
Investigation of Recurrent-Neural-Network Architectures and Learning

Methods for Spoken Language Understanding

Grégoire Mesnil
1,3

, Xiaodong He
2
, Li Deng,

2
and Yoshua Bengio

1

1
University of Montréal, Québec, Canada

2
 Microsoft Research, Redmond, WA, USA

3
University of Rouen, France

{gregoire.mesnil|yoshua.bengio}@umontreal.ca, {xiaohe|deng}@microsoft.com

Abstract

One of the key problems in spoken language understanding

(SLU) is the task of slot filling. In light of the recent success

of applying deep neural network technologies in domain

detection and intent identification, we carried out an in-depth

investigation on the use of recurrent neural networks for the

more difficult task of slot filling involving sequence

discrimination. In this work, we implemented and compared

several important recurrent-neural-network architectures,

including the Elman-type and Jordan-type recurrent networks

and their variants. To make the results easy to reproduce and

compare, we implemented these networks on the common

Theano neural network toolkit, and evaluated them on the

ATIS benchmark. We also compared our results to a

conditional random fields (CRF) baseline. Our results show

that on this task, both types of recurrent networks outperform

the CRF baseline substantially, and a bi-directional Jordan-

type network that takes into account both past and future

dependencies among slots works best, outperforming a CRF-

based baseline by 14% in relative error reduction.

Index Terms: spoken language understanding, word

embeddings, recurrent neural network, slot filling

1. Introduction

A major task in speech understanding or spoken language

understanding (SLU) is to automatically extract semantic

concept, or to fill in a set of arguments or “slots” embedded in

a semantic frame, in order to achieve a goal in a human-

machine dialogue. Despite many years of research, the slot

filling task in SLU is still a challenging problem, in parallel

with the intent determination task [23][27].
Until fairly recently, the main technical approaches to solving

the slot filling problem in SLU included generative modeling,

such as HMM/CFG composite models [25], and discriminative

or conditional modeling such as conditional random fields

(CRF) [13][26]. A few years ago, a new approach emerged for

advancing speech recognition, based on deep learning, which

involves many layers of nonlinear information processing in

deep neural networks [11][6]. Subsequently these techniques

have been applied to intent determination or semantic

utterance classification tasks of SLU [24][7]. Deep learning

has also been successfully applied to a number of other human

language technology areas including language modeling

[16][21], especially with the use of the naturally deep

architecture of recurrent neural networks [15]. Among these

progresses, one important advance is the invention of word

embeddings [2], successfully projecting very-high-

dimensional, sparse vector for word representations into a low-

dimensional, dense vector representation for a variety of

natural language tasks [3][4][15].

In light of the recent success of these methods, especially the

success of recurrent neural networks for language modeling

[15], we carried out an in-depth investigation of recurrent

neural networks for the slot filling task of SLU. In this work,

we implemented and compared several important recurrent

neural network architectures, e.g., the Elman-type networks

[8] [15] and Jordan-type networks [12] and their variations. To

make the results easy to reproduce and rigorously comparable,

we implemented these models using the common Theano

neural network toolkit [1], and evaluated them on the standard

ATIS (Airline Travel Information Systems) benchmark. We

also compared our results to a baseline using conditional

random fields (CRF). Our results show that on the ATIS task,

both Elman-type networks and Jordan-type networks

outperform the CRF baseline substantially, and a bi-directional

Jordan-type network that takes into account of both past and

future dependencies among slots works best.

2. The Slot Filling Task

Semantic parsing of input utterances in SLU typically consists

of three tasks: domain detection, intent determination, and slot

filling. Originating from call routing systems, domain

detection or intent determination tasks are typically treated as

semantic utterance classification. Slot filling is typically

treated as a sequence classification problem after semantic

templates for concept classes or “slots” are defined.

An example sentence is provided in Table 1, with domain,

intent, and slot/concept annotations illustrated, along with

typical domain-independent named entities. This example

follows the popular in/out/begin (IOB) representation, where

Boston and New York are the departure and arrival cities

specified as the slot values in the user’s utterance, respectively.

