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Analyzing the Optimality of Predictive Transform
Coding Using Graph-Based Models
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Abstract—In this letter, we provide a theoretical analysis of op-
timal predictive transform coding based on the Gaussian Markov
random field (GMRF) model. It is shown that the eigen-analysis
of the precision matrix of the GMRF model is optimal in decorre-
lating the signal. The resulting graph transform degenerates to the
well-known 2-D discrete cosine transform (DCT) for a particular
2-D first order GMREF, although it is not a unique optimal solution.
Furthermore, we present an optimal scheme to perform predictive
transform coding based on conditional probabilities of a GMRF
model. Such an analysis can be applied to both motion prediction
and intra-frame predictive coding, and may lead to improvements
in coding efficiency in the future.

Index Terms—Gaussian Markov random field, graph-based
models, predictive coding, transform coding.

I. INTRODUCTION

REDICTIVE transform coding (PTC), also known as hy-

brid predictive/transform coding, has been the cornerstone

for modern image/video codecs. Given an image block to be
encoded, PTC first finds the best prediction of the block from
encoded contents. One then subtracts the prediction from the
image block, and applies a transform such as the discrete cosine
transform (DCT) on the residue to compact its energy for quan-
tization and entropy coding. Early compression standards such
as MPEG-1 and MPEG-2 adopted motion prediction as the key
component to improve coding efficiency for image sequences.
The more recent H.264 AVC [18] and the upcoming HEVC [16]
further introduced intra-frame prediction, which significantly
enhances the coding efficiency for intra frames and still images.
The Karhunen-Loéve transform (KLT) is known to be the
only transform that fully decorrelates the signal [6]. The DCT
was originally introduced as an approximation for the KLT of
a first-order stationary Markov sequence [1]. A more rigorous
analysis [3] showed that the KLT converges to the DCT as the
correlation coefficient p tends to 1. Compared with KLT, DCT
is extremely efficient to compute, and provides satisfactory per-
formance for image and video coding. However, the optimality
of DCT was recently questioned by researchers under the con-
text of intra-frame predictive coding [19], [5], [21]. In such a
coding mode, the prediction is based on the pixels that have been
encoded in the same image, by extrapolating reconstructed ref-
erence pixels in a fixed set of directions. There are a total of
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9 intra prediction modes in H.264/AVC, and 35 intra predic-
tion modes in HEVC. The encoder tests all of them and selects
the best mode in rate/distortion tradeoff. Since the predictions
are directional, different pixels in the predicted blocks have dif-
ferent correlation with their neighbors. Therefore, DCT is no
longer a good approximation of the optimal transform for the
residual signal.

In [19], Ye and Karczewicz proposed the use of mode-de-
pendent separable transforms to approximate an ideal KLT for
coding the intra prediction residual. A number of follow-up
works have exploited the use of symmetry to reduce the number
of mode-dependent transform matrices [4], [17]. Han et al. [5]
used a separable first-order Gauss-Markov model for the image
signal to show that for certain prediction modes, a hybrid cosine/
sine transform will yield better performance for the residual.
Saxena and Fernandes [13] and Yeo et al. [20] further extended
Han’s approach in that the hybrid transform can be applied to
more prediction modes, and the prediction process is also mod-
ified for optimal results.

In this letter, we conduct a theoretical analysis on the optimal
PTC based on the Gaussian Markov random field (GMRF)
model for images. We show that the eigen-analysis of the
GMRF model’s precision matrix can lead to the optimal decor-
relation transform for the image, which we term the graph
transform (GT). For a particular 1-D first order GMREF, this
eigen-analysis produces the well-known DCT. We further ex-
tend the result by showing that the 2-D DCT is also an optimum
transform for a similar class of 2-D signals, although it is not
unique in achieving optimal decorrelation. The graph-based
transforms in [14], [10] is also a special case of the GT, for the
case where pixels across an edge are considered uncorrelated,
and connected pixels’ correlation tends to one. Finally, the
probabilistic view of GMRF allows us to find the optimal
predictive transform based on conditional probabilities. Thanks
to the generality of GMRF models, we are no longer limited
to separable or first order approximations as was done in
the literature [19], [5], [21]. Our analysis framework can be
applicable to both motion prediction and intra-frame predictive
coding. While this letter is mostly theoretical, we believe such
an analysis significantly enhances our understanding of the
DCT, the graph-based transform, and predictive coding.

