A Case for Bufferless Routing in On-Chip Networks

Thomas Moscibroda
Microsoft Research
moscitho@microsoft.com

ABSTRACT

Buffers in on-chip networks consume significant energy, oepy chip
area, and increase design complexity. In this paper, we make case for a
new approach to designing on-chip interconnection network that elimi-
nates the need for buffers for routing or flow control. We descbe new
algorithms for routing without using buffers in router inpu t/output ports.
We analyze the advantages and disadvantages of bufferlessuting and
discuss how router latency can be reduced by taking advantagof the fact
that input/output buffers do not exist. Our evaluations shav that rout-
ing without buffers significantly reduces the energy consumption of the
on-chip cache/processor-to-cache network, while providg similar per-
formance to that of existing buffered routing algorithms at low network
utilization (i.e., on most real applications). We concludehat bufferless
routing can be an attractive and energy-efficient design opon for on-
chip cache/processor-to-cache networks where network Uization is low.

Onur Mutlu
Carnegie Mellon University

onur@cmu.edu

area: even with a small number (16) of total buffer entriesnuele
where each entry can store 64 bytes of data, a hetwork witto6ds
requires 64KB of buffer storage. In fact, in the TRIPS prypat
chip, input buffers of the routers were shown to occupy 75%hef
total on-chip network area [22]. Energy consumption andiware
storage cost of buffers will increase as future many-coipschvill
contain more network nodes.

In this paper, we propose to eliminate buffers in the desfgmme
chip cache-to-cache and cache-to-memory networks to iegroth
energy- and area-efficiency, as well as reduce network desig-
plexity and router latency. The basic idea of “bufferlesstimg” is
to always route a packet (or a flit) to an output poegardless of
whether or not that output port results in the lowest distatacthe
destination of the packet. In other words, packets are detleor
“misrouted” [12] by the router to a different output port ifi @autput
port that reduces the distance to the destination node avadable.

Categories and Subject Descriptors:C.1.2 [Computer Systems Organiza-Bufferless routing has also been called “hot-potato” mgitin net-

tion]: Multiprocessors—Interconnection architectur€si.4 [Parallel Archi-
tectures]: Distributed architectures.

General Terms: Design, Algorithms, Performance.
Keywords: On-chip networks, multi-core, routing, memory systems.

1. INTRODUCTION

Interconnection networks are commonly used to conneatreifft
computing components [12]. With the arrival of chip multpessor
systems, on-chip interconnection networks have startédrto the

work theory [2], alluding to the scenario that the router iettiately
needs to pass the potato (i.e. the packet) on to some other amsi
the potato is too hot to keep (i.e. buffer).

We propose and evaluate a set of simple and practical buffer-
less routing algorithms (BLESS), and compare them agaasstlme
buffered algorithms in terms of on-chip network energy congtion
and latency. We find that BLESS routing can yield substangidlic-
tions in network energy consumption, while incurring étéxtra la-
tency (versus buffered algorithms) if the average injettaffic into
the network is low, i.e. below the network saturation pole find

backbone of communication between cores and cores and memgat in most application scenarios, due to low cache missyahe

within a microprocessor chip [53, 42, 24, 6]. Several nekaan-

average injected traffic into the cache-to-cache and caehgemory

chip (NoC) prototypes show that NoCs consume a substartfal pnetworks is very low, making BLESS a potentially attractivecha-
tion of system power:=30% in the Intel 80-core Terascale chip [24]nism for on-chip networks.

and ~40% in the MIT RAW chip [50].
sumption has already become a limiting constraint in thegdesf
high-performance processors [20] and future on-chip nedsvin
many-core processors are estimated to consume hundredstefofs
power [6], simple energy- and area-efficient interconmectietwork
designs are especially desirable.

Previous on-chip interconnection network designs comgnast
sumed that each router in the network needs to contain kufter
buffer the packets (or flits) transmitted within the netwotkdeed,
buffering within each router improves the bandwidth efficigin the
network because buffering reduces the number of droppechis-“
routed” packets [12], i.e. packets that are sent to a lesisathées
destination port. On the other hand, buffering has sevasaldgan-
tages. First, buffers consume significant energy/powenadyc en-
ergy when read/written and static energy even when theyatrea
cupied. Second, having buffers increases the complexitiieohet-
work design because logic needs to be implemented to plateisa
into and out of buffers. Third, buffers can consume signifiazhip

Permission to make digital or hard copies of all or part o tiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ISCA'09,June 20-24, 2009, Austin, Texas, USA.

Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.

As power/energy con-

Contributions: This work makes the following contributions:

e We propose a variety of simple and effective routing aldponis
for bufferless routing. We show how bufferless routing cereb
fectively combined with wormhole routing.

e We comprehensively evaluate the network energy consumptio
performance, latency, and area requirements of buffertaging
using real applications simulated on a self-throttlingpchiul-
tiprocessor (CMP) on-chip-network, as well as using sytithe
workloads. We show that bufferless routing can result iraye
network energy reduction e£40% without significantly impact-
ing application performance, while reducing network butieea
requirements by-60%.

e \We show how eliminating buffers can enable reductions itietou
latency. The reduced router latency can enable bufferaging
algorithms to outperform baseline buffered algorithms.

2. WHY COULD IT WORK?

Atfirst thought, eliminating buffers in on-chip intercoratien net-
works might appear audacious, since it will result in anéase in av-
erage packet latencies and a decrease in achievable netwaouikh-
put compared to buffered routing schemes. Moreover, theoédc
be other issues such as livelocks. Nonetheless, the appooatd
be suitable for on-chip networks, as we describe below.ithngly,
bufferless deflection routing works well when network atliion is

low. A packet is deflected only if a collision occurs in a rautee.,
if multiple packets arrive at a router at the same time, ambifall
of these packets can be sent in a productive directitfronly few
packets are in the network simultaneously, the number distmis

flit through the network, and different flits from the samelgenay
take different path8.When there is contention between multiple flits
that are destined for a particular direction, only one obth8lits is
actually sent to the corresponding output port. In such a,cas-

is low. Hence, most packets progress quickly and can beddote ditional routing algorithms would temporarily store suchsfin a

their destination without being frequently deflected.

For larger traffic volumes, the fundamental effect of remgvi
buffers is areduction of the total available bandwidihthe network.
In a buffered network, a packet waits idle in some bufferluntan
be routed in a productive direction and therefore does noeces-
sarily consume link bandwidth while it is buffered. In cast, in

a bufferless network all packesdwaysconsume link bandwidth be-

cause, in effect, links act as “buffers” for the packets. réfare, be-
yond a certain packet injection rate into the network, bildfes rout-
ing algorithms will fail, while good buffered routing algtrms can
still perform well. More precisely, the network saturatibmoughput

buffer within the router; and credits would flow between iigring
routers in order to prevent buffer overflows. In contrastESIS does
not have buffers and therefore sends these flits to otheznpally
undesirable output ports. In other words, flits that canmosént to
a productive direction are “deflected.” The basic idea of BlSHs
that deflected packets will eventually reach their destinat and—
as we show in our evaluation—that the total extra latencytduke
detours resulting from deflections is not too high.

Network Topology: BLESS routing is feasible on every network
topology that satisfies the following two constraints: Bveuter 1)
has at least the same number of output ports as the numbes of it

OBrEss Of bufferless routing is less than the saturation throughpuput ports, and 2) is reachable from every other router. Mamn

of buffered routing® 5.
The critical questions that determine the potential usefss of
bufferless routing in on-chip interconnection networkg dnere-

portant topologies such as Mesh, Torus, Hypercubes, os Bagésfy
these criteria. However, bufferless routing cannot eds#yapplied
to networks with directed links, such as the Butterfly netyas a

fore 1) how much energy reduction can be achieved by elinmigat deflected packet may no longer be able to reach its destmEiti).

buffers, 2) how large is the gap betwe@xirrss and © 5, and
how well does bufferless routing perform at injection rabbesow

In the sequel, we specifically assume a Mesh topology.
Injection Policy: A processor can safely inject a flit into its router

OBLEss, 3) are there any realistic situations in which an interconvhen at least one incoming link (from other routers) is fréaless

nection network is operated at a traffic injection rate be®w:, s s,
and 4) are there benefits to eliminating buffers, such aslgiitypof
design or ability to reduce router latency?

all input ports are busy, there must be at least one free bptpt,
to which a newly injected flit can be sent. That is, all incomiftits
can be routed to some direction. Observe that this allowsrftirely

Our results in this paper show that the answers to the fireethitocal flow and admission controévery processor can locally decide

questions are promising for bufferless routing in on-chiworks.
Many on-chip interconnection networks are observed to teratp
ing at relatively low packet injection rates [27, 25], whiate sig-
nificantly below their peak throughput, an observation waficm
in this paper using realistic applications and a self-thingf CMP
network design in which processors stop injecting into tetvork
once their internal buffers (e.g. MSHRs [29]) become fulbr ih-

whether or not it can inject a flit in a given cycle. Thus, in tast to
existing routing algorithms, BLESS does not require a d¢rbdsed
system to avoid overflows.

Arbitration Policy: The algorithm’s arbitration policy has to decide
which incoming flit is routed to which output port. The arhiion
policy of BLESS is governed by two componentstaaking com-
ponentand anport-selection componentn combination, these two

stance, the L1 miss rate is typically below 10%, which, in g chcomponents determine the arbitration of flits, but the canepts are

multiprocessor with a distributed shared L2 cache, resaoltgery
low packet injection rates for the network connecting L1hescand
L2 cache banks [9]. Hence, bufferless routing, which penfowell
at low packet injection rates can be a promising approacbrfarhip
networks that primarily operate at low utilization.

Finally, this paper also provides promising answers to theth
question by analyzing the tradeoffs, advantages, and \distaljes
involved in bufferless routing and utilizing the lack of Eerfs to sim-
plify router design and reduce router latency in a simple.way

3. ON-CHIP BUFFERLESS ROUTING

3.1 Overview

The basic principle of bufferless routing in on-chip intmoect
networks is simple: Since in bufferless routing routersncarstore
packets in transit, all packets that arrive at a router mastediately
be forwarded to an adjacent router. We first present a singsk&on
of our algorithm (FLIT-BLESS) in which routing is flit-swited, i.e.,
every flitis routed through the network individually. We theropose

orthogonal in the sense that they can be changed indepéndent

BLESS’ arbitration policy isank-based In every cycle, the router
ranks all incoming flits using théit-ranking component For each
flit, the port-prioritization componentanks the available output ports
in order of their “desirability” for this flit. The router timeconsiders
the flits one by one in the order of their rank (highest rank)faad
assigns to each flit the output port with highest priorityt thas not
yet been assigned to any higher-ranked flits.

