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Abstract 

We investigate the use of web search queries 
for detecting errors in non-native writing. Dis-
tinguishing a correct sequence of words from 
a sequence with a learner error is a baseline 
task that any error detection and correction 
system needs to address. Using a large corpus 
of error-annotated learner data, we investigate 
whether web search result counts can be used 
to distinguish correct from incorrect usage. In 
this investigation, we compare a variety of 
query formulation strategies and a number of 
web resources, including two major search 
engine APIs and a large web-based n-gram 
corpus. 

1 Introduction 

Data-driven approaches to the detection and cor-
rection of non-native errors in English have been 
researched actively in the past several years. Such 
errors are particularly amenable to data-driven me-
thods because many prominent learner writing er-
rors involve a relatively small class of phenomena 
that can be targeted with specific models, in par-
ticular article and preposition errors. Preposition 
and determiner errors (most of which are article 
errors) are the second and third most frequent er-
rors in the Cambridge Learner Corpus (after the 
more intractable problem of content word choice). 
By targeting the ten most frequent prepositions 
involved in learner errors, more than 80% of pre-
position errors in the corpus are covered.  

Typically, data-driven approaches to learner er-
rors use a classifier trained on contextual informa-
tion such as tokens and part-of-speech tags within 
a window of the preposition/article (Gamon et al. 
2008, 2010, DeFelice and Pulman 2007, 2008, Han 

et al. 2006, Chodorow et al. 2007, Tetreault and 
Chodorow 2008).  

Language models are another source of evidence 
that can be used in error detection. Using language 
models for this purpose is not a new approach, it 
goes back to at least Atwell (1987). Gamon et al. 
(2008) and Gamon (2010) use a combination of 
classification and language modeling. Once lan-
guage modeling comes into play, the quantity of 
the training data comes to the forefront. It has been 
well-established that statistical models improve as 
the size of the training data increases (Banko and 
Brill 2001a, 2001b). This is particularly true for 
language models: other statistical models such as a 
classifier, for example, can be targeted towards a 
specific decision/classification, reducing the appe-
tite for data somewhat, while language models 
provide probabilities for any sequence of words - a 
task that requires immense training data resources 
if the language model is to consider increasingly 
sparse longer n-grams.  

Language models trained on data sources like 
the Gigaword corpus have become commonplace, 
but of course there is one corpus that dwarfs any 
other resource in size: the World Wide Web. This 
has drawn the interest of many researchers in natu-
ral language processing over the past decade. To 
mention just a few examples, Zhu and Rosenfeld 
(2001) combine trigram counts from the web with 
an existing language model where the estimates of 
the existing model are unreliable because of data 
sparseness. Keller and Lapata (2003) advocate the 
use of the web as a corpus to retrieve backoff 
probabilities for unseen bigrams. Lapata and Keller 
(2005) extend this method to a range of additional 
natural language processing tasks, but also caution 
that web counts have limitations and add noise. 
Kilgariff (2007) points out the shortcomings of 



accessing the web as a corpus through search que-
ries: (a) there is no lemmatization or part-of-speech 
tagging in search indices, so a linguistically mea-
ningful query can only be approximated, (b) search 
syntax, as implemented by search engine provid-
ers, is limited, (c) there is often a limit on the num-
ber of automatic queries that are allowed by search 
engines, (c) hit count estimates are estimates of 
retrieved pages, not of retrieved words. We would 
like to add to that list that hit count estimates on 
the web are just that -- estimates. They are com-
puted on the fly by proprietary algorithms, and ap-
parently the algorithms also access different slices 
of the web index, which causes a fluctuation over 
time, as Tetrault and Chodorow (2009) point out. 

In 2006, Google made its web-based 5gram lan-
guage model available through the Linguistic Data 
Consortium, which opens the possibility of using 
real n-gram statistics derived from the web direct-
ly, instead of using web search as a proxy. 