Sentence show flights from Boston to New York today

Slots/Concepts O O O B-dept O B-arr I-arr B-date

Named Entity O O O B-city O B-city I-city O

Intent Find_Flight

Domain Airline Travel

Table 1. ATIS utterance example IOB representation

For the slot filling task, the input is the sentence consisting of

a sequence of words, and the output is a sequence of

slot/concept IDs, one for each word. Traditionally, one of the

most successful approaches for slot filling is the conditional

random field (CRF) [13] and its variants. I.e., given the input

word sequence
 , the linear-chain CRF models

the conditional probability of a concept/slot sequence

 as follows:

 (
 |

)

∏ (

)

where

 (
) ∑ (

)

and (
) are features extracted from the current

and previous states and , plus a window of words

around the current word , with a window size of .

3. Using RNNs for Slot Filling

3.1. Word embeddings

As an alternative to N-gram models, researchers came up with

several different techniques based on learning Euclidean space

structures for words. A real-valued embedding vector is

associated with each word, and these embeddings are usually

trained in an unsupervised way on a large corpus of natural

language, e.g. Wikipedia. The architecture of these models can

vary from shallow neural nets (NN) [19] or convolutional nets

(SENNA) [4] to recurrent neural nets (RNN) [15]. The learned

word embedding shows good generalization properties across

many common natural language processing (NLP) tasks [4].

The neural network architectures evaluated in this paper are

based on such word embeddings.

3.2. Short-term dependencies captured using a word

context window

Without considering a temporal feedback, the neural network

architecture corresponds to a simple feed-forward multi-layer

perceptron (MLP), e.g., with a hidden layer and sigmoid

activations. To capture short-term temporal dependencies in

this setting, one can use a word-context window. With each

word mapped to an embedding vector, the word-context

window is the ordered concatenation of word embedding

vectors. Here is an example of constructing the input vector

with the word context window of size 3:

 () []

 () () []

In the example, () is the 3-word context window

around the t-th word ‘from’, is the embedding vector of

the word ‘from’, and d is the dimension of the embedding

vector. Correspondingly, () is the ordered concatenated

word embeddings vector for the words in ().

In the feed-forward NN [11], the raw input vector x is first

fed into the hidden layer h. After a non-linear transformation,

the output of the hidden layer h is then fed into the output

layer to generate the final output y.

3.3. Two types of RNN architectures

At the highest level of complexity for slot filling, one has to

take into account the slot/concept dependencies (sequences of

labels) beyond the words surrounding the word of interest (the

context word window that captures short-term dependencies).

Here we first describe two variants of RNNs for modeling slot

sequences: the Elman-type RNN [8] and the Jordan-type RNN

[12]. Using RNNs to model long-term dependencies will be

presented in the next sub-section. In contrast to a feed-forward

NN, in the Elman-type RNN, the output from the hidden layer

at time t-1 is be kept and fed back to the hidden layer at time t,

together with the raw input () for time t. This can be

interpreted as having an additional set of virtual “context

nodes”, where there are connections from the hidden layer to

these context nodes fixed with a weight of one. At each time

step, the input is propagated in a standard feed-forward

fashion, and then a parameter updating rule is applied, taking

into account the influence of past states through the recurrent

connections. In this way, the context nodes always maintain a

copy of the previous values of the hidden nodes, since these

propagate through the recurrent connections from time t-1,

before the updating rule is applied at time t. Thus the network

can maintain and learn a sort of state summarizing past inputs,

allowing it to perform tasks such as sequence-prediction that

are beyond the power of a standard feed-forward NN.

Precisely, dynamics of the Elman-type RNN can be

represented mathematically by

 () (() ())

where we use the sigmoid function at the hidden layer:

 ()

and a softmax function at the output layer:

 () (()) ()

∑

where U and V are weight matrices between the raw input and

the hidden nodes, and between the context nodes and the

hidden nodes, respectively, while W is the output weight

matrix. The input vector () has as dimensionality that of the

word embeddings multiplied by the number of words in the

context window. () corresponds to the hidden layer, and

 () has as dimensionality the number of classes; i.e., 127 for

the ATIS slot filling task.

Jordan-type RNNs are similar to Elman-type networks,

except that the context nodes are fed from the output layer

instead of from the hidden layer. The context nodes in a

Jordan-type network are also referred to as the state layer. The

difference between Elman and Jordan-type networks appears

only in the hidden layer input:

 () (() ())

3.4. Long-term dependencies captured using a RNN

To capture dependencies beyond the input window, we need to

exploit the time-connection feedback, giving rise to the RNN

architectures. Learning long-term dependencies with RNNs

raises an optimization problem known as the vanishing

gradient problem. Indeed, capturing longer time dependencies

correspond to training a deeper model when the RNN is

unfolded in time (i.e., each time instance of a layer being a

separate layer of a deep net). Rather than training classical

RNNs in this way, we can directly provide some of the past

information from different time steps. Instead of relying only

on learning through one-step recurrences to capture context,

one can combine recurrence with the idea of input window.

