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ABSTRACT

Transmitting from sender compressed texture and depth maps of

multiple viewpoints enables image synthesis at receiver from any

intermediate virtual viewpoint via depth-image-based rendering

(DIBR). We observe that quantized depth maps from different view-

points of the same 3D scene constitutes multiple descriptions (MD)

of the same signal, thus it is possible to reconstruct the 3D scene

in higher precision at receiver when multiple depth maps are con-

sidered jointly. In this paper, we cast the precision enhancement of

3D surfaces from multiple quantized depth maps as a combinatorial

optimization problem. First, we derive a lemma that allows us to

increase the precision of a subset of 3D points with certainty, simply

by discovering special intersections of quantization bins (QB) from

both views. Then, we identify the most probable voxel-containing

QB intersections using a shortest-path formulation. Experimental

results show that our method can significantly increase the precision

of decoded depth maps compared with standard decoding schemes.

Index Terms— Texture-plus-depth representation, 3D recon-

struction, multiple descriptions

1. INTRODUCTION

Texture-plus-depth [1] has quickly become a popular format for dy-

namic 3D scene representation. One reason is because receiver can

use texture and depth maps transmitted from sender from different

viewpoints for synthesis of novel images as seen from freely cho-

sen virtual viewpoints via depth-image-based rendering (DIBR) [2].

Another reason is because mature video coding tools like H.264 [3]

and HEVC [4] can be easily and modestly adjusted for compression

of the new video format. To reduce coding rate to reasonable size,

however, input texture and depth videos are typically lossily com-

pressed via quantization using these tools, resulting in quantization

errors at decoder that corrupt the fidelity of the reconstructed signal.
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Fig. 1. Multiple descriptions for scalar quantizers and for 3D scene.
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To lessen the ill effects of depth video quantization at receiver,

we observe that quantized depth maps from different viewpoints of

the same 3D scene constitute multiple descriptions (MD) of the same

signal. Thus, it is possible to enhance the depth precision of the

described 3D scene at receiver when multiple quantized depth maps

are considered jointly. As a motivating analogy, consider first MD

of scalar quantizers; an example is shown in Fig. 1(a) where there

are two scalar quantizers offset by 2 from each other. If the decoder

receives only the quantization bin (QB) index of the left quantizer,

then one can only deduce the coded scalar to be between 4 and 8.

If the decoder receives QB indices of both left and right quantizers,

then one can deduce the scalar to exist in the intersection of the two

QBs—concluding the scalar to be between 6 and 8—enhancing the

precision from 4 to 2.

Similarly, consider a 3D point (called voxel in the sequel) in the

captured 3D scene that is visible from both left and right cameras,

as shown in Fig. 1(b), resulting in one sample in each of the two

depth maps1. If only the left depth sample is considered, then de-

coder can only deduce that a voxel exists inside the one QB (blue

QB in Fig. 1(b)). If both depth samples are considered, then decoder

can deduce that a voxel exists in the intersection of the two QBs,

enhancing the depth resolution of the 3D scene.

Unlike the scalar quantizer case, however, correct matching of a

pair of left and right QBs that contain the same voxel is non-trivial.

In this paper, we formalize the QB matching problem to enhance

depth precision of the 3D scene at receiver as a combinatorial op-

timization problem. First, we derive a lemma that allows us to in-

crease the precision of a subset of 3D points with certainty, simply

by discovering special intersections of quantization bins (QB) from

both views. Then, we identify the most probable voxel-containing

QB intersections using a shortest-path formulation. Experimental

results show that our proposed method significantly outperforms sin-

gle depth map in accuracy with respect to the ground truth signal.

The outline of the paper is as follows. We first discuss related

work in Section 2. We then overview our system in Section 3. We

formalize our optimization in Section 4. Finally, experimental re-

sults and conclusions are presented in Section 5 and 6, respectively.