In this paper we explore the use of the web as a 
corpus for a very specific task: distinguishing be-
tween a learner error and its correction. This is ob-
viously not the same as the more ambitious 
question of whether a system can be built to detect 
and correct errors on the basis of web counts alone, 
and this is a distinction worth clarifying. Any sys-
tem that successfully detects and corrects an error 
will need to accomplish three tasks1: (1) find a part 
of the user input that contains an error (error de-
tection). (2) find one or multiple alternative 
string(s) for the alleged error (candidate genera-
tion) and (3) score the alternatives and the original 
to determine which alternative (if any) is a likely 
correction (error correction). Here, we are only 
concerned with the third task, specifically the 
comparison between the incorrect and the correct 
choice. This is an easily measured task, and is also 
a minimum requirement for any language model or 
language model approximation: if the model can-
not distinguish an error from a well-formed string, 
it will not be useful. 

                                                           
1 Note that these tasks need not be addressed by separate com-
ponents. A contextual classifier for preposition choice, for 
example, can generate a probability distribution over a set of 
prepositions (candidate generation). If the original preposition 
choice has lower probability than one or more other preposi-
tions, it is a potential error (error detection), and the preposi-
tions with higher probability will be potential corrections 
(error correction). 

We focus on two prominent learner errors in this 
study: preposition inclusion and choice and article 
inclusion and choice. These errors are among the 
most frequent learner errors (they comprise nearly 
one third of all errors in the learner corpus used in 
this study). 

In this study, we compare three web data 
sources: The public Bing API, Google API, and the 
Google 5-gram language model. We also pay close 
attention to strategies of query formulation. The 
questions we address are summarized as follows: 

Can web data be used to distinguish learner er-
rors from correct phrases? 

What is the better resource for web-data: the 
Bing API, the Google API, or the Google 5-
gram data? 

What is the best query formulation strategy 
when using web search results for this task? 
How much context should be included in the 
query? 

2 Related Work  

Hermet et al. (2008) use web search hit counts for 
preposition error detection and correction in 
French. They use a set of confusable prepositions 
to create a candidate set of alternative prepositional 
choices and generate queries for each of the candi-
dates and the original. The queries are produced 
using linguistic analysis to identify both a govern-
ing and a governed element as a minimum mea-
ningful context. On a small test set of 133 
sentences, they report accuracy of 69.9% using the 
Yahoo! search engine. 

Yi et al. (2008) target article use and collocation 
errors with a similar approach. Their system first 
analyzes the input sentence using part-of-speech 
tagging and a chunk parser. Based on this analysis, 
potential error locations for determiners and verb-
noun collocation errors are identified. Query gen-
eration is performed at three levels of granularity: 
the sentence (or clause) level, chunk level and 
word level. Queries, in this approach, are not exact 
string searches but rather a set of strings combined 
with the chunk containing the potential error 
through a boolean operator. An example for a 
chunk level query for the sentence "I am learning 
economics at university" would be "[economics] 
AND [at university] AND [learning]". For article 



errors the hit count estimates (normalized for query 
length) are used directly. If the ratio of the norma-
lized hit count estimate for the alternative article 
choice to the normalized hit count estimate of the 
original choice exceeds a manually determined 
threshold, the alternative is suggested as a correc-
tion. For verb-noun collocations, the situation is 
more complex since the system does not automati-
cally generate possible alternative choices for 
noun/verb collocations. Instead, the snippets (doc-
ument summaries) that are returned by the initial 
web search are analyzed and potential alternative 
collocation candidates are identified. They then 
submit a second round of queries to determine 
whether the suggestions are more frequent than the 
original collocation. Results on a 400+ sentence 
corpus of learner writing show 62% precision and 
41% recall for determiners, and 30.7% recall and 
37.3% precision for verb-noun collocation errors. 

