3). (c) The filtered textures are then integrated (§2.4).

The rectangular sums are computed by appropriately sampling an integral
image [15]. Thus the input data consists of multiple channels of integral images.
The integration is also performed on the GPU (§2.4).

2.2 Input Data Channels

Prior to integration, we pre-filter sRGB images by applying the bank of sepa-
rable 2D convolution filters introduced in [14] to produce a 16-channel result.
This over-complete representation incorporates local texture information at each
pixel. The convolution is also performed on the GPU (§2.3). The pipeline for
preparing input textures is shown in Figure 2.

2.3 Convolution with the Filter Bank

For object class recognition, we pre-filter images by convolving them with the
17-filter bank introduced in [14] to model local texture information. Whereas
the authors of that work apply their filters in the CIE Lab colour space, we
have found it sufficient to apply ours only to the non-linear R, G, B and Y
channels. The Gaussians are applied to the RGB channels, and the derivative
and Laplacian filters to the luma.

To perform the separable convolution on the GPU, we use the two-pass tech-
nique of [18].

Since the pixel shader operates on the four texture components in parallel,
up to four filters can be applied in one convolution operation. All 17 filters can
therefore be applied in 5 convolutions. In practice we prefer to omit the largest
scale Laplacian, applying 16 filters in 4 convolutions.

2.4 Image Integration

The sums over rectangular regions are computed using integral images [15].
Integral images are usually computed on the CPU using an intrinsically serial
method, but they can be computed on the GPU using prefix sums [19]. This
algorithm is also known as parallel scan or recursive doubling. For details on
how this can be implemented on the GPU, see [20].

Implementing Decision Trees and Forests on a GPU 599

bool TestFeature(sampler2D Input, float2 TexCoord, Parameters Params)

{ // Evaluate the given Boolean feature test for the current input pixel

float4 Sum1 = AreaSum(Input, TexCoord, Params.Rect1);

float4 Sum2 = AreaSum(Input, TexCoord, Params.Rect2);

float Response = dot(Sum1, Params.Channel1) - dot(Sum2, Params.Channel2);

return Params.Thresholds.x <= Response && Response < Params.Thresholds.y;

}

Fig. 3. HLSL code which represents the features used to demonstrate our system.
These features are suitable for a wide range of detection and recognition tasks.

2.5 Computation of Features

Figure 3 shows the HLSL code which is used to specify our choice of features
(§2.1). The variables for the feature are encoded in the Parameters structure.
The Boolean test for a given node and pixel is defined by the TestFeature
method, which will be called by the evaluation and training procedures as
necessary.

We would like to stress that, although we have adopted these features to
demonstrate our implementation and show results, there is nothing in our frame-
work which requires us to use a particular feature set. We could in practice use
any features that can be computed in a pixel shader independently at each input
data point, e.g. pixel differences, dot products for BSP trees or multi-level forests
as in [6].

3 Evaluation

Once the input data textures have been prepared, they can be supplied to a
pixel shader which performs the evaluation of the decision forest at each pixel
in parallel.

3.1 Forest Textures

Our strategy for the evaluation of a decision forest on the GPU is to transform
the forest’s data structure from a list of binary trees to a 2D texture (Figure 4).
We lay out the data associated with a tree in a four-component float texture,
with each node’s data on a separate row in breadth-first order.

In the first horizontal position of each row we store the texture coordinate of
the corresponding node’s left child. Note that we do not need to store the right
child’s position as it always occupies the row after the left child. We also store
all the feature parameters necessary to evaluate the Boolean test for the node.
For each leaf node, we store a unique index for the leaf and the required output
– a distribution over class labels learned during training.