II. THE GAUSSIAN MARKOV RANDOM FIELD MODEL

We start the analysis by introducing the GMRF model for im-
ages [12]. A GMREF is a restrictive multivariate Gaussian dis-
tribution that satisfies additional conditional independence as-
sumptions. We often use a graph G = (V, £) to represent the
conditional independence assumption, where V' represents the
set of nodes in the graph, and £ represents the set of edges. For
instance, Fig. 1 shows a few graphs representing image models.
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Fig. 1. A few graph models. (a) 1-D model, (b)—(c) simple 2-D models for
a2x 2 and a4 x 4 block, where each pixel is only connected with its direct
neighbors, (d) a more complex model.

Pixels that are not directly connected will be conditionally in-
dependent given all other pixels.

Formally, a random vector x = (r1,...,2,)" is called a
GMRF with respect to the graph G = (V = {1,...,n}, ) with
mean / and a precision matrix Q > 0 (positive definite), if and
only if its density has the form [12]:

T

n 1 1
) = (2n) F 1@l exp (3 x - 07 QEx— ) )
1)
and
Qi #0 & {i,j} € £ for alli # j. )

In the above definition, the precision matrix Q is in fact the
inverse of the covariance matrix X in a typical multivariate
Gaussian distribution. It is sometimes beneficial to describe the
Gaussian distribution using the precision matrix, as it can handle
distributions with singular covariances. More importantly, par-
tial correlations between variables can be directly obtained from
Q, since [12]:

s e\ L) = - 22
VAN

where p(x;,«;|x \ {xi,2;}) represents the partial correlation
between x; and x; given all other variables.

Although the above Gaussian model may be an idealized one
when describing real-world images, similar models have been
adopted to analyze image properties with great success [8]. In
addition, GMRF has been widely used as an image prior model
in various applications, such as image reconstruction [9], texture
modeling and discrimination [2], segmentation [7], etc.

i#5, 3)

III. GRAPH TRANSFORM

A. The Graph Transform

Let us assume that an image follows a zero-mean, GMRF
model. According to (1), the image vector x has a covariance
matrix & = Q !, where Q is the precision matrix. The optimal
linear transform that decorrelates x is thus the Karhunen-Lo¢ve
transform, or the eigenvector matrix ® of 3. That is, we may
write:

2P = PA, (4)

where A = diag(Ag....,A,) is the diagonal matrix of eigen-

values for X. Since:
QP =X 19 = (2APT) '@

—3A ", (5)

@ is also the eigenvector matrix of Q.
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Therefore, given a zero-mean GMRF with precision matrix
Q, the optimal decorrelation linear transform is the eigenvector
matrix of the precision matrix. Since GMRF is defined on a
graph, we call such an optimal transform the Graph Transform.

Note that GMRF is a very generic image model, since the
precision matrix Q can be defined based on actual image sta-
tistics. Nevertheless, in the literature, the Laplacian matrix L of
the graph G is most widely used as the image prior model for
various applications. To compute the Laplacian L, one first de-
fines an adjacency matrix A, where A(7,j) = A(j,¢) = 1 if
nodes ¢ and j are immediate neighbors connected by an edge.
Otherwise, A(Z,j) = A(j,4) = 0. Alternatively, if there are
weights on the graph that represent the partial correlation be-
tween nodes, A can be defined accordingly using the specified
weights.

Further, the degree matrix D of graph G is defined as a di-
agonal matrix, whose ¢th diagonal element is the number of
non-zero entries in the th row of A. The Laplacian of the graph
is computed as:

L=D - A. (6)

The precision matrix Q of a GMRF can be defined as:

Q=4L, (7
where 6 is a scale factor. Consequently, if the image follows
such a GMRF model, the optimal linear decorrelation transform
is the eigenvector matrix of the Laplacian matrix L.

A transform design referred to as an edge adaptive transform
(EAT) was recently proposed in depth map coding [14], where
a graph is defined on image blocks, and the correlation across
edges in the graph is set to 0. Our analysis above shows that
under the GMRF model, the EAT is indeed the optimal trans-
form to decorrelate the signal.