2. RELATED WORK

While much efforts have been invested into efficient compression

schemes for 3D visual data in texture-plus-depth format—e.g.,

unique characteristics of depth maps like piecewise smoothness

have been exploited to improve depth map coding efficiency [5, 6]—

majority of the proposals are simple extensions or modest modifi-

cations of existing coding tools like H.264 [3] or HEVC [4] instead

of a complete coding architecture overhaul. It is thus likely that

1We will assume spatial resolutions of the depth maps are sufficiently
high to provide enough samples for this assumption to hold true.



the same hybrid motion-compensation / transform-based residual

coding framework will remain in place for the foreseeable future.

Nonetheless, we stress that our proposed depth precision en-

hancement algorithm is applicable to any texture-plus-depth coding

scheme from which we can derive an independent QB for each depth

sample in each view. For block-based coding schemes like H.264

where transform coefficients of a K-pixel block are quantized and

transmitted, one can derive a QB for each depth pixel in the block

as follows. We first identify the K-dimensional quantization region

that corresponds to the scalar quantized coefficients of the K-pixel

block. If the same quantization step size is used for each coeffi-

cient, then the quantization region is a hypercube. We then construct

a bounding box2 with sides that are either parallel or perpendicular

to the pixel domain axes, that tightly contains the quantized region

(solvable via linear programming). The width of the bounding box

along each pixel domain axis is the size of the QB for that pixel.

While we focus our study of precision enhancement of 3D sur-

face using quantized depth maps at the decoder only, knowledge

gained from our study can be leveraged at the encoder, so that ap-

propriate bit allocation can be performed among the multiple coded

depth maps, improving overall rate-distortion (RD) performance.

Joint optimization of depth map coding at encoder and depth map

enhancement at decoder will be considered as future work.

3. SYSTEM OVERVIEW

(a) texture map (b) depth map

Fig. 2. Left view for the dude sequence.

We consider a scenario where the most likely 3D surface is esti-

mated at the decoder, given quantized color / depth map pairs from

two camera viewpoints (left and right). See Fig. 2 for an example.

The color / depth map pairs are rectified, so that a row of pixels in

the left view corresponds to a row of pixels in the right view. We

assume that the depth maps are coarsely quantized compared to the

spatial resolution. That means for each voxel on the 3D surface,

there is both a color and a depth pixel sample in both the left and

right view, if the voxel is visible from both viewpoints (no occlu-

sion). Our depth resolution enhancement work is constructed based

on this double-sample assumption. We further assume Lambertian

surface characteristic for the 3D scene, so that the same voxel visible

from both views will result in similar color (RGB) values.

3.1. QBs, ICs and Quantized Curves

Given the depth maps are rectified, we consider one row of pixels

in the two depth / color map pairs at a time, corresponding to a 2D

epipolar plane in 3D space. Possible depth values at each pixel loca-

tion are partitioned into quantization bins (QB). The shape of a QB

on the epipolar plane is approximated by a rectangle, whose width

depends on the spatial resolution and length depends on the depth

2Though the size of the bounding box is larger than the hypercube, our
depth enhancement algorithm can nonetheless improve depth precision of the
decoded depth signal.

Le� Camera Right    Camera

Fig. 3. One epipolar plane of dude’s two views. Active QB is represented
by a line segment, and the intersection of two active QBs is an IC.

quantization granularity. The QB with index that is actually coded is

called active; the captured voxel of the 3D surface must exist within

the active QB confine. The i-th QB from the left and right views are

denoted as Ql
i and Qr

i , respectively.

A cell is an intersection of two QBs. We denote the intersection

of i-th QB of left camera (Ql
i) and j-th QB of right camera (Qr

j )

by Vi,j ; see Fig. 4(a). We reserve the term intersection cell (IC) to

mean intersection of two active QBs. Note that an active QB may

have multiple ICs with different active QBs from another view.

An IC is called true if it contains a voxel that is part of the actual

3D surface. Since an IC is by definition smaller than QB in size

(higher precision), the problem of depth precision enhancement is

thus the selection of true ICs within active QBs.