To navigate through the tree during evaluation, we write a pixel shader that
uses a local 2D node coordinate variable in place of a pointer to the current node
(Figure 5). Starting with the first row (root node) we read the feature parameters

600 T. Sharp

Fig. 4. Left: A decision tree structure containing parameters used in a Boolean test at
each parent node, and output data at each leaf node. Right: A 7×5 forest texture built
from the tree. Empty spaces denote unused values.

float4 Evaluate(uniform sampler2D Forest, uniform sampler2D Input,

uniform float2 PixSize, in float2 TexCoord : TEXCOORD0) : COLOR0

{
float2 NodeCoord = PixSize * 0.5f;

// Iterate over the levels of the tree, from the root down...

[unroll] for (int nLevel = 1; nLevel < MAX DEPTH; nLevel++)

{
float LeftChild = tex2D(Forest, NodeCoord).x;

// Read the feature parameters for this node...

Parameters Params = ReadParams(Forest, NodeCoord, PixSize);

// Perform the user-supplied Boolean test for this node...

bool TestResult = TestFeature(Input, TexCoord, Params);

// Move the node coordinate according to the result of the test...

NodeCoord.y = LeftChild + TestResult * PixSize.y;

}
// Read the output distribution associated with this leaf node...

return Distribution(Forest, NodeCoord);

}

Fig. 5. An HLSL pixel shader which evaluates a decision tree on each input point in
parallel without branching. Here we have omitted evaluation on multiple and unbal-
anced trees for clarity.

and evaluate the Boolean test on the input data using texture-dependent reads.
We then update the vertical component of our node coordinate based on the
result of the test and the value stored in the child position field. This has the
effect of walking down the tree according to the computed features. We continue
this procedure until we reach a row that represents a leaf node in the tree, where
we return the output data associated with the leaf.

For a forest consisting of multiple trees, we tile the tree textures horizontally.
An outer loop then iterates over the trees in the forest; we use the horizontal
component of the node coordinate to address the correct tree, and the vertical
component to address the correct node within the tree. The output distribution
for the forest is the mean of the distributions for each tree.

Implementing Decision Trees and Forests on a GPU 601

This method allows our pixel shader to be non-branching (i.e. it does not con-
tain flow control statements) which is crucial for optimal execution performance.

3.2 Geometry and Texture Set-Up

In order to evaluate the forest at every data point, we render a rectangle that
covers the size of the input data. The first texture stage is assigned the forest
texture described above.

There is a slight difficulty with presenting the input data to the shader. Ac-
cording to our discussion of features (§2) we have 16-17 input channels and for
each tree node we wish to choose the correct channel on which to evaluate the
feature response. Unfortunately there is no legal way within the pixel shader
to index an array of textures based on a read operation. Neither is it possible
to create a 3D texture from the input channels and use the required channel to
address the third dimension. To overcome this difficulty, we tile each group of
four input channels into one large four-component texture, and bind the latter
to the second texture stage.

When we create the forest texture, we must modify appropriately the coor-
dinates of the feature rectangles so that they address the correct channel group
within the tiled texture as well as the correct spatial location. We also set unit
vectors (Channel0, Channel1 in Figure 3, 4) which are used in dot products to
select the correct scalar output.

3.3 Output Modes

To give clients sufficient control, we have implemented several different output
modes for forest evaluation:

– Distribution: Outputs the evaluated distribution over L labels into L out-
put channels

– ArgMax: Outputs the index of the label with the greatest probability in the
evaluated distribution

– ForestLeaves: Outputs the index of the leaf node reached in each of T trees
into T output channels

– TreeLeaf: Outputs the index of the leaf node reached in the first tree

Due to limitations of Direct3D 9, a maximum of 16 output channels can be used
for the Distribution and ForestLeaves modes. Where more than 16 label
posteriors are required, they can be computed efficiently in multiple passes from
one or more leaf images generated by the ForestLeaves option. If additionally
the number of trees exceeds 16, the forest can be split into groups of trees which
are evaluated in succession. Thus any number of trees and class labels can be
handled by our system.