This is achieved by feeding the network with concatenation of

the T previous time steps vectors (from the output layer as in

the Jordan-type network or the hidden layer as in the Elman-

type network) in addition to the use of word context windows.

This also provides a way to obtain the most accurate number

of time steps to consider for a particular task. In the case of

Elman-type networks, the feedback from the output layer leads

to the following backward model (predicting from the future to

the past) and forward model (predicting from the past to the

future):

 () (() ∑ ()

)

and

 () (() ∑ ()

)

Further, since having only backward or forward time

dependencies uses only partial information available, it would

be helpful to consider both past and future dependencies

together. Bi-directional Elman-type RNNs have been studied

in the past [18] and in this paper, we consider variants of bi-

directional Jordan-type RNNs:

 () (() ∑ ()

∑ ())

where and denote the output of a backward model and a

forward model in the Jordan-type RNN, respectively.

3.5. Learning methods

3.5.1. Fine-tuning word embedding

Once the word embeddings have been learned in an

unsupervised fashion [3][15], it is possible to fine-tune them

during supervised training on the task of interest. Actually, this

is double-edged: the model could fit the task better but the risk

of overfitting may arise. We compare both cases

experimentally in Section 4.

3.5.2. Sentence-level and word-level gradient descents

The average length of a sentence in the ATIS data set is about

15 words. With such relatively long inputs, training RNN

models could be tricky if updates are done online (i.e., after

each word). This is because the predictions at the current word

have been made with model parameters that are no longer

current, and the sequence of predictions does not correspond

to the one that could be performed with a fixed parameter set.

For instance, if we want to predict or perform an update at the

17th slot of a sentence with a forward RNN model, we would

have to re-compute all the values from the beginning of the

sentence in order to get “correct” predictions consistent with

the current model parameters.

For training the Elman-type RNN, one option to prevent

the above problem is to perform mini-batch gradient descent

with exactly one sentence per mini-batch. For a given

sentence, we perform one pass that computes the mean loss for

this sentence and then perform a gradient update for the whole

sentence. This approach performs well even if the mini-batch

size varies for the sentences with different lengths.

A similar learning technique has also been applied for

training the Jordan-type RNN, which corresponds to

performing parameter updates after each word. Like in the

mini-batch case, we compute all slot values for the sentence in

one pass. Then, we keep this history of values as an

approximation to the exact values and perform one gradient

step for each word. In the experiments, we have observed fast

convergence between the exact and approximate slot values.

3.5.3. Dropout regularization

We found that training bi-directional RNNs on the

slot/concept predictions of previously trained RNNs gave us

poor generalization results due to overfitting. In order to

address this issue, we implemented a recently introduced

regularization technique called dropouts [10] that omits a

given proportion of the hidden nodes for each training sample

as well as parts of the input vector. Experimental results show

that it allows us to improve the performance of the bi-

directional RNN over regular RNNs.

4. Experimental Evaluation

We use the ATIS corpus as used extensively by the SLU

community, e.g. [9][17][22]. The training set contains 4978

utterances selected from Class A (context independent)

training data in the ATIS-2 and ATIS-3 corpora, while the test

set contains 893 utterances from the ATIS-3 Nov93 and Dec94

datasets. In the evaluation, we only use lexical features in the
experiments.

4.1. Corpus for learning word embeddings

The methods and data used for learning word embeddings

might impact performance on the slot filling task we are

interested in. In order to evaluate that impact, different

procedures for learning word embeddings have been

considered, including SENNA [4] and RNNs [14]. For

SENNA, we directly download the embeddings pre-trained on

the Wikipedia corpus. RNN word embeddings were obtained

by running the RNNLM toolkit available online [14]. We also

took into account the dimension d of the embedding as a factor

of variation. For data, we consider three semantically different

corpora for embedding training: Wikipedia, Gutenberg, and

Broadcast news. A Wikipedia snapshot is downloaded from

[20]. Gutenberg corresponds to digitized books with expired

copyrights which we downloaded and built ourselves. For the

Broadcast news corpus, we directly downloaded the word

embeddings provided by [14] on the RNNLM website.