On the epipolar plane, the 3D surface can be divided into indi-

vidual contiguous segments; e.g., foreground and background seg-

ments. A quantized curve is a spatially contiguous series of QBs (at

low precision) or ICs (at high precision). Fig. 3 shows QBs from a

single pixel row in left and right views of the dude sequence.
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Fig. 4. Example for deterministic ICs and probabilistic ICs. Voxels (black
dots) are connected to show the original 3D curve.

3.2. Deterministic ICs

We first identify ICs that can be certified as true with probability

1 (called deterministic ICs) without color information. We identify

these ICs with the following lemma.

Lemma 1. Vi,j is true with probability 1 if: (i) Vi,j is the only IC of

QB Ql
i and other cells of Ql

i are not occluded by active QBs in right

view; or (ii) Vi,j is the only IC of Qr
j and other cells of Qr

j are not

occluded by active QBs in the left view.

As an example, there are five ICs (a to e) in Fig. 4(a), only a and

e satisfy Lemma 1 and thus are deterministic ICs.

We outline a proof of Lemma 1 as follows. Suppose the first

condition in Lemma 1 is true. Because other cells Vi,k of Ql
i are vis-

ible from the right camera (not occluded), there would be an active

QB Qr
k intersecting with active QB Ql

i if there is a voxel in cell Vi,k.

However, we know active QB Ql
i only intersects with active QB Qr

j .

Hence, there can be no voxels in Vi,k, k 6= j. Since QB Ql
i is active,

Vi,j must be true.

In general, it is possible that no cells in a local area satisfy the

condition in Lemma 1; see Fig. 4(b) for an example. In this case, we



will use color information to disambiguate among candidate cells in

a probabilistic manner.

4. QUANTIZED CURVE ESTIMATION

Having identified deterministic ICs, we now formulate the problem

of estimating the most likely quantized curve. We first divide QBs

on an epipolar plane into segments, so that contiguity of quantized

curve can be enforced within a segment. Each segment is further

divided into process units (PU), each with well defined start and end

cells. Finally, we estimate a contiguous maximum liklihood (ML)

quantized curve for each PU via a shortest-path formulation.

4.1. Grouping QBs into Segments

 Gl(1) 

 Gl(2) 

 Gr(1) 

(a) grouping into a segment

PU1 

PU2 

(b) 2 PUs of (a)

Fig. 5. Grouping QBs into segments and dividing a segment into PUs.

To group QBs in an epipolar plane into segments, we do the

following. First, neighboring active QBs of the left view—two QBs

are neighbors if they are side-by-side or diagonal from each other—

are grouped together as {Gl(k)}. The same procedure is performed

for active QBs of the right view, resulting in {Gr(k)}. Then, for

each pair of groups that have at least one overlapping cell, we take

the union of them to be a new combined group. We continue this

step until no more group pairs have overlapping cells; the remaining

groups are the individual segments. As an example, in Fig. 5(a)

all the left and right groups are merged into one segment because

they have overlapping cells. A segment represents an actual physical

object in the 3D scene, e.g. a person’s body. Hence we will enforce

contiguity within a segment when estimating a quantized curve.

4.2. Dividing Segment into Process Units

We now identify one or more PUs in a segment. A PU is composed

of ICs only. In the following sections, we estimate an ML quantized

curve for each PU independently. For any indeterminant QB—an

active QB with at least one non-IC cell (i.e. color information is

available from only one view)—that connects PUs into a segment,

we will choose the middle cell for curve reconstruction to minimize

worst-case error, as done in conventional decoding schemes.

We first search for the left-most active vertical QB containing

ICs from the left view (second blue column from the bottom-left in

Fig. 5(a)); these are the first ICs in the first PU. We initialize the

middle cell in the QB to the left of this QB as start cell Vs.