4 Training

Training of randomized trees is achieved iteratively, growing a tree by one level
each training round. For each training round, a pool of candidate features is

602 T. Sharp

sampled, and these are then evaluated on all the training data to assess their
discriminative ability. Joint histograms over ground truth labels and feature
responses are created, and these histograms may be used in conjunction with
various learning algorithms, e.g. ID3 [21] or C4.5 [22], to choose features for new
tree nodes. Thus learning trees can be a highly compute-intensive task. We adopt
a general approach for efficient training on the GPU, suitable for any learning
algorithm.

A training database consists of training examples together with ground truth
class labels. Given a training database, a pool of candidate features and a decision
tree, we compute and return to our client a histogram that can be used to extend
the tree in accordance with a learning algorithm. For generality, our histogram is
4D and its four axes are: the leaf node index, ground truth class label, candidate
feature index and quantized feature response. Armed with this histogram, clients
can add two new children to each leaf of the current tree, selecting the most
discriminative candidate feature as the new test.

In one sweep over the training database we visit each labeled data point and
evaluate its response to each candidate feature. We also determine the active
leaf node in the tree and increment the appropriate histogram bin. Thus for each
training round we evaluate the discriminative ability of all candidate features at
all leaf nodes of the current tree.

4.1 Histogram Initialization

We store the 4D histogram in a single 2D texture by tiling 2D slices through
the histogram. The tiling strategy is chosen dynamically at runtime to avoid
exceeding the maximum texture width and height of 4096. Note that the size
of the histogram is independent of the size of the training database. Although
we have not found it necessary in practice, it would be possible to split very
large histograms across multiple textures. We use a 32-bit float texture for
convenience and to avoid overflow.

4.2 Training Data

We now iterate through the training database, evaluating all the feature re-
sponses and accumulating them into the histogram. To access the training data
as required we use a callback interface supplied by the client.

In order to evaluate the feature discrimination for every leaf node of the tree
simultaneously, we need to determine which leaf of the current tree would be
activated for each training data point. We achieve this by the method of §3
using the TreeLeaf output option to generate a leaf image that represents the
active leaf nodes of the current tree for the current training image.

4.3 Feature Evaluation

We request four training examples at a time from the database because this will
allow us to take full advantage of the GPU’s SIMD capabilities by operating on
four texture components in parallel (Figure 6a).

Implementing Decision Trees and Forests on a GPU 603

(a) (b) (c) (d)

Fig. 6. Processing training data. (a) A set of four training examples, already pre-
processed for feature computation. (b) The same data, rearranged so that each texture
contains corresponding channels from all four training examples. (c) The appropriate
textures are selected for a given feature and the box filters applied. (d) The final feature
response is the difference of the two box filtered textures.

Since we are pre-filtering our sRGB image data (§2), we can either perform
all the pre-processing to the training database in advance, or we can apply the
pre-processing as each image is fetched from the database. After the pre-filtering
(Figure 6a) we re-arrange the texture channels so that each texture contains one
filtered component from each of the four training examples (Figure 6b). The
input textures are thus prepared for evaluating our features efficiently.

We then iterate through the supplied set of candidate features, computing
the response of the current training examples to each feature. For each feature
we select two input textures according to the channels specified in the feature
(Figure 6c). We compute each box filter convolution on four training images
in parallel by passing the input texture to a pixel shader that performs the
necessary look-ups on the integral image. In a third pass, we subtract the two
box filter responses to recover the feature response (Figure 6d).

We ensure that our leaf image (§4.2) also comprises four components that
correspond to the four current training examples.

4.4 Histogram Accumulation

The computed feature responses are then accumulated into the 4D histogram,
using also the values of the leaf image and ground truth label at each pixel.
Histogram accumulation is a scatter operation rather than a gather operation,
so it cannot be implemented in a pixel shader. Instead we use a vertex shader,
inspired by [23], to perform the scattering.