4.2. Results on word embeddings

To evaluate the impact on SLU of learning methods and data

for word embedding training, we test different types of word

embeddings trained on different corpora and by different

methods. We first consider a frame-level MLP setting (e.g., a

feed-forward MLP with inputs of only word embedding

features within a word context window), and we compare

results of using the embeddings as is versus fine-tuning them

during training. Results are also compared with randomly

initialized word embeddings of various dimensions

 which are fine-tuned during training. In the

experiment, an MLP with hidden nodes is trained. 1000

sentences of the original ATIS training set are held out as a

validation set for choosing the best word context window size

and hyper-parameters. The model is then re-trained with the

best set of hyper-parameters on the whole ATIS training set.

method Corpus embedding’s

dimension
w/o fine-

tuning
w/ fine-
tuning

SENNA Wikipedia 50 92.01 92.38

RNNLM Wikipedia 100 90.51 90.61

Gutenberg 100 90.20 90.31

Broadcast 80 90.14 90.58

Random N/A 50 N/A 90.26

80 90.94

100 90.81

Table 2: F1 score on the ATIS task for different methods and

training corpora for the embeddings, with the corresponding

dimension of word embeddings.

We first observe from Table 2 that fine-tuning word

embeddings is helpful, improving results by a small but

consistent margin across the board. We also find that SENNA

embeddings gives the best performance. We hypothesize that

this may essentially be due to a conditioning issue, since the

norm of SENNA word vectors is kept normalized to 1 during

training while it is not the case for RNNLM. As indicated by

the RNNLM results, word embeddings trained on a

semantically different corpus (Wikipedia, Gutenberg, and

Broadcast) lead to similar performance, and the differences

become even smaller after fine-tuning. In later experiments,

we use the embeddings from SENNA.

4.3. Results on Jordan-RNN

There are several choices for feeding the Jordan-type RNN

with outputs from previous or future time steps. The first

option takes the output probabilities of the NN. Intuitively,

probabilities would allow the model to perform a kind of

disambiguation since no hard decision is made. The second

option considers the hard decision of the model in both the

training and testing phases. The third option differs from the

last choice during training: the model is trained with ground

truth labels, while at test time, since no ground truth labels are

available, the hard decisions are used.

For all these options, we measure the precision, recall and

F1-score using the conlleval.pl script [22] and compare it to a

CRF baseline. The CRF hyper-parameters, i.e., window sizes

and regularizers, have been chosen using 5-fold cross

validation on the ATIS training set. We use the CRFpp toolkit

[5] to run these experiments. Results are reported in Table 3.

All the Jordan-type RNNs outperform the CRF baseline. As

expected, the probability-based J-RNN outperforms the hard-

decision-based version. More interestingly, the forward

Jordan-type RNN trained with ground-truth labels obtains the

best performance although there is a condition mismatch (e.g.,

no ground truth label is available in testing). This may be

because training with model-predicted labels, either in the

hard-decision form or the probability form, could introduce

unnecessary noise or convergence difficulty in training.

Model Precision Recall F1-score

CRF baseline 94.08 91.82 92.94

Prob. – (past) 92.93 93.66 93.39

Prob. – (future) 92.93 93.58 93.26

Hard – (past) 92.52 93.76 93.14

Hard – (future) 92.55 93.76 93.15

Ground – (past) 93.42 94.11 93.77

Ground – (future) 92.76 93.87 93.31

Table 3: results on several choices of sequential inputs in the

Jordan-type RNN predicting from the past/future i.e.,

forward/backward: probabilities, hard decisions or ground-

truth during training and hard decisions for testing.

4.4. Results on slot filling accuracy

We compare the performance of the introduced RNNs and

CRF at the sequential level, along with a frame-level MLP and

a Logistic Regression models. Since the NN-based models use

word embeddings that leverage unsupervised information from

Wikipedia, we clustered all the words in Wikipedia into 200

clusters and add a cluster ID for each word as a discrete

feature to the CRF and the Logistic Regression models to

make the results comparable. As before, baselines have been

trained with CRFpp with 5-fold cross validation for the

regularization parameter and the optimal window size.

Experimental results in Table 4 show that models that

consider sequential dependency outperform models that don’t,

and the RNN models consistently outperform the CRF model.

We also observe that the Elman-type RNN’s forward version

(e.g., use past information) performs very well while its

backward version (e.g., use future information) gives worse

results, though mathematically these two versions are

symmetric to each other. Further analysis of the ATIS dataset

shows that most of the concept slots to be predicted in ATIS

are located in the second half of sentences, which makes the

backward model perform predictions with very little historical

information. This is also shown by the best hyper-parameters

found for the Elman-type RNN which included a window of

size for the forward model and for the backward model.