Example: Consider two flits A and B contending in a router. Let
the flit-ranking component rank A higher than B, and let thet{po
priorities for A and B be&N, E) and (N, W), respectively. BLESS will
assign A to North, and B to West.

We now discuss flit-ranking and port-prioritization compats of
FLIT-BLESS in detail.

FLIT-BLESS: Flit-Ranking: We implement and evaluate five
different flit-ranking schemes in BLESS (see Table 1, Roviiifer-
ent policies have different advantages and disadvantdgesever,
as we show in the evaluation (see §7.6) the simple Oldest-f)
policy, which ensures there is a total age order among flidspaior-

WORM-BLESS, an optimization to FLIT-BLESS which combinestizes older flits, performs the best over a wide range ofesaboth

bufferless routing with ideas from wormhole routing. Figah 8§3.4,
we show how BLESS can seamlessly be usét buffers, if desired.
We discuss advantages and disadvantages of BLESS in §5.

3.2 Basic Algorithm: Flit-Level Routing

in terms of average/maximum latency and deflection-conatfgy-
efficiency. OF has another crucial advantage over othecigslin
that it is guaranteed to avoid livelocks (see below). Fosé¢hivo
reasons, we select OF as our primary ranking policy. Impigime
OF such that there is a total age order of flits is non-trivildwever,

Overview: In flit-level bufferless routing (FLIT-BLESS or simply there are previously-researched techniques (e.g. timestg [34])

FLIT), each flit of a packet is routed independently of evetiyeo

to make OF implementable.

A productive direction is a direction (or output port) thatrigs the packet closer to 2Technically, what we call a flit in FLIT-BLESS is actually a&pket” as it is a unit of
its destination [45]. A non-productive direction bring® thacket further away from its routing, but we refer to it as “flit" to keep consistency withORM-BLESS, which is

destination.

explained later.

[Flit Ranking Rules Comments |
Rule 1) MSF: Must-Schedule First| (see Section 3.4)
Rule 2) Evaluated flit-ranking rules
— 1) OF: Oldest First Older flits before younger flits.
— i) CF: Closest First Flits closer to their destination before
flits whose remaining distance is larggr.
— i) DEFs: Most Deflections First| Flits that have been deflected more
before flits deflected fewer times.

— iv) RR: Round Robin Flits from different input ports
are ranked in round robin fashion.
— V) Mix: Mixed Policy In odd (even) cycles, use OF (RR).

Table 1: Different flit-ranking schemes. The highest priorty MSF rule
applies only to BLESS with buffers (see Section 3.4).

FLIT-BLESS: Port-Prioritization: Table 2(left) shows the port-
prioritization rules of FLIT-BLESS. For a given flit, the rau picks
the output port that conforms to the highest priority acewydo the
figure. In the case of FLIT-BLESS, this simply means that prtide
directions are preferred over non-productive directiofishere are
two possible ports with same priority, the router picks thginection
over y-direction as in dimension-order routing. Duringstprocess,

only freeoutput ports are considered, i.e., ports not already asgign

to higher-ranked flits in the same cycle.

Deadlocks: Guaranteeing the absence of deadlocks and livelock

is of critical importance to any routing algorithm. The udeleflec-
tion routing and ensuring that the number of output ports riouer
is greater than or equal to the number of input ports ensudead-
locks can occur. Protocol (request-reply) deadlocks acédad by
ensuring that replies can always reach their destinatiameply in-
herits the age of its corresponding request and OF rankiegrea
the oldest flit will always be delivered to its destination.

would be deflected. With buffers, this pure form of wormhalating
can be enabled using credit-based flow-control and is védigieaft.
Without buffers, however, pure wormhole routing is impb#sibe-
cause the injection policy becomes unclear, and liveloeksocur.

e Injection Problem: In FLIT-BLESS, a processor can inject a
packet whenever at least one input port is free. If all flitsaof
packet have to be routed in succession, this is no longeitpess
If an input port is free and a processor starts injecting amyadr
could happen that in a subsequent cycle (while this packet-n
tion is still going on), flits arrive on all input ports. In thcase, the
router would be unable to send out all incoming flits, whiclhe
absence of buffers, must not happen. Say, in a 2D-Mesh, a core
starts injecting an 8-flit worm into the router at cydle(because
not all of the input ports were busy). At cyclé+ 3, new worms
arrive at all four input ports to be forwarded to other rostéYow,
at cycleT + 3, there are 5 worms (flits) that need to be routed to 4
output ports, which is not possible.

e Livelock Problem:If entire worms can be deflected, livelock can
occur because arbitration is performed only for head-ihen a

worm arrives at a router, even if it is the oldest in the nekydtr

g‘night not get a chance to arbitrate with other worms in other i
put ports because other worms might already be transmittieig
body flits. In such a case, the oldest worm is deflected instéad
being prioritized. This can happen for the same worm in aitecs
and as a result the worm might never reach its destinaticglplik
ensues.

In WORM-BLESS, we solve these problems usiagrm trunca-
tion. As in baseline wormhole routing, each router maintainslan a

Livelocks: The combination of OF ranking and port-prioritizatiorlocation of worms to output ports. Once the head-flit of a padk

ensures that no livelocks can occur. In OF, the oldest fliighdst-
ranked and hence, it can always be assigned a productivetidire
By induction, this guarantees that no livelocks can occurabse
once a flit is the oldest flit in the network, it cannot be deéedcany-
more and is guaranteed to make forward progress until ihesaits
destination. Eventually, a flit will become the oldest flitthre net-
work, after which it cannot be deflected any more.

Implementation: In FLIT-BLESS, every packet is routed individ-

ually through the network. Therefore, every flit needs taaimrrout-
ing information, or in other words, every flit needs to bbeead-flit
BLESS adds additional wires between routers to transpisririfor-

routed to a specific output port, this port is allocated ts thbrm
until the tail-flit of the worm passes the output port (se€] fb2 a
detailed description of wormhole routing). This allocatie accom-
plished by keeping a small table in the router that contaiftrina-
tion on which output port is allocated to which worm.
WORM-BLESS: Injection Policy: The injection policy remains
the same. A worm can be injected whenever in a cycle, not all 4
input ports are busy. In case new worms arrive on all 4 inputspo
while the source is injecting a worm, the injected worm isitated.
The second part of the worm can be injected as soon as onepiogtut
becomes free. When a worm is truncated, the first flit of thedated

mation. Our evaluations show that the energy consumed ksethworm's second part becomes a new head-flit.

additional wires is small, compared to the energy savingstdunot
having buffers in the routers. As in the baseline algorithadestina-
tion BLESS router buffers received flits in a receiver-sidéfédr until
all flits of a packet have arrived upon which the packet isvéedid to
the receiving processor.

3.3 BLESS Wormhole Routing

Compared to wormhole routing [11] in traditional, bufferease-
line routing algorithms, flit-level switching in FLIT-BLEShas three
potential disadvantages. First, itrist energy-optimabecause every
flit needs to be a head-flit, i.e., the additional headersvireed to be
activated for every flit instead of only the first flit of a patkss in
baseline algorithms. Second, it can have a negative impgagacket
latency. The reason is that since every flit may take a diftereute
through the network, it is statistically more likely thateofiit is de-
layed or takes a detour, thereby delaying the entire packeétd, for
the same reason, flit-level switching tends to increase eheiver-
side buffering requirement as different flits may take défe paths.

To mitigate the above disadvantages, we propose WORM-BIL.E
which is an optimization to FLIT-BLESS that combines BLESiw
ideas from wormhole routing. Ideally, only the first flit ofaepacket
should contain header information (head-flit) and all sgbeet flits
should simply follow the preceding flit. In case a head-flidis
flected, the entire packet (=worm) would follow this head-dind

WORM-BLESS: Flit-Ranking: Flit-ranking remains unchanged
compared to FLIT-BLESS (see Table 1).

WORM-BLESS: Port-Prioritization: In WORM-BLESS, port-
prioritization is critical to avoid livelocks. In order toamtain the
key invariant that the oldest flit in the netwaskvaysmakes progress
towards its destination, we allow worms to trancatedin certain
cases. Table 2 (middle) shows the port-prioritizationgulEhe rules
distinguish between head-flits and non-head flits. For afigad
new output port must be allocated. For this purpose, prodipbrts
that are not currently allocated to any existing worms hagéést
priority (Rule 1). If no such port exists, the next highesiopty
are free ports that are productive, but are currently alemt#@o an
existing worm (Rule 2). In this case, the port is re-allodati® the
new worm. Effectively, this means that the existing wormvtach
that port had been allocated before) will trencated Notice that
only a higher-ranked head-flit can truncate an existing wotfra
worm istruncated the first flit of the worm'’s second part (which has
not yet left the router) becomes a new head-flit; it will beoadited

ga?wew output port once it is this flit's turn to be assigned.hBmdrts
of tl

he worm are then independently routed to the destinatiooase
all productive directions are already occupied, a headsflissigned
a non-productive port, i.e., it is deflected (Rules 3 and #alby, if
the flit is not a head-flit, then by definition, this flit's worm already

FLIT-BLESS: WORM-BLESS: WORM-BLESS with buffers:
if flit is head-flitthen if flit is head-flitthen
1: assign flit to productive port 1: assign flit to unallocated, productive port 1: assign flit to unallocated, productive port
if flitis mustSchedule then
2: assign flit to non-productive port | 2: assign flit to allocated, productive port 2: assign flit to allocated, productive port
— packet is deflected — another worm is truncated — another worm is truncated
3: assign flit to unallocated, non-productive port 3: assign flit to unallocated, non-productive port
— packet is deflected — packet is deflected
4: assign flit to allocated, non-productive port 4: assign flit to allocated, non-productive port
— another worm is truncated — another worm is truncated
— packet is deflected — packet is deflected
else else
5: assign the flit to port that is allocated to its worm| 5: buffer the flit— packet is buffered
end if end if
else
6: assign the flit to port that is allocated to its worm
end if

Table 2: BLESS port-prioritization policy for bufferless F LIT-BLESS (left), bufferless WORM-BLESS (middle), and WORM-BLESS with buffers
(right). For a given flit, the router picks the output port tha t conforms to the highest priority according to the above talle. Only free output ports are
considered, i.e., output ports that have not previously beaeassigned to higher-ranked flits in the same cycle. If two fre output ports have the same
priority, the router picks the x-direction ahead of the y-direction.