As our vertex buffer input we supply a list of all the 2D texture coordinates
which cover the area of the feature response image. Our vertex shader (Figure 7)
uses this input coordinate to read the feature response value, ground truth label
and leaf index at one position from three supplied input textures. The other
value required for the histogram operation is the feature index which is passed
in as a constant. The shader then computes the 4D-to-2D mapping according to
the active tiling scheme (§4.1). Finally the 2D histogram coordinate is output
by the vertex shader.

604 T. Sharp

float4 Scatter(uniform sampler2D Textures[3], uniform float4 select,

in out float2 coord : TEXCOORD0, uniform float feature)

{
float4 address = {coord.x, coord.y, 0.0f, 0.0f};
float leaf = dot(tex2Dlod(Textures[0], address), select);

float label = dot(tex2Dlod(Textures[1], address), select);

float response = dot(tex2Dlod(Textures[2], address), select);

float2 pos = Map4DTo2D(leaf, label, response, feature);

return float4(pos.x, pos.y, 0.0f, 1.0f);

}

Fig. 7. An HLSL vertex shader that scatters feature response values to the appropriate
position within a histogram

A simple pixel shader emits a constant value of 1 and, with additive blending
enabled, the histogram values are incremented as desired.

We execute this pipeline four times for the four channels of data to be ag-
gregated into the histogram. A shader constant allows us to select the required
channel.

4.5 Quantization and Thresholds

In order to histogram the real-valued feature responses they must first be quan-
tized. We require that the client provides the number of quantization bins to
use for the training round. An interval of interest for response values is also pro-
vided for each feature in the set of candidates. In our Scatter vertex shader, we
then linearly map the response interval to the histogram bins, clamping to end
bins. We make the quantization explicit in this way because different learning
algorithms may have different criteria for choosing the parameters used for the
tree’s Boolean test.

One approach would be to use 20-30 quantization levels during a training
round and then to analyze the histogram, choosing a threshold value adaptively
to optimize the resulting child distributions. For example, the threshold could
be chosen to minimize the number of misclassified data points or to maximize
the KL-divergence. Although this method reduces training error, it may lead to
over-fitting. Another approach would be to use a very coarse quantization (only
2 or 3 bins) with randomized response intervals. This method is less prone to
over-fitting but may require more training rounds to become sufficiently discrim-
inative.

We have tested both of the above approaches and found them effective. We
currently favour the latter approach, which we use with the ID3 algorithm [21]
to select for every leaf node the feature with the best information gain. Thus we
double the number of leaf nodes in a tree after each training round.

We create flexibility by not requiring any particular learning algorithm. In-
stead, by focusing on computation of the histogram, we enable clients to adopt
their preferred learning algorithm efficiently.

Implementing Decision Trees and Forests on a GPU 605

5 Results

Our test system consists of a dual-core Intel Core 2 Duo 2.66 GHz and an nVidia
GeForce GTX 280. (Timings on a GeForce 8800 Ultra were similar.) We have
coded our GPU version using Direct3D 9 with HLSL shaders, and a CPU version
using C++ for comparison only. We have not developed an SSE version of the
CPU implementation which we believe may improve the CPU results somewhat
(except when performance is limited by memory bandwidth). Part of the appeal
of the GPU implementation is the ability to write shaders using HLSL which
greatly simplifies the adoption of vector instructions.

In all cases identical output is attained using both CPU and GPU versions.
Our contribution is a method of GPU implementation that yields a considerable
speed improvement, thereby enabling new real-time recognition applications.

We separate our results into timings for pre-processing, evaluation and train-
ing. All of the timings depends on the choice of features; we show timings for our
generalized recognition features. For reference, we give timings for our feature
pre-processing in Figure 8.

5.1 Tree Training

Training timecanbeprohibitively long for randomizedtrees,particularlywith large
databases. This leads to pragmatic short-cuts such as sub-sampling training data,
which in turn has an impact on the discrimination performance of learned trees.