The backward model was trying to get the historical

information inside the word context window while it was

available in the hidden layer for the forward model.

The Jordan-type RNNs, although giving similar results to

the forward Elman-type RNN, has shown to be more robust to

this problem. Further, the bi-directional version of the Jordan-

type RNN improves upon both the backward and forward

Jordan models. It is trained with dropout regularization [9] and

rectifiers nodes i.e., () () , for epochs and

with a batch size of . Input nodes are dropped out with a

probability while for hidden nodes we used .

Compared to the CRF+Wiki baseline, it yields an absolute

improvement of the F1 score of 0.98%, corresponding to a

relative error reduction of 14%.

Models Prec. Rec. F1

Logistic Regress. 91.54 90.73 91.13

Logistic Regress.+Wiki 91.82 91.82 91.82

Frame-NN 92.17 92.59 92.38

CRF 94.08 91.82 92.94

CRF+Wiki 93.77 92.25 93.00

Elman-RNN (past) 93.25 94.04 93.65

Elman-RNN (future) 91.75 92.49 92.12

Jordan-RNN (past) 93.42 94.11 93.77

Jordan-RNN (future) 92.76 93.87 93.31

Bi-dir. Jordan-RNN 93.82 94.15 93.98

Table 4: Detailed performance measures (precision, recall, and

F1 score) for a set of models evaluated on ATIS.

5. Conclusion and Discussion

We carried out comprehensive investigations of RNNs for the

task of slot filling in SLU. We implemented and compared

several RNN architectures, including the Elman-type and

Jordan-type networks with their variants. We also studied the

effectiveness of word embeddings for slot filling. To make the

results easy to reproduce and to compare, we implemented all

networks on the common Theano neural network toolkit, and

evaluated them on the ATIS benchmark. Our results show that

both Elman and Jordan-type networks outperform the CRF

baseline substantially, both giving similar performance. A bi-

directional version of the Jordan-RNN gave the best

performance, outperforming the CRF-based baseline by 14%

in relative error reduction. Future work will explore more

efficient training of RNNs and the choice of more

comprehensive features [28] and using a different RNN

training toolkit [14] incorporating more advanced features.

6. References

[1] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R.

Pascanu, G. Desjardins, J. Turian, D. Warde-Farley and

Y. Bengio, “Theano: A CPU and GPU Math Expression

Compiler,” Proc. Python for Scientific Computing

Conference (SciPy) 2010.

[2] Y. Bengio, R. Ducharme and P. Vincent, “A Neural

Probabilistic Language Model”, in NIPS 2000

[3] R. Collobert and J. Weston, “A unified architecture for

natural language processing: deep neural networks with

multitask learning,” in ICML 2008.

[4] R. Collobert, J. Weston, L. Bottou, M. Karlen, K.

Kavukcuoglu, and P. Kuksa, “Natural language

processing (almost) from scratch,” in Journal of Machine

Learning Research, vol. 12, 2011.

[5] CRPpp: http://crfpp.googlecode.com/svn/trunk/doc/index

[6] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-

Dependent Pre-trained Deep Neural Networks for Large

Vocabulary Speech Recognition, in IEEE Transactions

on Audio, Speech, and Language Processing,” vol. 20,

no. 1, pp. 30-42, January 2012.

[7] L. Deng, G. Tur, X. He, and D. Hakkani-Tur, “Use of

Kernel Deep Convex Networks and End-To-End

Learning for Spoken Language Understanding,” IEEE

Workshop on Spoken Language Technologies, December

2012.

[8] J. Elman, “Finding structure in time,” in Cognitive

Science, 14 (2), 1990.

[9] Y. He and S. Young, “A data-driven spoken language

understanding system,” in IEEE ASRU 2003.

[10] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,

and R. Salakhutdinov, “Improving neural networks by

preventing co-adaptation of feature detectors,” arXiv:

1207.0580v1, 2012.

[11] G. Hinton, Li Deng, Dong Yu, George Dahl, Abdel-

rahman Mohamed, Navdeep Jaitly, Andrew Senior,

Vincent Vanhoucke, Patrick Nguyen, Tara Sainath,, and

Brian Kingsbury, “Deep Neural Networks for Acoustic

Modeling in Speech Recognition,” in IEEE Signal

Processing Magazine, vol. 29, no. 6, pp. 82-97, Nov.