allocated to a specific output port, to which this flit is seRale 5)° WORM-BLESS with Buffers: Injection Policy: Remains the
The key insight is that the combination of OF routing and porsame as in WORM-BLESS.
prioritization with truncation ensures that the oldest ilitalways WORM-BLESS with Buffers: Flit-Ranking: The basic ranking
routed to a productive direction. Therefore, diesence of livelocks policy is adjusted in one critical way. Flits that areistSchedule are
is guaranteed, because the oldest flit always makes pragreasds ranked higher than flits that are natistSchedule. This is important
its destination. In our evaluation section, we show thathbse of its for preventing livelocks. AmongiustSchedule flits and among flits
reduction in header-flits, WORM-BLESS does indeed saveggnetthat notmustSchedule, the ranking is determined by OF.
compared to FLIT-BLESS in many cases. WORM-BLESS with Buffers: Port-Prioritization: As shownin
Additional Information Needed in the Router: To implement Table 2 (right), formustSchedule head-flits and non head-flits, port
truncation, the router needs to be able to create head ftisfdwody prioritization rules remain the same (including possibletations).
flits at the time of truncation. For this, the router stores placket However, for head-flits that are natustSchedule prioritization is
header information from the original head-flit of a worm iretta- different: A flit is sent out (and the corresponding outputtzlo-
ble that also maps output ports to allocated worms. Note that cated) only if it can be sent to an unallocated (by anothemvyor
stored header information is transmitted using the adufifievires productive direction. Otherwise, the flit is buffered (R&)e Hence,

dedicated for header transmission, as described in FLIESRS. only mustSchedule head-flits can truncate worms.
. Livelocks: The absence of livelock is guaranteed. In any cycle,
3.4 BLESS with Buffers at mostInputPorts input ports (including the injection port) can

Completely bufferless routing as described so far is theeex@ be mustSchedule. Hence, allmustSchedule flits can be sent out.
end of a continuum. In this section, we show how BLESS canl@so Furthermore, the oldest flit in the network is always guazadtto
used at other points in this continuum to achieve differeadeoffs. make progress to the destination: If itisistSchedule, it can always
Specifically, although our evaluations, e.g. §7.2), shaat tiot us- be sent to a productive direction (possibly by truncating=isting
ing any buffers has little impact on performance of real mgpions, worm with lower-ranked flits, see Table 2 (right)). If the e#d flit
adding buffers to BLESS can nonetheless have benefits:ritases is not mustSchedule, it is not deflected and waits for a productive
throughput and decreases latency for high injection r@e%y. output port to free up.

Hence, if good performance at high injection rates is ddsire Finally, note that BLESS with buffers can also be used in demb
buffers can easily be integrated into BLESS. The basic fpli&c nation with multiplevirtual channelg10].
of deflection routing remains the same: no non-local (egdit
based) flow-control is required, arbitration is determipedely lo- 4. REDUCTION OF ROUTER LATENCY
cally based on ranking and port-prioritization. The key dférof Bufferless routing eliminates input buffers and virtuabohels
buffers in BLESS is to reduce th@obability of misroutingi.e. to from the design of the on-chip network. The elimination gbuh
increase the likelihood that a worm/flit is routed to a prddecout- buffers and virtual channels not only reduces design caoxitplen
put port. If a productive port does not exist for a bufferet] fhie flit the router, but can also enable reduction in router latency.
remains in the buffer until 1) the buffer is full in which cage flit Baseline router pipeline Figure 1(a) shows the baseline router
must be scheduled or 2) a productive port becomes available. pipeline of a state-of-the-art virtual channel router, daped from

Compared to bufferless WORM-BLESS, the following changd3ally and Towles [12]. The baseline router we assume in tloiskuis
apply. The router maintains one hitustSchedule, per input port. similar to that used in [30] employs several features to cedouter
When the buffer associated to this input port becomes fdl, Liit latency for each flit, including speculation [44, 39]. Theedine
is set to true. It means that the oldest flit in this buffer isvnoconsists of three stages: 1) buffer write (BW) and for heasl fftiute
mustSchedule, i.e., it mustbe sent out in the next cycle in ordercomputation (RC), 2) virtual channel allocation (VA) anditelv al-
to make room for a new incoming flit that might arrive on thaiuh location (SA) done speculatively in parallel, and 3) switchversal
port. If a router did not send out athustSchedule flits each cycle, (ST), followed by link traversal (LT). We refer the readerDally
it could happen that it suddenly has to send out more flits iflaas and Towles [12] for more detailed descriptions of this basalouter
output ports. pipeline. Note that in our evaluations we assume an aggee&si
cycle latency for the baseline router pipeline as with adreéésign,

3Note that the allocated output port of a non-head-flit carenee blocked P e .
(already assigned to another flit). If a higher-ranked flingsigned to an the pipeline can be modified to employ double speculatiorhao t

output port allocated to a different worm, that worm is tratied! and the first SWitch traversal can be performed along with VA and SA.]
flit of the worm’s second part becomes a head-flit. Hence, @ris¢his flit's BLESS router pipeline: In the baseline router, VA/SA stage is
turn to be assigned, the head-flit port-prioritization sud@ply to that flit. needed to allocate virtual channels (VA) and to arbitratevben vir-

(a) Speculative router pipeline (3 stages) (c) Reduced-latency BLESS router pipeline (1 stag

Purely Local and Simple Flow ControlAny buffered routing
scheme inherently requires some kind of communicatioedésw
control mechanism or rate limitation in order to prevent buéers
in the routers from overflowing. Flow control is simpler inflauless
routing. A node safely injects a new packet into the netwadhnlemvat
least one incoming link from another node is free, which carmlé-
tected locally without any need for communication betwemrters.

Simplicity and Router Latency ReductioBuffered routing algo-
rithms employ virtual channels [10] to improve buffer penfance
and flow control mechanisms (e.g. credit based flow contootpn-
trol buffer management in virtual channels. Since buffesleuting
eliminates buffers, there are no virtual channels and tisame need
to manage buffer allocation/deallocation. This reducespiexity in
the router and can enable router latency reductions (se®5dJ.

Area saving:As we show in Section 7.7, removing buffers from
routers can result in significant area savings.

Absence of Deadlock®eflection-based bufferless routing is free
of deadlock. Since the number of input and output ports aredime,

Head
Flit

BW
RC

VA Ly
Sp| ST LT o

Router 1
ST -LT—

(b) BLESS router pipeline (2 stages)

Router 1 LT—
Router 2 LT—
Router 3 LT—

Figure 1: Baseline and BLESS router pipelines

tual channels for physical output ports (SA). Since alluattchan-
nels are eliminated in our design, this stage can be elimihdh ad-
dition, BW can be eliminated since there are no buffers, oatitkely
does not reduce latency because RC still needs to be pedanrtiee
first stage (RC stage implements the bufferless routing ebittation
algorithms described in the previous section). As a retudtbase-
line BLESS router consists of 2 stages as shown in Figure I{lour
main evaluations, we assume the BLESS router latency isl2syc every packet that enters a router is guaranteed to leave it.

Reduced-latency BLESS router pipeline: The latency of the Absence of LivelockOne of the potential challenges in buffer-
BLESS router can be further optimized by employing lookahedess routing is livelocks that could arise if a packet camtinsly gets
techniques [17, 12] as shown in Figure 1(c). The basic ideatiave deflected. As shown in Section 3, the combination of oldestit-

LLT—

Body/ tail

BW
Flit

SA LALT

RC| ST —LT—

Router 2

LA LT|

RC | ST LT—

Router 3

LALT

enough information about a flit to travel to its destinatiare @ycle
ahead of the flit itself on a separate, narrow link. The lirdvérsal
of the lookahead (LA LT) is accomplished in parallel with gweitch

ranking and port-prioritization is guaranteed to prevérglbcks in
FLIT-BLESS, WORM-BLESS with and without buffers. In all &5
the proof is based on the invariant that the oldest flit in teevork

traversal (ST) of the flit. As a result, while the flit itselatrerses the always makes forward progress.
link, the next router performs route computation (RC) fa@ tit, us- Adaptivity: BLESS has the ability to be adaptive “on demand” to
ing the lookahead information. The result of the route catajion a certain degree. When there is no congestion, BLESS roatss p
is stored in the pipeline latches feeding the ST stage. Wieflitit- ets along shortest paths. In congested areas, howeveratietp
self arrives in the next cycle, using this information iteditly enters will be deflected away from local hotspots, which allows efiéint
the ST stage. Hence, using lookahead-based routing, i @Kt links to be utilized and packets to be routed around condeste
only one stage (ST) to pass through the router pipeline.reig(c) eas. As such, BLESS automatically provides a form of adiytiv
depicts the lookahead pipeline stages as shaded in dark ti¥& that buffered routing schemes must achieve using more stited
optimization, a BLESS router can have single-cycle latemdyich and potentially complex means.
we assume in some of our evaluations. For the same reason, BLESS can cope well with temporaryyburst

This lookahead-based latency optimization for the BLESSe0 traffic. To a certain degree, the network itself (i.e., itskéi and
is not speculative Since, the bufferless router guarantees that a ftiduters) acts as a temporary buffer. In buffered routing, tfaffic
will always routed after it arrives, lookahead routing penfied in burst occurs and many packets are sent to a rdRfe¢he buffers in
the previous cycle never fails. In contrast, in a buffereateoit is routers close tdz will gradually fill up. In BLESS, the packets are
possible that lookahead routing can fail, in which caseoastshould continuously deflected in the extended neighborhoof afintil the
be taken to detect the failure and recover [30]. burst completes and they can gradually re&ch

We would like to note that eliminating virtual channels caméth .

5.2 Disadvantages

a disadvantage: different classes of traffic can no longeadsem-

modated easily in our bufferless routing technique becthesecan- Increased Latency and Reduced Bandwidthe key downside of
not be assigned different virtual channels. This is a sbartag of |y fferless routing is that it can increase average packendy be-
our existing design, which we intend to address in the futinstead cayse deflected flits will take a longer path to the destinatfian

of using virtual channels, our mechanism needs to use tHngOU necessary. Also, bufferless routing effectively redutesavailable
algorithm to distinguish between different classes offitafor ex- network bandwidth as all in-network packets always consiime

ample, each packet can be augmented with its priority. Bef8s resources. Hence, saturation is reached at lower injeciies com-
routing algorithms can be designed to prioritize such piaciketheir pared to buffered routing. However, our evaluations shoat for

routing decisions: algorithms can be designed to mininfizeteflec- he kinds of low and moderate injection rates commonly seamni

tions incurred by traffic classes that have high priorityedsence, to chip networks, the performance of BLESS is close to that &Ebed

incorporate different treatment of different traffic clessthe rout- oyting. For such application domains, the advantages &% can
ing logic that makes deflection decisions needs to be madeeata s outweigh its disadvantages.

the class of each packet. Designing such algorithms, whilerg |creased Buffering at the ReceiveBince bufferless routing de-
interesting research direction, is beyond the scope optper. flects individual flits, flits of a packet can arrive out-ofder and at

5 ADVANTAGES AND DISADVANTAGES significantly different points in time at the receiver (i@estination

node). This likely increases the number of flits/packets miegd to
In this section, we provide a qualitative discussion of tHeam- be buffered at the receiver side compared to baseline wdennbot-
ing.* In addition, in-order delivery of packets requires bufferiof
packets that arrive out of order, both in bufferless anddvefi rout-
ing. The increased receiver-side buffering requiremehBLESS

tages and disadvantages of BLESS compared to traditioffiaréd
schemes. Quantitative comparisons follow in Section 7.