Tetreault and Chodorow (2009) make use of the 
web in a different way. Instead of using global web 
count estimates, they issue queries with a region-
specific restriction and compare statistics across 
regions. The idea behind this approach is that re-
gions that have a higher density of non-native 
speakers will show significantly higher frequency 
of erroneous productions than regions with a high-
er proportion of native speakers. For example, the 
verb-preposition combinations married to versus 
married with show very different counts in the UK 
versus France regions. The ratio of counts for mar-
ried to/married with in the UK is 3.28, whereas it 
is 1.18 in France. This indicates that there is signif-
icant over-use of married with among native 
French speakers, which serves as evidence that this 
verb-preposition combination is likely to be an er-
ror predominant for French learners of English. 
They test their approach on a list of known verb-
preposition errors. They also argue that, in a state-
of-the-art preposition error detection system, recall 
on the verb-preposition errors under investigation 
is still so low that systems can only benefit from 
increased sensitivity to the error patterns that are 
discoverable through the region web estimates. 

Bergsma et al (2009) are the closest to our work. 
They use the Google N-gram corpus to disambi-
guate usage of 34 prepositions in the New York 
Times portion of the Gigaword corpus. They use a 
sliding window of n-grams (n ranging from 2 to 5) 
across the preposition and collect counts for all 
resulting n-grams. They use two different methods 

to combine these counts. Their SuperLM model 
combines the counts as features in a linear SVM 
classifier, trained on a subset of the data. Their 
SumLM model is simpler, it sums all log counts 
across the n-grams. The preposition with the high-
est score is then predicted for the given context. 
Accuracy on the New York Times data in these ex-
periments reaches 75.4% for SuperLM and 73.7% 
for SumLM. 

Our approach differs from Bergsma et al. in 
three crucial respects. First, we evaluate insertion, 
deletion, and substitution operations, not just subs-
titution, and we extend our evaluation to article 
errors. Second, we focus on finding the best query 
mechanism for each of these operations, which 
requires only a single query to the Web source. 
Finally, the focus of our work is on learner error 
detection, so we evaluate on real learner data as 
opposed to well-formed news text. This distinction 
is important: in our context, evaluation on edited 
text artificially inflates both precision and recall 
because the context surrounding the potential error 
site is error-free whereas learner writing can be, 
and often is, surrounded by errors. In addition, 
New York Times writing is highly idiomatic while 
learner productions often include unidiomatic word 
choices, even though the choice may not be consi-
dered an error. 

3 Experimental Setup 

3.1 Test Data 

Our test data is extracted from the Cambridge Uni-
versity Press Learners’ Corpus (CLC). Our ver-
sion of CLC currently contains 20 million words 
from non-native English essays written as part of 
one of Cambridge’s English language proficiency 
tests (ESOL) – at all proficiency levels. The essays 
are annotated for error type, erroneous span and 
suggested correction. We perform a number of 
preprocessing steps on the data. First, we correct 
all errors that were flagged as being spelling errors. 
Spelling errors that were flagged as morphology 
errors were left alone. We also changed confusable 
words that are covered by MS Word. In addition, 
we changed British English spelling to American 
English. We then eliminate all annotations for non-
pertinent errors (i.e. non-preposition/article errors, 
or errors that do not involve any of the targeted 
prepositions), but we retain the original (errone-



ous) text for these. This makes our task harder 
since we will have to make predictions in text con-
taining multiple errors, but it is more realistic giv-
en real learner writing. Finally, we eliminate 
sentences containing nested errors (where the an-
notation of one error contains an annotation for 
another error) and multiple article/preposition er-
rors. Sentences that were flagged for a replacement 
error but contained no replacement were also elim-
inated from the data. The final set we use consists 
of a random selection of 9,006 sentences from the 
CLC with article errors and 9,235 sentences with 
preposition errors. 