2012.

[12] M. Jordan, “Serial order: A parallel distributed processing

approach,” in Tech. Rep. No. 8604. San Diego:

University of California, Institute for Cognitive Science.

[13] J. Lafferty, A. McCallum, and F. Pereira, “Conditional

random fields: Probabilistic models for segmenting and

labeling sequence data,” in ICML 2001.

[14] T. Mikolov, http://www.fit.vutbr.cz/~imikolov/rnnlm/

[15] T. Mikolov, Stefan Kombrink, Lukas Burget, Jan

Cernocky, and Sanjeev Khudanpur, “Extensions of

recurrent neural network based language model,” in

ICASSP 2011.

[16] A. Mnih and G. Hinton, “A scalable hierarchical

distributed language model” in NIPS, 2008, pp. 1081-

1088.

[17] C. Raymond and G. Riccardi, “Generative and

discriminative algorithms for spoken language

understanding,” in Interspeech 2007.

[18] M. Schuster and K. Paliwal, “Bidirectional recurrent

neural networks,” in IEEE Transactions on Signal

Processing, November 1997.

[19] H. Schwenk and J-L. Gauvain, “Training neural network

language models on very large corpora,” in HLT/EMNLP

2005.

[20] C. Shaoul and C. Westbury. 2010. The Westbury lab

wikipedia corpus.

[21] Socher, R., Lin, C., Ng, A., and Manning, C. “Learning

continuous phrase representations and syntactic parsing

with recursive neural networks,” Proc. ICML, 2011.

[22] G. Tur, D. Hakkani-Tur, and L. Heck, “What is left to be

understood in ATIS?” in IEEE SLT, 2010.

[23] G. Tur and L. Deng, “Intent Determination and Spoken

Utterance Classification,” in Chapter 4, Tur and De Mori

(eds). Spoken Language Understanding: Systems for

Extracting Semantic Information from Speech, pp. 81-

104, Wiley, 2011

[24] G. Tur, L. Deng, D. Hakkani-Tur, and X. He, “Towards

Deeper Understanding Deep Convex Networks for

Semantic Utterance Classification,” in ICASSP, 2012.

[25] Y. Wang, L. Deng, and A. Acero, “Spoken Language

Understanding — An Introduction to the Statistical

Framework,” IEEE Signal Processing Magazine, vol. 22,

no. 5, pp. 16-31, 2005.

[26] Y. Wang, L. Deng, and A. Acero, “Semantic Frame

Based Spoken Language Understanding,” in Chapter 3,

Tur and De Mori (eds) Spoken Language Understanding:

Systems for Extracting Semantic Information from

Speech, , pp. 35-80, Wiley, 2011.

[27] S. Yaman, L. Deng, D. Yu, Y. Wang, and A. Acero, “An

integrative and discriminative technique for spoken

utterance classification,” IEEE Trans. Audio, Speech, and

Language Processing, vol. 16, no. 6, pp. 1207–1214,

2008.

[28] K. Yao, G. Zweig, M-Y. Hwang, Y. Shi, D. Yu,

“Recurrent neural networks for language understanding”,

submitted to Interspeech 2013.

http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=144412
http://research.microsoft.com/apps/pubs/default.aspx?id=144412
http://research.microsoft.com/apps/pubs/default.aspx?id=144412
http://research.microsoft.com/apps/pubs/default.aspx?id=172597
http://research.microsoft.com/apps/pubs/default.aspx?id=172597
http://research.microsoft.com/apps/pubs/default.aspx?id=172597
http://research.microsoft.com/apps/pubs/default.aspx?id=171498
http://research.microsoft.com/apps/pubs/default.aspx?id=171498
http://www.fit.vutbr.cz/~imikolov/rnnlm/
http://research.microsoft.com/apps/pubs/default.aspx?id=143685
http://research.microsoft.com/apps/pubs/default.aspx?id=143685
http://research.microsoft.com/apps/pubs/default.aspx?id=164624
http://research.microsoft.com/apps/pubs/default.aspx?id=164624
http://research.microsoft.com/apps/pubs/default.aspx?id=164624
http://research.microsoft.com/apps/pubs/default.aspx?id=75236
http://research.microsoft.com/apps/pubs/default.aspx?id=75236
http://research.microsoft.com/apps/pubs/default.aspx?id=75236
http://research.microsoft.com/apps/pubs/default.aspx?id=143686
http://research.microsoft.com/apps/pubs/default.aspx?id=143686