5.1 Advantages

No Buffers:Clearly, this is the key advantage of our approach b

“Note that wormhole routing still requires buffers at thesieer because mul-
ﬁple virtual channels can interleave the delivery of tHkis into the receiver

cause it helps reduce both complexity and, as we show in @l-€Vv and the receiver needs to buffer flits for different packetsiing from each

ation, energy consumption.

virtual channel.

Network Configuration 1 (sparse€]

4x4 network, 8 cores, 8 L2 cache banks, each node is eitheeacan L2 cache bank

Network Configuration 2 (dense’

4x4 network, 16 cores, 16 L2 cache banks,

each node is a co@na? cache bank

Network Configuration 3 (sparse|

8x8 network, 16 cores, 64 L2 cache banks,

each node is an h2 &@mk and may be a core

Processor pipeline

2 GHz processor, 128-entry instruction window (64-entsuisqueue, 64-entry store queue), 12-stage pipeline

Fetch/Exec/Commit width 3 instructions per cycle in each core; only 1 can be a memaoeyatipn
L1 Caches 64K-byte per-core, 4-way set associative, 64-byte blozk,2-cycle latency, 32 MSHRs
L2 Caches total 16MB, 16-way set associative, 64-byte block sizecy@e latency, 16 MSHRs per bank

DRAM controllers (on-chip)

4 channels; FR-FCFS; 128-entry req. buffer and 64-entrievdata buffer each, reads prioritized over writes, XOR nrapfL5]

DRAM chip parameters

Micron DDR2-800 [37],tc . =15ns,t rc p=15ns,t r p=15ns,B L /2=10ns; 8 banks, 2K-byte row-buffer per bank

Table 3: Baseline CMP and memory system configuration for aplication simulations

and the additional logic to reorder flits reduces the eneggyctions
obtained by eliminating input buffers in routers. Howear evalu-
ations show that the energy reduction due to eliminatecerdutffers
outweighs the energy increase due to increased recetlebaifers.
Header Transmission with Each FliELIT-BLESS requires that
header information be transmitted with each flit becausé #aof
a packet can follow a path that is different from another. sTihi
troduces additional overhead. In our design, we increasevitith
of the links to accommodate the additional header bits, kwine
creases energy consumption of links. However, our enengswap-
tion evaluation shows that energy reduction due to bufietiehtion
outweighs this additional source of energy consumption.

6. EXPERIMENTAL METHODOLOGY

We evaluate the performance and network energy-efficiericy

bufferless routing techniques using a cycle-accuratedateection
network simulator. The different versions of BLESS (bothl&vel
and worm-based) routing is compared to three differentlimeseut-
ing algorithms in terms of average/maximum packet deliatgncy,
saturation throughput, buffering requirements at theiveceand net-
work energy consumption: dimension-order routing (DO)aggres-
sive implementation of minimal adaptive routing (MIN-AD3][and
a DO version of the ROMM algorithm (ROMM) [41].

6.1 Interconnection Network Model

xml parser) for evaluation. Each benchmark was compiledgugcc
4.1.2 with -O3 optimizations and run for 150 million insttians
chosen from a representative execution phase [43]. Duedd-sh
comings in our infrastructure (which cannot accurately elqral-
lel applications), we do not simulate parallel applicasidout we are
investigating this in current work.

Application Simulation Methodology: To model real applica-
tions, we connect our cycle-accurate interconnection oltvgim-
ulator with a cycle-accurate x86 simulator. The functiofraht-
end of the simulator is based on Pin [32] and iDNA [4]. We
model the on-chip network and the memory system in detath-fa
fully capturing bandwidth limitations, contention, andfamcing
bank/port/channel/bus conflicts. Table 3 shows the majoces-
sor and memory system parameters. We model a static nooromif
cache architecture (S-NUCA) [26] where lower order bitshia &d-
dtess of the cache line determines which bank the cachedgides
in. We model all traffic due to instruction and load/storead@uests
and replies. Note that our simulation infrastructure cyaeurately
models stalls in the network and limited buffering capadifynet-
work packets within the processor (due to limited instrttivin-
dow size, load-store queue size, and MSHRs [29]) and netwerk
terface. Therefore, the systenrsilf-throttlingas real systems are: if
the buffers of a processor are full, the processor cannettimore
packets into the network until the stall conditions are @lmted.
However, note that the processors we model are aggressiieh w
penalizes BLESS compared to buffered algorithms. Each came

The modeled_ netv_vork configuration is a two-dimensional meshipport 32 outstanding L1 misses within the 128-entry irtsion
topology of varying siz€.Each router has 5 input ports and 5 outpuindow, which is significantly larger than in existing presers (e.g.,

ports, including the injection ports. Router latency is 2leg; link

latency is 1 cycle. In our standard configuration, we assinaiesach
link is 128-bit wide and each data packet consists of 4 flasheof

which is assumed to have 128 bits. Address packets are otanjit
All packets are fixed length. We model the overhead due to-figad
required by our mechanism. In the standard configurationcare

sider routers with 4 virtual channels [10] per physical inpart for

the baseline algorithms. Each virtual channel is 4 flits deep

6.2 Request Generation

We use a combination of real applications and synthetiet 4o
compare BLESS with the baseline algorithms. The main etialua

Pentium-4, can support only 8 outstanding L1 misses [5]).

Network Configurations: We repeat all our evaluations in 3 net-
work configurations: 1) 4x4 network with 8 processors, 2) Art-
work with 16 processors, and 3) 8x8 network with 16 processas
shown in Table 3.

6.3 Network Energy Model

To evaluate energy consumption in the network, we use thegne
model provided by the Orion simulator [51], assuming 70nohie
nology and 2GHz router at 1¥;4. Link length of adjacent nodes is
assumed to be 2.5mm.

We accurately model the energy consumption of additionad-ha

comparisons are conducted using SPEC benchmarks and plegkto ware required by BLESS. In particular, we model the energy- co

plications. Synthetic traces are primarily used for vagisansitivity
analyses, as well as for comparing the different BLESS é&lyos
among each other, with different buffer sizes.

Synthetic Traces: In the synthetic traces, each of the 8 routers
is associated with a processor and the destination addragsacket
is determined by the statistical process of the traffic patté/e use
four different traffic patterns: uniform random (UR), trapnse (TR),
mesh-tornado (TOR), and bit complement (BC) (see [45]) hiam-
ulation experiment is run for 100,000 packet injectionsypecessor.

Applications:

sumed by 1) additional buffers needed on the receiver sifj@-2
creased link width to transmit header information (we covesévely
assume three extra bytes), and 3) the logic to reorder flitsddfid-
ual packets in the receiver. We explicitly partition thewatk en-
ergy consumption into buffer energy, router energy and énkrgy
in all our results (including their dynamic as well as statienpo-
nents). Buffer energy includes both the input buffers oteosiand
the receiver-side buffers needed to reorder packets forder deliv-
ery (or re-assembly in flit-level BLESS). Note that even thsdiine

We use multiprogrammed mixes of the SPED®O and MIN-AD routing algorithms require receiver side lemiiig

CPU2006 benchmarksnd Windows Desktop applications (matlabl) because flits from the virtual channels arrive in an ietved or-

5We choose the 2-D Mesh for our investigations because thiddgy is sim-

ple and has been implemented in the on-chip networks of ae\agge-scale
chip multi-processor prototypes [53, 42, 24].

6410.bwaves, 416.gamess, and 434.zeusmp are not includadseeve were
not able to collect representative traces for them.

der and 2) to support in-order packet delivery. Router gnieigjudes
routing and arbitration energy, the latter of which we fotmtle neg-
ligible. Each of these can further be divided into static dgdamic
components. In the case of buffer energy, dynamic bufferggnie
consumed whenever a flit is written to or read from a buffera- St

tic energy is dissipated because the many transistorsitdimg the
buffers are imperfect, leaking current even when they dewitch.

6.4 Application Evaluation Metrics

Our main performance metrics for the application evaluegiare
energy consumption (taken over the entire execution of @ilia
cations) and system performance. Since we use multipragen
workloads, we evaluate the performance of different atboriusing

e In the two sparser network configurations (Config 1 & 3: 4xwit
8 processors and 8x8 with 16 processors), the maximum fieduct
in weighted speedup between the best baseline (typicallj-Ml
AD) with buffers and the worst BLESS (WORM-2) 55% (in
the case of Matlab on Config 1). In all other case studies, ¢he p
formance loss of BLESS compared to the best buffered algorit
is even smaller.

e In the dense network configuration (Config 2: 4x4 with 16 apps)

two commonly used multiprogram performance metrics [13]e W the reduction in weighted (and similarly hmean) speed-upéen

measure system throughput usiwgighted-Speedygd9, 13]:
WeightedSpeedup = » IPC{" " /T PCH'o™e,

whereI PC#'°"¢ and I PC$"* ¢ are the IPC of applicationwhen
running alone (without any interconnection network cotitenfrom
any other application) and when running with the other apli
tions, respectively. We also measure thread turnaroune tising
Hmean-Speedufl3], which balances fairness and throughput [33
but since measured hmean- and weighted-speedup resulisiare
itatively very similar in all our measurements, we mainlegent
weighted speedups for brevity. Finally, we measure fagunsing the
unfairness indeyroposed in [40, 16]. This is the ratio between th

MIN-AD (again, the best baseline algorithm) and the worsEBIS
with router latency 2 (WORM-2) i$6.5% (Matlab),4.6% (milc)
and0.1% (h264ref). Thus, the worst-case performance degrada-
tion with BLESS occurs in most network-intensive benchreark
with dense network configurations.

o If router latency of BLESS is reduced to 1 cycle (see Sectipn 4
BLESS sometimes significantly outperforms the best baselin
gorithm (by~10%). This is especially prevalent in the larger 8x8

], network where router latency is more important for perfanoe
as shown in results for matlab and milc. In smaller netwoitks,
performance improvement due to reduced router latencyadiesm
In Config 1, for instance, the performance of FLIT-1 excedd3+

e 2 by 0.8% (Matlab),0.9% (milc) and0.02% (h264ref).

maximum and the minimum slowdown among all threads shahieg t ¢ FLIT-BLESS tends to achieve slightly better performancanth

network. ThatisSlowdown; = CPI;" ¢ /CPI#°" and theun-
fairness indexs defined asnax; Slowdown; / min; Slowdown,;.