For each side-by-side vertical QB to the right that contains ICs,

we add the corresponding ICs to the PU; see the 3×2 ICs in the bot-

tom left of Fig. 5(a). At the right-most QB of this PU, by segment

construction there are only two cases: i) an active vertical QB diag-

onal from this PU, or ii) an active horizontal QB on top of this PU

(shown in Fig. 5(a)). In the first case, the corner cell that connects to

the diagonal QB is the end cell Ve of this PU. The connecting corner

cell of the diagonal QB is the start cell of the new PU, if the QB is

not indeterminant. If it is, then the middle cell is selected.

In the second case, the horizontal QB on top must be indetermi-

nant, and so we pick the middle cell as the end cell Ve of the first PU.

At the top of this heap of horizontal QBs, by segment construction

there will be a diagonal cell. If this cell belongs to an active vertical

QB, then the situation is same as case one above. If not, it must be-

long to an active horizontal QB, and the situation is then the same as

case two above. This procedure is repeated until all the cells in the

segment are examined.

In the end, one or more PUs with corresponding start and end

cells Vs and Ve are identified within a segment. Note that some of

the Vs (Ve) are not ICs, which will be addressed in Section 4.4.

4.3. Maximum Likelihood Formulation

For a given PU, we now formulate the IC selection problem in a

ML formulation. We first construct a graph G: each IC Vi,j is

a node that is connected to its neighboring ICs Ni,j—to the left,

right, top, down and diagonal—with edges3. Given color informa-

tion from the left and right views, {Yl,Yr}, our goal is to find the

ML quantized curve—a most likely ordered set of nodes denoted by

C = {V 1, . . . , V K}, V k ∈ G, of some size K:

max
C

Pr(Yl
Y

r|C), s.t. C ∈ C (1)

where C is the feasible set of quantized curves in a PU. Any C ∈ C
must satisfy the following constraints:

1. ∀Ql
i, ∃Vi,n ∈ C for some n.

2. ∀Qr
j , ∃Vm,j ∈ C for some m.

3. ∀V k
i,j ∈ C, 1 < k < K, ∃V k−1, V k+1 ∈ Ni,j .

Constraints 1 and 2 state that a feasible curve must include at least

one IC in each active QB. Constraint 3 states that a feasible curve

must be contiguous within a PU.

Probabilities of elements in C are assumed independent. Using

color matching as conditional probability, (1) becomes:

max
C∈C

K∏

k=1

Pr(Yl
kY

r
k|V

k)

⇔min
C∈C

K∑

k=1

− logPr(Yl
kY

r
k|V

k)

(2)

Note that (2) is essentially a sum of node costs (or edge weights)

along a contiguous curve C. Specifically, the weight of an edge ar-

riving at V k is Wk = − logPr(Yl
kY

r
k|V

k), i.e. the consistency

(color matching) of V k’s color vectors from the two views (Yl
k and

Y
r
k). For example, Wk=||Yl

k−Y
r
k||1 if we assume Laplacian prob-

ability model for color matching. Exceptions are made for determin-

istic ICs as arriving nodes with edge weights W = 0.

4.4. Shortest Path as Estimated Quantized Curve

Given graph G and start and end cells Vs and Ve for each PU, we

argue that a suitable version of a shortest-path formulation will result

in an ML optimal solution for defined feasible set C. We start from

the simplest case where Vs and Ve are opposite corner ICs of the

PU; an example is PU2 in Fig. 6. In this case, C is the set of all paths

3We connect a middle cell of an indeterminant QB to its neighboring ICs
in the same way, but if none exists, we draw a single edge to its nearest IC.



between Vs and Ve. The solution of (2) is then simply the shortest

path from Vs to Ve on G. This can be solved efficiently using any

shortest path algorithms, such as Bellman-Ford (BF) [7].