Our training procedure requires time linear in the number of training exam-
ples, the number of trees, the depth of the trees and the number of candidate
features evaluated.

Description Resolution CPU GPU Speed-up
(pixels) (ms) (ms) (×)

Convolution with 16 separable filters (§2.3)
320× 240 94 8.5 11.1
640× 480 381 15.5 24.6

Integration of 16 data channels (§2.4)
320× 240 9.2 7.0 1.31
640× 480 31 16.6 1.87

Fig. 8. Timings for feature pre-processing

Operation CPU GPU Speed-up
(s) (%) (s) (%) (×)

100× Leaf image computation (§4.2) 6.0 6 0.2 2 30
104× Feature responses (§4.3) 39.5 41 0.2 2 198

104× Histogram accumulations (§4.4) 52.1 53 11.8 96 4.4

Total 97.6 100 12.2 100 8.0

Fig. 9. Breakdown of time spent during one training round with 100 training examples
and a pool of 100 candidate features. Note the high proportion of time spent updating
the histogram.

606 T. Sharp

To measure training time, we took 100 images from the labeled object recog-
nition database of [14] with a resolution of 320×213. This data set has 23 labeled
classes. We used a pool of 100 candidate features for each training round. The
time taken for each training round was 12.3 seconds. With these parameters, a
balanced tree containing 256 leaf nodes takes 98 seconds to train. Here we have
used every pixel of every training image.

Training time is dominated by the cost of evaluating a set of candidate features
on a training image and aggregating the feature responses into a histogram.
Figure 9 shows a breakdown of these costs. These figures are interesting as they
reveal two important insights:

First, the aggregation of the histograms on the GPU is comparatively slow,
dominating the training time significantly. We experimented with various dif-
ferent method for accumulating the histograms, maintaining the histogram in
system memory and performing the incrementation on the CPU. Unfortunately,
this did not substantially reduce the time required for a training round. Most
recently, we have begun to experiment with using CUDA [24] for this task and
we anticipate a significant benefit over using Direct3D.

Second, the computation of the rectangular sum feature responses is extremely
fast. We timed this operation as able to compute over 10 million rectangular sums
per ms on the GPU. This computation time is insignificant next to the other
timings, and this leads us to suggest that we could afford to experiment with
more arithmetically complex features without harming training time.

5.2 Forest Evaluation

Our main contribution is the fast and parallel evaluation of decision forests on
the GPU. Figure 10 show timings for the dense evaluation of a decision forest,
with various different parameters.

Our method maps naturally to the GPU, exploiting its parallelism and cache,
and this is reflected in the considerable speed increase over a CPU version by
around two orders of magnitude.

Resolution Output Mode Trees Classes CPU GPU Speed-up
(pixels) (ms) (ms) (×)

320× 240 TreeLeaf 1 N/A 70.5 0.75 94
320× 240 ForestLeaves 4 N/A 288 3.0 96.1
320× 240 Distribution 8 4 619 5.69 109
320× 240 ArgMax 8 23 828 6.85 121
640× 480 TreeLeaf 1 N/A 288 2.94 97.8
640× 480 ForestLeaves 4 N/A 1145 12.1 95.0
640× 480 Distribution 8 4 2495 23.1 108
640× 480 ArgMax 8 23 3331 25.9 129

Fig. 10. Timings for evaluating a forest of decision trees. Our GPU implementation
evaluates the forest in about 1% of the time required by the CPU implementation.

Implementing Decision Trees and Forests on a GPU 607

(a) (b) (c) (d)

Fig. 11. (a)-(b) Object class recognition. A forest of 8 trees was trained on labelled
data for grass, sky and background labels. (a) An outdoor image which is not part of
the training set for this example. (b) Using the Distribution output option, the blue
channel represents the probability of sky and the green channel the probability of grass
at each pixel (5 ms). (c)-(d) Head tracking in video. A random forest was trained
using spatial and temporal derivative features instead of the texton filter bank. (c) A
typical webcam video frame with an overlay showing the detected head position. This
frame was not part of the training set for this example. (d) The probability that each
pixel is in the foreground (5 ms).