7. EXPERIMENTAL EVALUATION

We start with a discussion of several case studies with ngrgp-
plication mixes in §7.1. In 87.2, we present aggregate reswver
all applications. §7.3—-87.6 present our results usingrsfitt traces.
Unless otherwise noted, our results for BLESS assume arrtaite
tency of2 cycles, i.e.without the optimization discussed in 84. In
some cases, we write FLIT-1 and FLIT-2 (WORM-1 and WORM-
to denote flit-based (or worm-based) BLESS with a routenitatef
1 and 2, respectively. All network energy consumption rssate
normalized to that of the baseline DO routing algorithm ggsloth-
erwise specified.

7.1 Application Evaluation — Case Studies

We distinguish between homogeneous and heterogeneous
studies. In the homogeneous case, all applications rurminthe
different nodes are the same, whereas they are differen¢ihdtero-
geneous case. In many of our evaluations, L2 cache banksdeep
(i.e., bank miss latency is zero). We do this to evaluate BEESder
the worst possible conditions for BLESS: perfect L2 cachesgase
the pressure of the applications on the on-chip network. 8 a
present results with non-perfect L2 banks which show thaE8%&
performs even better in this realistic scenario.

7.1.1 Homogeneous Case Studies

We classify applications into different categories (heangdium,
light), depending on how network-intensive they are, hew much
stress they put on the interconnection network. The stresspa
plication puts on the network is proportional to its L1 cachiss
rate since each L1 miss needs to access the network to beeshti
from an L2 bank. We pick one application from each group: m
lab (heavy, L1 MPKI (Misses per 1000 retired instructions§.4),
milc (medium, L1 MPKI: 32.4) and h264ref (light, L1 MPKI: 4.7
respectively. Matlab is the most network-intensive aggtian in our
suite. For each case, weighted speedup and normalizedyermrg
sumption are shown in Figs. 2 and 3, respectively. Each ¢adg s
conducted using the three network configurations shown lfeTa

Performance: In all case studies and in all network configura:

tions, the performance degradation due to not using buiersla-
tively small. Several observations are in order:

WORM-BLESS. This is primarily due to the more efficient abec
tion of flits to output ports: the fraction of productivelgtrted flits
is higher in FLIT-BLESS. In WORM-BLESS, if a header-flit is
deflected, all (or many) of this packet’s flits are deflecteldereas
in FLIT-BLESS, later flits may be routed in productive diiects
thus reaching the destination more quickly.

It follows that using BLESS does not result in significantfper
mance degradation compared to the best previous basedpegially
if the applications’ memory intensity is not very high (mik264ref)

r if the network configuration is sparse in terms of numberares
Config 1 and 3). Performance degradation due to lack of buoéfe
becomes noticeable only for very intense applications rua dense
network where every node is a core. Even then, weighted speed
reduces by at mostr.1% (leslie3d) over the best baseline.

The reason for BLESS's high performance is twofold. Fifsg t
injection rates of real applications are not high: in our kloads,
on average an L1 miss packet is injected into the network tirhés

ERefy 1000 instructions. Second, and related to the firsttposal

systems are self-throttling. If a long-latency memory e=xjts not
satisfied, its core will block sooner or later, thereby netiag any
further requests, which reduces the network’s injectide.fa
Network Energy: Fig. 3 shows the normalized energy consump-

tion of the different algorithms. For all three benchmarksl dor
all network configurations, BLESS significantly reducesrgpeon-
sumption. While link and router energy is slightly higheBhESS
due to deflections, buffer energy is reduced by almost anrafie
magnitude, since only the receive port needs buffers. Tamgrton-
sumed by increased receiver-side buffering is signifigdets than
the energy consumed by eliminated router-based inputtingfeEn-
ergy savings of WORM-2 over the best baseline in network gorfi
ration 1 are34.0% (Matlab),39.8% (milc) and45.0% (h264ref). Re-

gults for Config 3 are similar. In h264ref, WORM-2 is more gyer

?fficient than FLIT-2 ¢5.0% vs. 38.3% energy reduction). This is

%'ecause WORM reduces the fraction of head-flits comparedlIffy F

where every flit needs to contain header information.

The energy savings of BLESS are smaller in the most network-
intensive case study (Matlab on Config 2). The reason is t@ofo
1) because traffic intensity is relatively high in this casany flits
are deflected to other routers, leading to an increase inlimtland
router energy, 2) the performance degradation caused bySBLE-

"Notice that we observe this self-throttling behavior eveough we assume
a reasonably large, 128-entry instruction window size pee.c

W-Speedup
W-Speedup
W-Speedup

H H
4x4,8 Apps 4xa,16 Apps %8, 16 Apps 4x4,8 Apps 4xa,16 Apps %8, 16 Apps 4x4, 8 Apps axa, 16 Apps 88, 16 Apps

Figure 2: Homogeneous case studies—Weighted speedup: Afigications are matlab (left), milc (middle), and h264ref (right).

-

WBufferEnergy linkEnergy DRouterEnergy -2 | mBufferEnergy @ LinkEnergy O RouterEnergy 12 mBufferEnergy @ LinkEnergy O RouterEnergy

1 1

0.8

@ w = N

0.6

04 1 1 1 | I
0.2
0

b
|
[
I

o o o o

Energy (normalized)
Energy (normalized)
Energy (normalized)

o ~

FLIT-1

WORM-1

FUT-1

WORM-1

g =

WORM-2
o ViNAD |
& romm
5 FuT2
& WoRM-2
3

H

16 Apps 4x4, 8 Apps 4x4, 16 Apps

Figure 3: Homogeneous case studies—Network energy: All apgations are matlab (left), milc (middle), and h264ref (right).

60

#FLits

#Flits
#Flits
3

o o o
a8 8 8

FUT-1
WORM-1

FUT1 |
WORM-1
0o
MIN-AD
FUT-2
ORM-2
FUT-1
WORM-1
FUT-1
WORM-1
0o
MIN-AD
FUT-2
WORM-2
FUT-A

ROMM
WORM-1

Erag
Emgm

ROMM
FUT2
ROMM
FUT-2

oz
:

ORM-2
ROMM

WORM-2 |

a
3
E
H

o a
I 3
E z
H =

WORM-1
WORM-2

H H H H H
4x4,8 Apps 4x4,16 Apps 8, 16 Apps 4x4,8 Apps 4x4,16 Apps 8, 16 Apps x4, 8 Apps 4x4, 16 Apps 8x8, 16 Apps

Figure 4: Homogeneous case studies—Maximum buffering redrement (in flits) at the receiver: matlab (left), milc (middle), and h264ref (right).

sults in increased static buffer energy. However, BLESEstiuces 7.1.2 Heterogeneous Case Studies
total NoC energy byt5.7% over the best baseline, MIN-AD. Fig. 6 shows an application mix consisting of the most nekwor
~ Buffering Requirements at Receiver: BLESS increases buffer- intensive applications in our suite. We also evaluated tpgieation
ing requirement at the receiver compared to the baselirgisecdue mixes, each of which consists of a mix of intensive and naerisive
to deflections, 1) each flit of a packet is more likely to araveliffer- applications. Fig. 7 shows the results for the more netvitérsive
ent points in time than the baseline wormhole routing (eisfigdn of these mixes.
flit-level BLESS) and 2) the variance in delivery times of ats in-
creases, which increases buffering requirements to stpporder
delivery. Fig. 4 shows thenaximum buffering requirement in flits
at any receiverfor the three case studies. Notice that even though
the buffering requirement at the receiver is larger in BLE®S&-
pared to the baseline algorithms, the energy results in Fghow
that in terms of overall network energy consumption, thizéase
is overcome by the reduction in energy in the routers therasel
Further, note that in virtually all cases (e.g. matlab onf&€p8), the
receiver-side buffering requirement of WORM is less thafiTF-Lhis . o h
is expected since WORM routes most packets (81% on average) 402ds: In the dense Config 2, the reduction is betwkgi (Mix
complete worms, reducing receiver-side buffering request. Fi-)and31% (M'X 2). . . . o .
nally, h264ref’s buffering requirement is higher than othdue to the ® Of particular interest in mixes with applications of diféet char-
processor-to-cache communication patterns that causecbigges- ~ acteristics is the question of fairness, i.e., whether@llagtlons
tion, increasing the variance of packet delivery timesg&hESS. expin('e:nce gn egu7al §Ic')1wdor\]/vn dﬁe to the goLrl‘Etggt'gn in the net
Impact of Memory Latency: The results shown in Figs. 2—4 as- work. Figs. 6 and 7 (right) show that using oes not sig

fi " ith perfect hes. i nificantly increase unfairness compared to baseline. Int pases,
sume a memory configuration with perfect caches, 1.e., enem- the Unfairnessindex achieved by BLESS and baseline arenwith
ory request to a cache in one of the routers is assumed to Bit. A

- . : . : a few percent. The only exception is Mix 1 run on the dense con-
mentt_llon_ed above, we use thlskm(odzl _sm(ﬁe it prtS maglml;imlsstre figuration: in this case, the increase in unfairness due B6%% is
on the interconnection network (and is therefore maximahgl- ! . .