3.2 Search APIs and Corpora 

We examine three different sources of data to dis-
tinguish learner errors from corrected errors. First, 
we use two web search engine APIs, Bing and 
Google. Both APIs allow the retrieval of a page-
count estimate for an exact match query. Since 
these estimates are provided based on proprietary 
algorithms, we have to treat them as a "black box". 
The third source of data is the Google 5-gram cor-
pus (Linguistic Data Consortium 2006) which con-
tains n-grams with n ranging from 1 to 5. The 
count cutoff for unigrams is 200, for higher order 
n-grams it is 40. 

3.3 Query Formulation 

There are many possible ways to formulate an ex-
act match (i.e. quoted) query for an error and its 
correction, depending on the amount of context 
that is included on the right and left side of the er-
ror. Including too little context runs the risk of 
missing the linguistically relevant information for 
determining the proper choice of preposition or 
determiner. Consider, for example, the sentence we 
rely most of/on friends. If we only include one 
word to the left and one word to the right of the 
preposition, we end up with the queries "most on 
friends" and "most of friends" - and the web hit 
count estimate may tell us that the latter is more 
frequent than the former. However, in this exam-
ple, the verb rely determines the choice of preposi-
tion and when it is included in the query as in "rely 
most on friends" versus "rely most of friends", the 
estimated hit counts might correctly reflect the in-
correct versus correct choice of preposition. Ex-
tending the query to cover too much of the context, 

on the other hand, can lead to low or zero web hit 
estimates because of data sparseness - if we in-
clude the pronoun we in the query as in "we rely 
most on friends" versus "we rely most of friends", 
we get zero web count estimates for both queries.  

Another issue in query formulation is what 
strategy to use for corrections that involve dele-
tions and insertions, where the number of tokens 
changes. If, for example, we use queries of length 
3, the question for deletion queries is whether we 
use two words to the left and one to the right of the 
deleted word, or one word to the left and two to the 
right. In other words, in the sentence we traveled 
to/0 abroad last year, should the query for the cor-
rection (deletion) be "we traveled abroad" or "tra-
veled abroad last"? 

Finally, we can employ some linguistic informa-
tion to design our query. By using part-of-speech 
tag information, we can develop heuristics to in-
clude a governing content word to the left and the 
head of the noun phrase to the right. 

The complete list of query strategies that we 
tested is given below. 

SmartQuery: using part-of-speech information 
to include the first content word to the left and the 
head noun to the right. If the content word on the 
left cannot be established within a window of 2 
tokens and the noun phrase edge within 5 tokens, 
select a fixed window of 2 tokens to the left and 2 
tokens to the right. 

FixedWindow Queries: include n tokens to the 
left and m tokens to the right. We experimented 
with the following settings for n and m: 1_1, 2_1, 
1_2, 2_2, 3_2, 2_3. The latter two 6-grams were 
only used for the API’s, because the Google corpus 
does not contain 6-grams. 

FixedLength Queries: queries where the length 
in tokens is identical for the error and the correc-
tion. For substitution errors, these are the same as 
the corresponding FixedWindow queries, but for 
substitutions and deletions we either favor the left 
or right context to include one additional token to 
make up for the deleted/inserted token. We expe-
rimented with trigrams, 4-grams, 5-grams and 6-
grams, with left and right preference for each, they 
are referred to as Left4g (4-gram with left prefe-
rence), etc. 



3.4 Evaluation Metrics 

For each query pair <qerror, qcorrection>, we produce 
one of three different outcomes: 
correct (the query results favor the correction of 
the learner error over the error itself):  

count(qcorrection) > count(qerror) 
incorrect (the query results favor the learner error 
over its correction):   

count(qerror) >= count(qcorrection) 
 where(count(qerror) ≠  0 OR 
 count(qcorrection) ≠  0) 

noresult:  
count(qcorrection) = count(qerror) = 0 

For each query type, each error (preposition or ar-
ticle), each correction operation (deletion, inser-
tion, substitution) and each web resource (Bing 
API, Google API, Google N-grams) we collect 
these counts and use them to calculate three differ-
ent metrics. Raw accuracy is the ratio of correct 
predictions to all query pairs: ܴܽݕܿܽݎݑܿܿܽ ݓ ൌ ݎݎ݋ܿݎݎ݋ܿ  ൅ ݎݎ݋ܿ݊݅ ൅  ݐ݈ݑݏ݁ݎ݋݊