B. Graph Transform and 2-D DCT

The optimality of the 1-D DCT has been shown in the litera-
ture for an autoregressive signal model [3]. For the 1-D signal
graph as shown in Fig. 1(a), it was also known that the eigen-
vector matrix of the Laplacian matrix L is identical to the dis-
crete cosine transform (more specifically, DCT-2) [15]. While
autoregressive model could be extended to 2-D images [11], to
the best of our knowledge, the optimality of 2-D DCT has not
been analyzed. In the following, we show that for 2-D images
with graphs defined as Fig. 1(b) and (c), while the eigenvector
matrix of the Laplacian may not be unique, the 2-D DCT basis
functions are indeed eigenvectors of the graph Laplacian, and
thus optimal.

Consider an image block of M x N pixels. The 2-D DCT
basis functions of the image block can be written as a large
MN x M N matrix C, where each element is defined as:

i (7 Cm+DE]  [#w(2n+ 1)1
c(iy7) = a(k)B(l) cos {T} cos [T ;
(®)
where t = kN +1,5 = mN +nfor0 < km < M -1
and0 < I,n < N —1;a(0) = /1/M,ak) = /2/M, for
1 <k < M-—1;and 8(0) = 1/N,8(1) = /2/N, for
1<I<N-1.
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Fig. 2. Graph models on 2-D images. In graph G all pixels are connected to
their four direct neighbors. In graph G: the pixels are only connected to their
horizontal neighbors. In graph G- the pixels are only connected to their vertical
neighbors.

Let us now define a graph on the image, with each pixel con-
necting to only its four direct neighbors, as the graph G in Fig. 2.
Denote the Laplacian of the graph as L. It can be verified, using
examples such as the 2 x 2 image graph in Fig. 1(b) and 4 x 4
image graph in Fig. 1(c), that I may contain duplicated eigen-
values. Consequently, the optimal graph transform is not unique.

To show that the 2-D DCT matrix C is an eigenvector ma-
trix for L, we first define two assistant graphs, G; and G, as
shown in Fig. 2. In G; the pixels are only connected to their
horizontal neighbors, while in G5 the pixels are only connected
to their vertical neighbors. Their Laplacian matrices are L; and
L., respectively. Due to their repeat structure, clearly neither
L, nor L2 have unique eigenvector matrices. The 2-D DCT is,
however, an eigenvector matrix of both L; and Ls. The proofis
a tedious but straightforward multiplication of C (as defined in
(8)) by each of the Laplacian matrices, L; and L. Now, since:

L=L;+Lo, ©

and since C is an eigenvector matrix for both L; and Lo, it
follows that it is also an eigenvector matrix for L.

Thus, although the 2-D DCT is generally viewed simply as a
computationally efficient extension of the 1-D DCT into 2-D, it
turns out the 2-D DCT is actually optimum for a very reason-
able signal model: the first order GMRF when the correlation
coefficients goes to one. This confirms the successful applica-
tion of the 2-D DCT in typical image coding designs such as
JPEG. However, prediction is a key in more recent codecs, and
that model is not as appropriate anymore. In the next section,
we further extend our analysis, and examine predictive graph
transform, where some pixels are predicted from known pixels,
followed by an optimal graph transform.

IV. PREDICTIVE GRAPH TRANSFORM

A. Predictive Graph Transform

Let us consider a random vector
X = (T1y .oy Ty Trg1s -+ T)T, and  assume it
follows a GMRF model with mean g and precision matrix Q.
Among the elements of x,x; = (21,...,2,)7 is unknown,
and X2 = (%y41,.-.,7m)7 is known. For instance, x; may
represent the pixels to be encoded (unknown to the decoder),
and x», may represent a matching block in a previous frame
during motion prediction, or a few nearby known pixels during
intra-frame prediction.

The precision matrix € can be partitioned as:

Q= <Q11 Q12)
Q22 /7

Qb 1o
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Reference block Current block

Fig. 3. An illustrative example for motion prediction. A 3D graph can be de-
fined on the pixels to represent an example GMRF model.

where Q1 is mostly related to x;, Q2o is mostly related to xo,
and Qo represents the relationship between x; and x5. Ac-
cording to [12], x1|x3 is also a GMRF with respect to its own
subgraph with mean fi, |x, and precision matrix Qy,|x, > 0,
where:

(11)
(12)

Hxl\xz = lLX1 - Q;llle(XZ - lLXQ)',

Qxﬂxz = Qlla

where fix, and gy, are the mean for x; and x», respectively.
Consequently, in order to optimally decorrelate the variable x
given x», we can first subtract the conditional mean puy | |, from
x1, and then apply the eigenvector matrix of Q13 to transform
the signal for further processing/compression.