. . L about 18% due to a large number of deflections experiencedukby t
lenging for BLESS). With realistic, non-perfect caches gerfor- 0 g P y

mance degradation of BLESS compared to the baseline digwiis less network-intensive ap.pllcatlor.\s. i) .
smaller. This is because the occurrence of cache misseérils! We conclude that BLESS is effective at handling mixes ofedéht
latency to the application’s execution time, which in tustuces apPlications efficiently and fairly.
the stress put on the on-chip cache-to-cache network. Fgots
the rgotst-intefnsitve ca;]se sti\ljld)t/l (L\)/)Iatlab?c with reali;tic ez;cr;:omé 7.2 Application Evaluation — Aggregate Results
pared 1o perfect cacnes, Matlabs performance degradaaose Fig. 8 shows performance and normalized network energy 8fal
ggelzlc_iﬁs?e?jlggtlifcl)%ainrflilh:aeg:ﬁzg‘ﬁ?tvxllgflt(e?gnggl?r‘gzg r‘]’;’e'ght?g applications in the network configuration 1 and with perfemthes
network energy reduction futher increases 1% vs 15.7%). We o R BN ST AT SRS S0 iR e
fortlﬁluge tthzt W'tlh rea:lstlgtﬁachgil %LESS peﬂ‘_(l)rms dver_yllariy BLESS decreases average (worst-case) performance byOdiify
c%nsemets'on ?en'.?ia?]ﬁo” m wi ulters, while reducergrgy (3.2%), whereas it reduces average (worst-case) network energy c
umpti Ignim Y- sumption by39.4% (28.1%).

e Similarly to the homogeneous case studies, there is onlyegne
periment in which BLESS causes a performance degradation of
more than3% compared to the baseline. It is the case with all
memory-intensive applications running on the dense ndtwon-
figuration 2. The reduction in weighted speedup in this case i
16.3% compared to MIN-AD routing. Reducing router latency
with BLESS largely improves performance in the larger nekwo
e BLESS reduces network energy considerably in all casesoim C

fig 1 & 3, energy reduction is betwe@0% and39% in all work-

W-Speedup

12

mBufferEnergy @ LinkEnergy [RouterEnergy

)
°
3

H-Speedup

0.6
0.4
0.2 ‘

Energy (normalized

Do
MIN-AD

Do

DO
MIN-AD

MIN-AD

FUT-2
DO

MIN-AD
DO

MIN-AD
DO

MIN-AD

=
s
2

ROMM

FUT-2
WORM-2

FUT-1

WORM-1
oMM

LS5

H
3
H

WORM-1

ROMM
ROMM

3 &

x zEaz
%3 S

4x4, 16 Apps

WORM-1

H
S
B

B
4xa,16 Apps

H
4x4, 8 Apps 8x8, 16 Apps 4x4, 8 Apps 4x4, 16 Apps 8x8, 16 Apps 4x4, 8 Apps 8x8, 16 Apps

Figure 5: Homogeneous case study 1 (Matlab), with realisticnon-perfect caches that reduce the stress on the

network: eighted speedup (left),

mBufferEnergy @LinkEnergy O RouterEnergy

1

0.8
0.6
0.4

'W-Speedup
Unfairness

0.2

0

Energy (normalized)

Do
MIN-AD

£

OMM
Do
MIN-AD
Do
MIN-AD
Do
MIN-AD

ROMM
ROMM

s
T s
<1

£

3

FUT
FUT2
/ORM-2
FUT-L
WORM-1
FUT2

WORM-1

H
H
S
=

8x8, 16 Apps

libquantum, leke3d: weighted speedup (left), network energy (middle), md unfairness (right).

12

ROMM
ROMM

3
=3
2

3
&
2

MIN-AD
MIN-AD
ORM-2

H
H
5

FUT2

3 3
&= 8 &
E H

€ e

3
=

H
g
&
H

= = =
H H
4x4, 8 Apps 4x4,16 Apps 848,16 Apps axd, 8 Apps 4xa, 16 Apps 4x4, 8 Apps 4x4,16 Apps 8x8, 16 Apps

Figure 6: Heterogeneous Mix 1-matlab, mcf,

mBufferEnergy @LinkEnergy O RouterEnergy
1

0.8

0.6

0.4

W-Speedup
Unfairness

0.2
]

Energy (normalized)

FLT-2
)

MIN-AD

E

Do

MIN-AD
FUT-2

e

MIN-AD
ROMM
MIN-AD
MIN-AD
DO
MIN-AD
MIN-AD
MIN-AD
FUT2
MIN-AD

H
H
2

FLIT-2
ORM-2
FLIT-1
WORM-1
FLIT-2

WORM-1

ROMM
ROMM
WORM-1
WORM-1

S

WORM-1

S S

H
4x4,8 Apps

Figure 7: Heterogeneous Mix 2-libquantum, h264ref, astammnetpp: Weighted speedup (left), network energy (middle)and unfairness (right) .

| ‘I\ “| ‘I‘ ||| ||| ‘I‘ “| ||| II\ ||| ‘II “| ||| | | ‘II ||| ||| ||| I\‘ ‘II I‘I I\I ||| I\‘ ‘|| ||| |||
» < & < © © & s ~ 8 o > &

& &5 @ &s@k & ¢ r & o e X o o o ® o o) & s?‘\w‘ o o

o o o
m Bufferenergy @ Linkenergy ORouterEnergy
o o

o
<

o« @ & e &
& & o E &
« @ K & &
3 & <& & &
= o R « E
K s & @

2 H 2 2
4x4, 8 Apps 4x4, 16 Apps 8x8, 16 Apps 4x4, 16 Apps 8x8, 16 Apps 4x4,8 Apps 4x4,16 Apps 8x8,16 Apps

W-Speedup
ol Nwawa N

N
o

b

R\
S

W 3 < N ®
S o o o 2
& " ¥ o W

o

& © S & \3 & R &
« R « o o e
= &

* o o
e gt o
o 5 &

&
&
& R

Energy (normalized)

12
1
08
06
04
02
0
@&" «

Figure 8: Performance and network energy of all applicatiors in network configuration 1. Router latency for BLESS is 2. Weghted speedup (top)
and energy (bottom). Bars from left to right for each application correspond to Best Baseline Algorithm (generally MINAD), FLIT-2, and WORM-2.

~
\\&Q\

o

&

S & ® ©
o = o o

© .
& o
o

&N
e
o

o » ©
S o & e
o« ks B «

Table 4 summarizes the average (across all 29 applicatims) 7.3 Synthetic Traces — Traffic Patterns
worst-case performance and energy impact of BLESS on theespa As discussed, a key characteristic of real CMP systems mgnni
network Config 1 and the dense network Config 2. For exampté, Wieal applications is that they are self-throttling, pretirmthe injec-
realistic L2 caches in Config 2, the average (worst-casépmeance tion rates into the interconnection network from becomiagnhigh
degradation becomes very small65% (1.53%), whereas average over an extended period of time. Synthetic traces do not bask a
(worst-case) energy reduction increases2% (33.7%). We con- self-throttling mechanism and it is therefore possiblettmly the be-
clude that averaged over a very wide range of applicatioh&S5 havior of routing algorithms at injection rates much higtien typ-
achieves significant energy savings at negligible lossifop@ance. jcally experienced in real networks. Hence, syntheticesaare used
to investigate theaturation pointf different routing algorithms.

[Network Config T Il Perfect L2 I Realistic L2 | Fig.9 shows average (top row) and maximum (bottom row) pgacke
Average [Worst-Case|[Average | Worst-Case] latency of BLESS algorithms compared to the best buffereelbze.
ﬁgg‘g’nqupi’;g?nﬁam '_309;;? '_238-210;? :361-‘5‘2;3 :315-222 Several comments are in order. First, at low packet injacties,
: : : : bufferless routing provides similar average packet latsnas the
[Network Config 2 i Perfect L2 T Realisic L2 | baseline algorithms. For example, for the UR traffic pafteutfer-
Average | Worst-Case|| Average | Worst-Case| |€SS routing increases the average packet latency by laaslibfo
A Network Energy -32.8% -14.0% -42.5% -33.7% even with a large injection rate of 0.3. For maximum packegria
A System Performancgl] -3.57% -17.1% -0.65% -1.53% cies, we observe a similar behavior, albeit for slightly éminjection

rates. On the other hand, baseline routing algorithms wiffels can

Table 4: Average and worst-case (in all cases either leslie@3r Matlab)
network energy and system performance of FLIT-BLESS vs. begrevi-
ous buffered routing algorithm (generally MIN-AD): Config 1 (top) and
2 (bottom). Perfect caches (left) and realistic, non-perfe caches (right).
Router latency is 2 cycles.

clearly withstand higher injection rates than BLESS, itiffered
networks achieve higher saturation throughput. This isabse, at
very high network utilization, bufferless routing wastégn#ficant
network bandwidth by causing too many deflections. Spedifica

100 + 100 .
FLIT-2 K FLT-2 i
80 WORM-2 ! 80 WORM-2 J
——FUT-1 I ——FLIT-1 H
60 —— WORM-1 e 60 ——WORM-1 v
=== MIN-AD g === MIN-AD e
= = 40 =

=
8

5
5

Average Latency
o o O
g 8 8
)
iR
[l
\
\
\
\
\
\
\
\
N
S
N
<
N

Average Latency
Average Latency

Average Latency

——WORM-1

5
o

o

N

S

3
N
5
3

@
3
3

100 = 100
- WORM-2
——FUT-1
——WORM-1
-== MIN-AD

Maximum Latency
Maximum Latency
Maximum Latency
Maximum Latency

SCcco0O0O0O0G000000G 6 6 o S cococoo oo o

Injection Rate (flits per cycle per node) Injection Rate (flits per cycle per node) Injection Rate (flits per cycle per node) Injection Rate (flits per cycle per node)

Figure 9: Average latency (top) and maximum latency (bottom) as a function of injection rate. From left to right: a) UR, b) TR, ¢) TOR, d) BC.
Dashed lines are the best buffered baseline.

compared to the best baseline algorithm, the maximum siadtl malized network energy for different injection rates. Awvlinjec-
injection rate of the best BLESS algorithm is smallerdsys (UR), tion rates, BLESS eliminates the energy consumed by bufighs
26% (TR), 29% (TOR), and20% (BC). For traffic patterns with sig- out significantly increasing the energy consumption in thiesl and
nificant contention (BC, TR), BLESS has relatively closdusation the crossbar (including arbiter and routing energy). Asitifection
throughput to the best baseline than for the purely randceti;laad- rate increases, BLESS causes an increase in link and cresstray
balanced traffic pattern (UR). The reason is the inherertadly of consumption compared to the baseline because congestioa riet-
BLESS: flits get deflected from congested areas, which cgmihel work causes more deflections to happen and more routersraed li
circumventing hotspots. The results further show that: to be utilized by the deflected packets.