We also calculate accuracy for the subset of query 
pairs where at least one of the queries resulted in a 
successful hit, i.e. a non-zero result. We call this 
metric Non-Zero-Result-Accurracy (NZRA), it is 
the ratio of correct predictions to incorrect predic-
tions, ignoring noresults: ܰݕܿܽݎݑܿܿܣݐ݈ݑݏܴ݁݋ݎܼ݁݊݋ ൌ ݎݎ݋ܿݎݎ݋ܿ  ൅  ݎݎ݋ܿ݊݅

Finally, retrieval ratio is the ratio of queries that 
returned non-zero results: 

4 Results 

We show results from our experiments in Table 1 -   
Table 6. Since space does not permit a full tabula-
tion of all the individual results, we restrict our-
selves to listing only those query types that achieve 
best results (highlighted) in at least one metric. 

Google 5-grams show significantly better results 
than both the Google and Bing APIs. This is good 
news in terms of implementation, because it frees 
the system from the vagaries involved in relying on 
search engine page estimates: (1) the latency, (2) 
query quotas, and (3) fluctuations of page esti-
mates over time. The bad news is that the 5-gram 
corpus has much lower retrieval ratio because, pre-
sumably, of its frequency cutoff. Its use also limits 

the maximum length of a query to a 5-gram (al-
though neither of the APIs outperformed Google 5-
grams when retrieving 6-gram queries). 

The results for substitutions are best, for fixed 
window queries. For prepositions, the SmartQue-
ries perform with about 86% NZRA while a fixed 
length 2_2 query (targeted word with a ±2-token 
window) achieves the best results for articles, at 
about 85% (when there was at least one non-zero 
match). Retrieval ratio for the prepositions was 
about 6% lower than retrieval ratio for articles –
41% compared to 35%.  

The best query type for insertions was fixed-
length LeftFourgrams with about 95% NZRA and 
71% retrieval ratio for articles and 89% and 78% 
retrieval ratio for prepositions. However, Left-
Fourgrams favor the suggested rewrites because, 
by keeping the query length at four tokens, the 
original has more syntactic/semantic context. If the 
original sentence contains is referred as the and the 
annotator inserted to before as, the original query 
will be is referred as the and the correction query 
is referred to as.  

Conversely, with deletion, having a fixed win-
dow favors the shorter rewrite string. The best 
query types for deletions were: 2_2 queries for ar-
ticles (94% NZRA and 46% retrieval ratio) and 
SmartQueries for prepositions (97% NZRA and 
52% retrieval ratio). For prepositions the fixed 
length 1_1 query performs about the same as the 
SmartQueries, but that query is a trigram (or 
smaller at the edges of a sentence) whereas the av-
erage length of SmartQueries is 4.7 words for pre-
positions and 4.3 words for articles. So while the 
coverage for SmartQueries is much lower, the 
longer query string cuts the risk of matching on 
false positives.  

The Google 5-gram Corpus differs from search 
engines in that it is sensitive to upper and lower 
case distinctions and to punctuation. While intui-
tively it seemed that punctuation would hurt n-
gram performance, it actually helps because the 
punctuation is an indicator of a clause boundary. A 
recent Google search for have a lunch and have 
lunch produced estimates of about 14 million web 
pages for the former and only 2 million for the lat-
ter. Upon inspecting the snippets for have a lunch, 
the next word was almost always a noun such as 
menu, break, date, hour, meeting, partner, etc. The 
relative frequencies for have a lunch would be 
much different if a clause boundary marker were 



required. The 5-gram corpus also has sentence 
boundary markers which is especially helpful to 

identify changes at the beginning of a sentence. 