5.3 Conclusion

We have shown how it is possible to use GPUs for the training and evaluation
of general purpose decision trees and forests, yielding speed gains of around 100
times.

References

1. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees.
Neural Computation 9(7), 1545–1588 (1997)

2. Breiman, L.: Random forests. ML Journal 45(1), 5–32 (2001)
3. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans.

Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006)
4. Ozuysal, M., Fua, P., Lepetit, V.: Fast keypoint recognition in ten lines of code.

In: IEEE CVPR (2007)
5. Winn, J., Criminisi, A.: Object class recognition at a glance. In: IEEE CVPR,

video track (2006)
6. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image catego-

rization and segmentation. In: IEEE CVPR, Anchorage (2008)
7. Yin, P., Criminisi, A., Winn, J.M., Essa, I.A.: Tree-based classifiers for bilayer

video segmentation. In: CVPR (2007)
8. Bosh, A., Zisserman, A., Munoz, X.: Image classification using random forests and

ferns. In: IEEE ICCV (2007)
9. Apostolof, N., Zisserman, A.: Who are you? - real-time person identification. In:

BMVC (2007)
10. Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics

hardware. In: CVPR, vol. (1), pp. 211–220 (2003)
11. Brunton, A., Shu, C., Roth, G.: Belief propagation on the gpu for stereo vision. In:

CRV, p. 76 (2006)
12. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision.

International Journal of Computer Vision 70(1), 41–54 (2006)

608 T. Sharp

13. Steinkraus, D., Buck, I., Simard, P.: Using gpus for machine learning algorithms.
In: Proceedings of Eighth International Conference on Document Analysis and
Recognition, 2005, 29 August-1 September 2005, vol. 2, pp. 1115–1120 (2005)

14. Winn, J.M., Criminisi, A., Minka, T.P.: Object categorization by learned universal
visual dictionary. In: ICCV, pp. 1800–1807 (2005)

15. Viola, P.A., Jones, M.J.: Robust real-time face detection. International Journal of
Computer Vision 57(2), 137–154 (2004)

16. Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: TextonBoost: Joint appearance,
shape and context modeling for multi-class object recognition and segmentation.
In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp.
1–15. Springer, Heidelberg (2006)

17. Deselaers, T., Criminisi, A., Winn, J.M., Agarwal, A.: Incorporating on-demand
stereo for real time recognition. In: CVPR (2007)

18. James, G., O’Rorke, J.: Real-time glow. In: GPU Gems: Programming Techniques,
Tips and Tricks for Real-Time Graphics, pp. 343–362. Addison-Wesley, Reading
(2004)

19. Blelloch, G.E.: Prefix sums and their applications. Technical Report CMU-CS-90-
190, School of Computer Science, Carnegie Mellon University (November 1990)

20. Hensley, J., Scheuermann, T., Coombe, G., Singh, M., Lastra, A.: Fast summed-
area table generation and its applications. Comput. Graph. Forum 24(3), 547–555
(2005)

21. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
22. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, California

(1992)
23. Scheuermann, T., Hensley, J.: Efficient histogram generation using scattering on

gpus. In: SI3D, pp. 33–37 (2007)
24. http://www.nvidia.com/cuda

http://www.nvidia.com/cuda

	Implementing Decision Trees and Forests on a GPU
	Introduction
	Previous Work
	Outline

	Visual Features
	Choice of Features
	Input Data Channels
	Convolution with the Filter Bank
	Image Integration
	Computation of Features

	Evaluation
	Forest Textures
	Geometry and Texture Set-Up
	Output Modes

	Training
	Histogram Initialization
	Training Data
	Feature Evaluation
	Histogram Accumulation
	Quantization and Thresholds

	Results
	Tree Training
	Forest Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