1. For low injection rates, BLESS with 1-cycle router latgnc . .
achieves better latencies than buffered baselines. 7.6 Synthetlc Traces — BLESS Alternatives

2. For TR traffic, for instance, BLESS has smaller saturation So far, we have shown results only for Oldest-First BLESSTFL
throughput than MIN-AD, but has much higher saturation tigle OF and WORM-OF). For the sake of completeness, Fig. 11 shows
put than the non-adaptive dimension-order routing. Thiseisause that both FLIT-OF and WORM-OF consistently achieve the lstve
BLESS provides adaptivity without requiring any expligiforma- average latency compared to other arbitration policiesudised in
tion about congestion. BLESS performs in-between the mzptive §3. This advantage of oldest-first is particularly pronashtor max-
DO and the adaptive algorithms because it allows packetsdial a imum latency. In both flit-level and worm-level BLESS, thexina
congested paths by deflecting them toward other parts oftlveonk. mum latency achieved by oldest-first is significantly loweaurt for

Hence, BLESS routing achieves good performance and caneedtfe other schemes. At injection rate 0.24, for instance, \MABF's
congestion in on-chip networks if network utilization istioo high. maximum latency is less than half of the maximum latencyeed

by any other scheme. The figure also shows that OF achieves the

7.4 Synthetic Traces — Baseline Configurations lowest average number of deflections per packet, which igitapt

So far, we have studied the baseline algorithms in theirdstah Since a low deflection rate implies higher energy efficiendg. con-
configuration. In Figure 10 (top), we investigate the perfance Clude that OF arbitration policy outperforms alternatiodigies.

and network energy consumption of DO routing with varyindféau 7.7 Effect on Buffer and Link Area

sizes. The left figure shows how the maximum sustainabletioje h ied by buffers i ¢ flits i
rate drops significantly as the size of buffers in each rdateduced. We express the area occupied by buffers in terms of flits usieg
following first-order model:

With a single two-flit deep virtual channel, only an injectimate of
0.1 flits/cycle is sustainable, which is significantly smaalthan the Buf ferArea = (IBPR+ RSBPR) - NumberO f Routers,

0.3 flits/cycle sustainable with BLESS (shown in Fig. 9). whereI BPR and RSBPR are the number of input buffers and re-
Fig. 10 (top-right) shows energy normalized to that of BLEBS- ceijver side buffers per router, respectively. BLESS elatés in-
ergy consumption of the baseline algorithm can be reduceteso 1 pyffers per router while increasing receiver-side dnsff Based
what by reducing buffer sizes compared to our standard amafig on our simulations on Config 1 with all applications, we fouhdt
tion. However, notice that even if we pick the energy-optiméffer) £Ss increases the receiver-side maximum buffering requént
configuration for the baseline, for each injection rate,renesav- oyer the buffered DO algorithm from 16 to 38 flits. However, &S
ings would be significantly lower compared to BLESS. For ep#n gjiminates all input buffers (note that pipeline latchesyshe same
using the buffered DO routing scheme with one 2-flit deep V€ pgetween DO and BLESS). Consequently, we found that BLESS re-
input port consumes 10% more energy than BLESS while progidigyces the buffer area requirements by 60.4% compared to Gur D
_sign_ificantlyworse latency and sa_tura_tion throughput (compare DG} seline. As buffers were shown to occupy 75% of the totathip-
in Fig. 10 (top-left) and WORM-2 in Fig. 9 (top-left)). network area [22] in the TRIPS chip, this simple analysisgests
: : that large area savings are possible with BLESS. BLESS dwves i
7.5 Synthetlc_: Trac_es —BLESS Wlt_h Buffers . crease the area occupied by links in order to accommodatiehea
As described, it is possible to use BLESS with buffers, to- F information. Even with a conservative estimate of 3-byteréase
ure 10(bottom-left) shows that while the saturation thiqug of in our 16-byte links, the link area increases by 18.75% tosa 6ir-
BLESS does increase with increasing buffer size, the mat@in- der. However, since link area is not a significant fractiothef NoC
provement is rather small. While pure bufferless BLESSadnsta area [22], we expect BLESS to provide significant area saving
maximum injection rate of 0.3, BLESS with a single 2-flit-ge@-
flit-deep) virtual channel achieves 0.33 (0.35), respettivBeyond 8. RELATED WORK
this, performance increases no further. To our knowledge, this is the first work that proposes a widée va
Fig. 10(bottom-right) shows that the energy optimal buffiee of ety of routing algorithms for bufferless routing in on-chiptworks
BLESS changes with the injection rate. The figure also pewid- and thoroughly evaluates the energy, application perfoomala-
sight into the behavior of BLESS by showing the breakdownasf n tency, throughput, and area characteristics of buffertastsng in on-

3

100
/ mBufferEnergy
80 ’ 2.5 .
z ’ _ @ LinkEnergy
g /) T ? O RouterEnergy
& 60 7 5
3 4 T 15
o 2 H
g a0 5 1
g £
L VC=1Size=2 VC=1 Size=4 % 05
——VC=2Size=4 ——VC=4 Size=4 5
0 s — - PP NP N NP PP PP PSP PP PP P PP PP PP PSP
0 01 0.14 018 0.22 026 0.3 0.34 0.38 042 0.46 PSS S SIS A Sl S
Injection Rate (flits per cycle per node) *‘3 ¥ S R &S &S DARERRES ARSI
100 -
-=-= BLESS i 25 mBufferfnergy MLinkEnergy O RouterEnergy
. 80 2t H -
I a-fiit ! T 2
£ 60 ———2VC, 4 flit each ' S s
- ——4VC, 4 flit each H gl
& 40 21 : —
g
2 &
< 20 g o5 | '»
2
0 “ oo
! "o ; 5 & & & & 5 & & & & S & & & & S & & & S5 & & @& S & & &
°25mu525088858485 &S @SS S (F S S S @SS (@SS S S S
PSRRSEDEEDEEDERDREpA DA P DA SIS S B IR R v @ A AR T O
Injection Rate (flits per cycle per node) InjRate = 0.08 InjRate = 0.12 InjRate = 0.16 InjRate = 0.2 InjRate = 0.24 InjRate = 0.28

Figure 10: Impact of buffer size on performance and energy cosumption of baseline (top row) and BLESS routing (bottom rav) for UR traffic:
Average latency (left) and energy (right). For ease of comp@son, all energy results are normalized to bufferless BLES at injection rate 0.08 (shown

in leftmost bars in the right figure of bottom row).
100 100
FLIT-CF
=== FLIT-OF
= FLIT-DEFs
e FLIT-RR
FLIT-mix

WORM-CF
=== WORM-OF
———WORM-DEFs
—— WORM-RR

80 +—

@
)

@
g

60

»
8

40

Average Latency
Average Latency
g
o
Bl
<
El
2

»
3

0 v v
0.08 0.1 0.120.140.160.18 0.2 0.220.24 0.26 0.28 0.3 0.32 0.08 0.1 0.120.140.160.18 0.2 0.220.24 0.26 0.28 0.3 0.32

Injection Rate (flits per node per cycle)

Injection Rate (flits per node per cycle)

w
8
3

FLIT-CF 300

--= FUT-OF

——FLIT-DEFs

——FUT-RR
FLIT-mix

N
B
é
N
&
8

N
S
3
~
S
8

* worm-cF

, === WORM-OF
——— WORM-DEFs
—— WORM-RR
WORM-mix

b
3
3

Maximum Latency
"
I
g
Maximum Latency
G
g

n
8

0

0.08 0.1 0.120.140.160.18 0.2 0.220.240.260.28 0.3 0.32 0.08 0.1 0.120.140.160.18 0.2 0.220.240.26 0.28 0.3 0.32

Injection Rate (flits per node per cycle) Injection Rate (fiits per node per cycle)

N
n
w

FLIT-CF
-== FLIT-OF
——FLIT-DEFs
——FLIT-RR
FLIT-mix 7

WORM-CF
--- WORM-OF
2 | ——WORM-DEFs

—— WORM-RR
WORM-mix

~

[
n

o
o

Average #Deflections
-
)
)

Average #Deflections

o

0

0.08 0.1 0.120.140.160.18 0.2 0.220.24 0.26 0.28 0.3 0.32 0.08 0.1 0.120.140.160.18 0.2 0.220.24 0.26 0.28 0.3 0.32

Injection Rate (flits per node per cycle) Injection Rate (flits per node per cycle)

Figure 11: Comparison of different BLESS algorithms. Flit-based (left
column) and worm-based algorithms (right column). In each ase, from
top to bottom: average latency, maximum latency, and averag number
of deflections per packet.

chip networks. This work is also the first to 1) describe hovete
advantage of eliminated buffers in NoCs to reduce routeniat and
to simplify NoC design, 2) provide an application-level lexaion of
bufferless NoCs, and 3) combine deflection routing with woota
routing algorithms. This section briefly surveys relatedkvo
Hot-potato and deflection routing in large scale systemsHot-

potato routing was first proposed by Baran [2] for distrildutem-
munication networks. Several massively parallel machisesh as

Theoretical studies of hot-potato routing: In the theory commu-
nity, there has been work studying algorithms and modelshéor
potato routing, e.g. [14]. Most of these algorithms stiaic, i.e., all
packets are assumed to be injected at time zero, and thesenaxy
amines the time needed to deliver the packets. The dynaralgsis
in [8] does not investigate average performance or enefigresfcy.

Deflection routing in on-chip networks: Several recent stud-
ies [38, 31, 19, 18] examined the use of bufferless deflectiating
in on-chip networks. [19, 18] require packet dropping when-c
gestion arises, a complexity that is not present in our tieckas.
These previous studies mainly consist of evaluation of dedie
routing and packet dropping algorithms on the performaricyo-
thetic workloads. As such, they do not evaluate 1) the eneogy
sumption, routing latency, and area benefits of deflectiotirrg, 2)
effect on real applications. In contrast, our work extemgsstate-of-
the-art in NoC deflection routing the following ways: 1) ibpides
new routing algorithms to combine wormhole routing with defion
routing, 2) it examines energy, performance, and routentat ben-
efits of bufferless routing, 3) it provides extensive evtibrgs with
real applications and a realistic system simulator thatetwithe self-
throttling nature of CMP NoCs. The techniques proposed doce
deflections or enable dropping in [31, 19] are orthogonaluode-
sign: BLESS can be combined with them to further improve grerf
mance, at the expense of extra energy consumption.

Deflection routing in optical networks: Recently, deflection
routing has found popular use in optical transmission nekev§b2,
7]. Deflection routing reduces the need for optical buffgriwhich is
expensive. Optical networks have significantly differemérgy and
performance characteristics than the electrical netwaekexamine.