 

Query type 
non-zero-result accuracy retrieval ratio raw accuracy 

B-API G-API G-Ngr B-API G-API G-Ngr B-API G-API G-Ngr 
SmartQuery 0.8637 0.9548 0.9742 0.8787 0.8562 0.5206 0.7589 0.8176 0.5071
1_1 0.4099 0.9655 0.9721 0.9986 0.9978 0.9756 0.4093 0.9634 0.9484

Table 1: Preposition deletions (1395 query pairs). 

Query type 
non-zero-result accuracy retrieval ratio raw accuracy 

B-API G-API G-Ngr B-API G-API G-Ngr B-API G-API G-Ngr 

Left4g 0.7459 0.8454 0.8853 0.9624 0.9520 0.7817 0.7178 0.8048 0.6920

1_1 0.5679 0.2983 0.3550 0.9973 0.9964 0.9733 0.5661 0.2971 0.3456

Right3g 0.6431 0.8197 0.8586 0.9950 0.9946 0.9452 0.6399 0.8152 0.8116
Table 2: Preposition insertions (2208 query pairs). 

Query type 
non-zero-result accuracy retrieval ratio raw accuracy 

B-API G-API G-Ngr B-API G-API G-Ngr B-API G-API G-Ngr 

SmartQuery 0.7396 0.8183 0.8633 0.7987 0.7878 0.4108 0.5906 0.6446 0.5071

1_1=L3g=R3g 0.4889 0.6557 0.6638 0.9870 0.9856 0.9041 0.4826 0.6463 0.6001
1_2=R4g 0.6558 0.7651 0.8042 0.9178 0.9047 0.6383 0.6019 0.6921 0.5133

Table 3: Preposition substitutions (5632 query pairs). 

Query type 
non-zero-result accuracy retrieval ratio raw accuracy 

B-API G-API G-Ngr B-API G-API G-Ngr B-API G-API G-Ngr 

2_2 0.7678 0.9056 0.9386 0.8353 0.8108 0.4644 0.6414 0.7342 0.4359

1_1 0.3850 0.8348 0.8620 0.9942 0.9924 0.9606 0.3828 0.8285 0.8281
1_2 0.5737 0.8965 0.9097 0.9556 0.9494 0.7920 0.5482 0.8512 0.7205

Table 4: Article deletions (2769 query pairs). 

Query type 
non-zero-result accuracy retrieval ratio raw accuracy 

B-API G-API G-Ngr B-API G-API G-Ngr B-API G-API G-Ngr 

Left4g 0.8292 0.9083 0.9460 0.9505 0.9428 0.7072 0.7880 0.8562 0.6690

1_1 0.5791 0.3938 0.3908 0.9978 0.9975 0.9609 0.5777 0.3928 0.3755

Left3g 0.6642 0.8983 0.8924 0.9953 0.9955 0.9413 0.6611 0.8942 0.8400
Table 5: Article insertions (5520 query pairs). 

Query type 
non-zero-result accuracy retrieval ratio raw accuracy 

B-API G-API G-Ngr B-API G-API G-Ngr B-API G-API G-Ngr 
2_2=Left5g= 
Right5g 0.6970 0.7842 0.8486 0.8285 0.8145 0.4421 0.5774 0.6388 0.3752

1_1=L3g=R3g 0.4385 0.7063 0.7297 0.9986 0.9972 0.9596 0.4379 0.7043 0.7001
1_2=R4g 0.5268 0.7493 0.7917 0.9637 0.9568 0.8033 0.5077 0.7169 0.6360

Table 6: Article substitutions (717 query pairs). 
 