If Vs and Ve are corner ICs on the same side (e.g. PU3), feasible

solution set C is the set of paths from Vs to Ve that must pass through

at least one intermediate cell Vi of the furthest row or column (the

intermediate Vi for PU3 is the three ICs in the last row). This can

be solved by calling BF twice (with starting node set at Vs and Ve

for each run), and choosing the union of two shortest paths Vs → Vi

and Vi → Ve, whose sum of costs is minimal among all possible Vi.

When Vs or Ve is not an IC (e.g. PU1), the start (end) cells of

G become the ICs that are connected to Vs or Ve (which is outside

the PU). Because Vs (Ve) has at most 3 connected ICs in the PU,

the number of combinations of start and points for the PU is at most

9. For each combination, we need to assign at most 2 intermediate

cells to satisfy constraints 1 and 2 in Section 4.3 (at least one IC of

an active QB must be traversed). This can be similarly solved by

calling BF multiple times.

As a whole, the ML quantized curve can be calculated in poly-

nomial time for any PU. Combining the ML quantized curves for all

PUs in all segments on all epipolar planes, we arrive at a quantized

3D surface with reduced uncertainty (enhanced precision).
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Fig. 6. Example of PUs with different start/end cells (marked in yellow).

5. EXPERIMENTATION

Two test sequences, sphere (400× 400) and dude (480× 800),
are used for experiments. They are both composed of two rectified

views with depth and color maps. In sphere, the camera baseline is

5.4 and the depth range is [9.0, 10.16]; in dude, the camera baseline

is 1.0 and the depth range is [1.15, 2.6].
To decode depth values, the standard method picks the center

depth values of QBs. In our method, center values of the estimated

quantized 3D surface (composed of ICs in the solution of (2), and

middle cells for indeterminant QBs) are used as decoded depth.

Mean Square Error (MSE) ε is used as metric:

ε = (εl + εr)/2

εl =
1

MN
||Dl − D̂

l||2F , εr =
1

MN
||Dr − D̂

r||2F
(3)

where εl and εr are respectively the MSE of the left and right de-

coded depth maps. D̂ is the ground-truth 12-bit depth map. D is the

decoded depth map. M×N is the spatial resolution of the sequence.

Depth maps with varying bit-precision (3-bit∼6-bit, denoted by

d3∼d6 respectively) are used as inputs. Color maps with 6-bit or 8-

bit precision (c6 and c8) are used as side information. MSE results

are shown in Table. 1, where ’sta’ refers to standard method and ’our’

refers to proposed method.

Table 1. MSE Comparisons

sphere dude

sta our-c6 our-c8 sta our-c6 our-c8

d3 2.30e-3 1.96e-4 1.66e-4 4.28e-3 1.07e-3 1.07e-3
d4 5.02e-4 8.55e-5 5.82e-5 7.73e-4 2.00e-4 2.00e-4
d5 1.18e-4 4.61e-5 2.51e-5 1.86e-4 5.36e-5 5.36e-5
d6 2.86e-5 2.38e-5 1.37e-5 4.28e-5 1.69e-5 1.69e-5

We can see that our method is able to achieve significantly higher

precision: the MSE of proposed method is less than 10% of that of

standard method for sphere with 3-bit input depth and 6-bit color.

Although in general lower MSE will be obtained with better color

information, 6-bit and 8-bit color maps didn’t make a difference for

dude whose color tends to be locally uniform; see Fig. 2.

Some visual results are shown in Fig. 7. We can see that our so-

lution aligns with ground-truth 3D surface much better than standard

method who simply picks the center of QBs.

Fig. 7. Example of decoded surface of proposed method (green spots) and
ground-truth (black crosses) for dude with 6-bit depth and 6-bit color.

6. CONCLUSION

In this paper, we consider the scenario of recovering a high preci-

sion 3D surface represented by multi-view texture-plus-depth maps.

We formulate it as a maximum likelihood problem which can be

effectively solved using a shortest-path algorithm. Effectiveness of

proposed method is verified in accuracy of decoded depth maps.
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