Packet dropping: Flow control techniques have been proposed to
reduce buffer sizes by dropping packets/flits if not enougfeb slots
are available [12, 19, 18]. These techniques require retnasion of

ackets/flits by the source node. As such, they are likelyetmbre

the HEP [46, 47], the Tera [1], and the Connection Maching [28omplex than bufferless routing. However, the concept okplit

have used deflection routing to connect different chips.s&éhech-
nigues are not disclosed in detail and, to our knowledgege et
been publicly evaluated in terms of energy consumption ofope
mance. Some of these deflection routing algorithms do notiedite
buffers [48]. Moreover, their application was to large scaff-chip
networks with large path diversity and long link latenciather than
on-chip networks with short link latencies. The Chaos ro{28]

dropping can be used in a bufferless network to reduce ctinges
when too many packets are being deflected.

Reducing buffering requirements in on-chip networks: Tech-
niques have been proposed to reduce buffering in routersréy p
configuring routes [36]. These techniques usually add ecdra-
plexity to the router pipeline whereas bufferless routiaduces the
complexity in the router pipeline. Circuit switching [12&mr also

uses a form of deflection routing when a node is congested; hg@move/reduce buffering requirements but it comes at trs b
ever it still buffers packets in the router. Our main conttibns connection setup/teardown overheads that are not present pro-
beyond these works are: 1) we propose specific, new algasithgbsal. Recently-proposed elastic-buffer flow control naeism [35]

for bufferless routing in on-chip networks, 2) we provideribugh,
application-level energy and performance evaluationsuffebess
on-chip routing, which were not available previously, 3) slew
how in absence of router input buffers the router and netwesign
can be optimized for reduced latency and simplicity.

uses the pipeline flip flops in router channels for packetgm®r ef-
fectively using channels as distributed FIFO queues. A$ stiis
mechanism eliminates input virtual channels and reduagsreom-
plexity. However, since it does not employ deflection rogiit re-

quires multiple physical channels to avoid deadlock. Theefits of
both BLESS and elastic-buffer flow control can be increagecbin-
bining the algorithms proposed in this paper with elastitdring.
Adaptive Routing: Bufferless routing provides some of the ben
fits of adaptive routing by naturally routing packets aroundgested

(18]
(19]

0]

areas in the network. We compare BLESS in terms of energy @nd g21]

formance with two adaptive routing algorithms [3, 41] andwlthat
they perform similarly on real applications.

9. CONCLUSIONS & FUTURE WORK

C. Gomez, M. E. Gomez, P. Lopez, and J. Duato. A bufferles
switching technique for NoCs. M/ina 2008.

C. Gomez, M. E. Gomez, P. Lopez, and J. Duato. Reducinggba
dropping in a bufferless NoC. I&uro-Par, 2008.

M. K. Gowan, L. Biro, and D. Jackson. Power considerai the
design of the'Alpha 21264 microprocessorDAC, 1998.

P. Gratz, B. Grot, and S. W. Keckler. Regional congestioiareness
for load balance in networks-on-chip. HPCA-14 2008.

] P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Burge

[23]

We make the case that bufferless routing could be used biatigfic [24]

in on-chip interconnection networks. We show that, by gettiid
of router input/output buffers, significant energy redoet can be
achieved at modest performance loss compared to buffergohgo
algorithms, as long as the volume of injected traffic is naterrely
high, which is the case with most real applications. Buéfsslrout-
ing can also enable lower router latency, which can resitidreased
performance. We believe that bufferless routing algorghmhich
also simplify network and router design by eliminating cdexp
buffer management/allocation techniques, could thus &ertbthod
of choice for interconnection networks that are known to ain
below-peak throughput most of the time. Our bufferless netvde-
sign lacks many functionalities that have been developeblfiered
networks, including support for starvation freedom/aaoice, QoS
and different traffic service classes, fault tolerance égresence of
faulty links/routers, congestion awareness [21], andgnaranage-
ment. Our future work will focus on incorporating such sugpato
the design of bufferless routing algorithms.

ACKNOWLEDGEMENTS

We thank Xuehai Qian for his help in bringing up the networkregy

modeling infrastructure. We thank Reetuparna Das, Eimaalimi,

Boris Grot, Jim Larus, Kevin Lepak, Burton Smith, and theraro
mous reviewers for their comments on earlier drafts of thjsq.

REFERENCES

[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. fedfield,
and B. Smith. The Tera computer systeml@$, 1990.

[2] P. Baran. On distributed communications netwotk€E Trans. on
CommunicationsMar. 1964.

[3] P. E.Berman, L. Gravano, G. D. Pifarre, and J. L. C. Sardapkive
deadlock- and livelock-free routing with all minimal pathstorus
networks.|IEEE TPDS 12(5), 1994.

[4] S.Bhansali, W.-K. Chen, S. D. Jong, A. Edwards, R. Murray
M. Drinic, D. Mihocka, and J. Chau, Framework for instruatievel
tracing and analysis of programs. WEE, 200

[5] D. Boggs et al. The microarchitecture of the Intel Pemtidi processor
on 90nm technologyntel Technology JournaB(1), Feb. 2004.

[6] S. Borkar. Thousand core chips: A technology perspectivDAC,
2007.

[7] S. Bregni and A. Pattavina. Performance evaluation fiedéon
routing in optical ip packet-switched networlksluster Computing?,
2004.

[8] C. Busch, M. Herlihy, and R. Wattenhofer. Routing witthdiow
control. INSPAA 2001.

[9] S. Cho and L. Jin. Managing distributed, shared L2 cathesigh
OS-level page allocation. IMICRO, 2006.

[10] W. J. Dally. Virtual-channel flow control. IiSCA-17 1990.

[11] W. J. Dally and C. L. Seitz. The torus routing chipistributed
Computing 1:187-196, 1986.

[12] W. J. Dally and B. TowlesPrinciples and Practices of Interconnection
Networks Morgan Kaufmann, 2004.

[13] S. Eyerman and L. Eeckhout. System-level performanegios for
multiprogram workloadslEEEE Micro, 28(3):42-53, 2008.

[14] U. Felge and P. Raghavan. Exact analysis of hot-potatting. In
STOC 1992.

[15] J. M. Frallong W. Jalby, and J. Lenfant. XOR-Schemestefible
data organization in parallel memories.|GPP, 1985.

[16] R. Gabor, S. Weiss, and A. Mendelson. Fairness and ¢imaut in
switch on event multithreading. MICRO-39 2006.

[17] M. Galles. Spider: A high-speed network interconn#€EE Micro,
17(1):34-39, 2008.

(25]
(26]
[27]
(28]
(29]
(30]
(31]

(32]
(33]
(34]
(35]
(36]

(37]

(38]

(39]
[40]
[41]
[42]

(43]
[44]

[45]

[46]
[47]
(48]
[49]
(50]
[51]

(52]

(53]

Implementation and evaluation of on-chip network architezs. In
ICCD, 2006.

W. D. Hillis. The Connection MachindIT Press, 1989.

Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borlab-ghz
mesh interconnect for a teraflops procesHoEE Micro, 27(5), 2007.
N. D. E. Jerger, L.-S. Peh, and M. H. Lipasti. Circuititled
coherence. IINOCS 2008.

C. Kim, D. Burger, and S. Keckler. An adaptive, non-onifi cache
structure for wire-dominated on-chip cachesABPLOS-X2002.

J. Kim, J. D. Balfour, and W. J. Dally. Flattened buttgtfbpology for
on-chip networks. IIMICRO, 2007.

S. Konstantinidou and L. Snyder. Chaos router: archite and
performance. INSCA 1991.

D. Kroft. Lockup-free instruction fetch/prefetch decorganization. In
ISCA-§ 1981.

é(.)(i)(éjmar, L.-S. Peh, and N. K. Jha. Token flow controlMICRO-41,

Z. Lu, M. Zhong, and A. Jantsch. Evaluation of on-chipwarks using
deflection routing. IrGLSVLS] 2006.

C.-K. Luk et al. Pin: Building customized program arsfytools with
dynamic instrumentation. IRLDI, 2005.

K. Luo, J. Gummaraju, and M. Franklin. Balancing thrbpgt and
fairness in SMT processors. IBPASS2001.

M. M. K. Martin et al. Timestamp snooping: An approach fo
extending smps. IASPLOS-1X2000.

G. Michelogiannakis, J. Balfour, and W. J. Dally. Elagtuffer flow
control for on-chip networks. IRIPCA-15 2009.

G. Michelogiannakis, D. Pnevmatikatos, and M. Kateésen
Approaching ideal NoC latency with pre-configured routesNOCS
2007.

Micron. 1Gb DDR2 SDRAM Component: MT47H128M8HQ-REy

2007,
http://download.micron.com/pdf/datasheets/dram/HdEPDDR2.pdf.
M. Millberg, R. Nilsson, R. Thid, and A. Jantsch. Guaesd
bandwidth using looped containers in temporally disjoiettworks
within the Nostrum network on chip. IDATE, 2004.

R. Mullins, A. West, and S. Moore. Low-latency virtuethannel
routers for on-chip networks. K 8CA-31 2004.

O. Mutlu and T. Moscibroda. Stall-time fair memory assescheduling
for chip multiprocessors. IMICRO-4Q 2007.

T. Nesson and S. L. Johnsson. ROMM: Routing on mesh and to
networks. INSPAA 1995.

J. D. Owens, W. J. Dally, R. Ho, D. N. Jayashima, S. W. Kecland
L.-S. Peh. Research challenges for on-chip interconnecigtworks.
IEEE Micro, 27(5), 2007.

H. Patil et al. Pinpointing representative portiondasfe Intel Itanium
programs with dynamic instrumentation. MiICRO-37 2004.

L.-S. Peh and W. J. Dally. A delay model and speculatighigecture
for pipelined routers. ItHPCA-7, 2001.

A. Singh, W. J. Dally, A. K. Gupta, and B. Towles. GOAL: A
load-balanced adaptive routing algorithm for torus neksom ISCA
2003.

B. J. Smith. A pipelined shared resource MIMD compuitelCPP,
1978

B. J. Smith. Architecture and applications of the HERtiptocessor
computer system. IRroc. of SPIE1981.

B. J. Smith, Apr. 2008. Personal communication.

A. Snavely and D. M. Tullsen. Symbiotic jobschedulirgg &
simultaneous mutlithreading processorABPLOS-1X2000.

M. B. Taylor et al. Evaluation of the Raw microprocessan
exposed-wire-delay architecture for ILP and stream$S@®A-31
2004.

H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: a
power-performance simulator for interconnection netwotk MICRO,
2002.

X. Wang, A. Morikawa, and T. Aoyama. Burst optical defien
routing protocol for wavelength routing WDM networks. $P1E/IEEE
Opticom 2004.

D. Wentzlaff et al. On-chip interconnection architaet of the Tile
processorlEEE Micro, 27(5), 2007.