5 Error Analysis 

We manually inspected examples where the 
matches on the original string were greater than 
matches on the corrected string. The results of this 
error analysis are shown in table 7. Most of the 
time, (1) the context that determined article or pre-
position use and choice was not contained within 
the query. This includes, for articles, cases where 
article usage depends either on a previous mention 
or on the intended sense of a polysemous head 
noun. Some other patterns also emerged. Some-
times (2) both and the original and the correction 
seemed equally good in the context of the entire 
sentence, for example it’s very important to us and 
it’s very important for us.  In other cases, (3) there 
was another error in the query string (recall that we 
retained all of the errors in the original sentences 
that were not the targeted error). Then there is a 
very subjective category (4) where the relative n-
gram frequencies are unexpected, for example 
where the corpus has 171 trigrams guilty for you 
but only 137 for guilty about you. These often oc-
cur when both of the frequencies are either low 
and/or close. This category includes cases where it 
is very likely that one of the queries is retrieving an 
n-gram whose right edge is the beginning of a 
compound noun (as in with the trigram have a 
lunch). Finally, (5) some of the “corrections” either 
introduced an error into the sentence or the original 
and “correction” were equally bad. In this catego-
ry, we also include British English article usage 
like go to hospital. For prepositions, (6) some of 
the corrections changed the meaning of the sen-
tence – where the disambiguation context is often 
not in the sentence itself and either choice is syn-
tactically correct, as in I will buy it from you 
changed to I will buy it for you. 

 
 Articles Preps 
 freq ratio freq ratio
1.N-gram does not con-
tain necessary context 

187 .58 183 .52

2.Original and correc-
tion both good 

39 .12 51 .11

3.Other error in n-gram 30 .9 35 .10
4.Unexpected ratio 36 .11 27 .09
5.Correction is wrong 30 .9 30 .08
6.Meaning changing na na 24 .07
Table 7: Error analysis 

 
If we count categories 2 and 5 in Table 7 as not 

being errors, then the error rate for articles drops 
20% and the error rate for prepositions drops 19%. 

A disproportionately high subcategory of query 
strings that did not contain the disambiguating con-
text (category 1) was at the edges of the sentence – 
especially for the LeftFourgrams at the beginning 
of a sentence where the query will always be a bi-
gram. 

6 Conclusion and Future Work 

We have demonstrated that web source counts can 
be an accurate predictor for distinguishing between 
a learner error and its correction - as long as the 
query strategy is tuned towards the error type. 
Longer queries, i.e. 4-grams and 5-grams achieve 
the best non-zero-result accuracy for articles, while 
SmartQueries perform best for preposition errors. 
Google N-grams across the board achieve the best 
non-zero-result accuracy, but not surprisingly they 
have the lowest retrieval ratio due to count cutoffs. 
Between the two search APIs, Bing tends to have 
better retrieval ratio, while Google achieves higher 
accuracy. 

In terms of practical use in an error detection 
system, a general "recipe" for a high precision 
component can be summarized as follows. First, 
use the Google Web 5-gram Corpus as a web 
source. It achieves the highest NZRA, and it avoids 
multiple problems with search APIs: results do not 
fluctuate over time, results are real n-gram counts 
as opposed to document count estimates, and a lo-
cal implementation can avoid the high latency as-
sociated with search APIs. Secondly, carefully 
select the query strategy depending on the correc-
tion operation and error type. 

We hope that this empirical investigation can 
contribute to a more solid foundation for future 
work in error detection and correction involving 
the web as a source for data. While it is certainly 
not sufficient to use only web data for this purpose, 
we believe that the accuracy numbers reported here 
indicate that web data can provide a strong addi-
tional signal in a system that combines different 
detection and correction mechanisms. One can im-
agine, for example, multiple ways to combine the 
n-gram data with an existing language model. Al-
ternatively, one could follow Bergsma et al. (2009) 
and issue not just a single pair of queries but a 



whole series of queries and sum over the results. 
This would increase recall since at least some of 
the shorter queries are likely to return non-zero 
results. In a real-time system, however, issuing 
several dozen queries per potential error location 
and potential correction could cause performance 
issues. Finally, the n-gram counts can be incorpo-
rated as one of the features into a system such as 
the one described in Gamon (2010) that combines 
evidence from various sources in a principled way 
to optimize accuracy on learner errors. 
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