In the following, we discuss the application of predictive
graph transform (PGT) in motion prediction and intra-frame
predictive coding. In both cases, we assume a generic GMRF
model of the image is given during the analysis.

B. PGT for Motion Prediction

In motion prediction, a reference block is found through var-
ious motion estimation approaches, and is used to predict the
block that is currently being encoded. Assume the two blocks
are zero mean, and follow GMRF models described by preci-
sion matrix Q,.¢ and Q., respectively. To this end, let us con-
struct a GMRF model in 3D, as shown in Fig. 3. If we as-
sume all “prediction” edges have weight one (since the refer-
ence block should be very similar to the current block due to
motion search), the precision matrix of the 3D GMRF model
can be written as:

_{Qun -1
Q= ( T an ) (13)
where I is an identity matrix, and:
Qu=Q:+I Qa2 =Qut+1L (14)

Based on the derivation in Section IV-A, we may predict the
current block x; through:

.“'x1|x2 = Q1—11X27 (15)
and then apply the eigenvector matrix of Q17 to decorrelate the
signal.

The above analysis has interesting implications. For motion

prediction, instead of directly copying the pixels from the ref-
erence block to the current block, (15) suggests that the optimal
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Fig. 4. An illustrative example for intra-frame prediction. The 4 x 4 image
block will be predicted by the shaded known pixels on the top and left. The
right figure is a typical graph defined on the image.

scheme is to first apply a filter on x» before copying. In addi-
tion, since any orthogonal basis is an eigenvector matrix of the
identity matrix I, it can be shown that Q;; will share the same
set of eigenvectors as Q.. Hence the optimal transform for the
residue remains the same as when no motion prediction is per-
formed.

For the special case that Q. = 6L, since the Laplacian is es-
sentially a high pass filter, Q; 11 will be a low-pass filter. There-
fore, one should blur the reference block and then copy it to the
current block. Furthermore, from the analysis in Section III-B,
we can conclude that the 2-D DCT transform is still optimal for
encoding the prediction residual.

C. PGT for Intra Predictive Coding

In modern video codecs, the intra frames will also be pre-
dicted from neighboring known pixels to enhance coding effi-
ciency. Again we may form a simple graph for the 2-D block
including the neighboring pixels, as shown in Fig. 4. Following
Section IV-A, for a zero mean image, the optimal prediction
would be:

= —Q{ Qi2x>, (16)

Hx iy |x
where x; is the list of pixels to be encoded, and xo is the list
of known neighbors. The optimal transform is the eigenvector
matrix of Q1.

Note that the optimal prediction for intra-frame predictive
coding is related to both Q1; and Q12. That is, how the un-
known pixels are correlated to themselves, and how they are
correlated to the known pixels. In general the 2-D DCT is no
longer the eigenvector matrix for Q13 due to the connections
between x; and x,. Similar to the previous works [19], [5], [13],
our analysis calls for different schemes of intra-prediction and
transform coding. On the other hand, our derivation is rather
general, and not limited to separable or first order signal models.

If we consider the special case that Q = ¢L, both Qﬁlng
and the eigenvector matrix of Q; can be pre-computed. In
practice, however, the neighboring known pixels may suggest
a better GMRF model, and it could certainly be adopted to im-
prove the coding efficiency.

V. CONCLUSION

We presented a theoretical analysis of optimal predictive
transform coding. We showed that, under a GMRF image
model, the graph transform is optimal in decorrelating the
signal. Furthermore, when neighboring pixels are known, we
derived the optimal predictive graph transform as in (11) and
(12). Mostly of historical interest, we have also showed that
the 2-D DCT is optimum for a very reasonable image model,
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which helps understand its efficiency (and success) in early
coding standards.

Note that throughout our predictive transform coding anal-
ysis, we assume that the GMRF image model is given and fixed.
Predictive graph transform is optimal as long as the image fol-
lows the GMRF model closely. It is easy to imagine, however,
that in many cases a more elaborate model can be devised after
part (or all) of the data is available. This is precisely what is
exploited in the directional interpolation in recent codecs. An
interesting line of future work is to find better GMRF models
based on the reference blocks or pixels. Together with the
optimum predictive graph transform proposed in this letter, it
would bring motion compensation and directional interpolation
to a whole new level.
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