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ABSTRACT 

Browsers’ isolation mechanisms are critical to users’ safety 
and privacy on the web. Achieving proper isolations, however, is 
very difficult. Historical data show that even for seemingly simple 
isolation policies, the current browser implementations are 
surprisingly error-prone. Isolation bugs have been exploited on 
most major browser products. This paper presents a focused 
study of browser isolation bugs and attacks. We found that 
because of the intrinsic complexity of browser components, it is 
impractical to exhaustively examine the browser implementation 
to eliminate these bugs. In this paper, we propose the script 
accenting mechanism as a light-weight transparent defense to 
enhance the current domain isolation mechanism. The basic idea 
is to introduce domain-specific “accents” to scripts and HTML 
object names so that two frames cannot communicate/interfere if 
they have different accents. The mechanism has been prototyped 
on Internet Explorer. Our evaluations showed that all known 
attacks were defeated, and the proposed mechanism is fully 
transparent to existing web applications. The measurement about 
end-to-end browsing time did not show any noticeable slowdown. 
We also argue that accenting could be a primitive that is general 
enough for implementing other domain-isolation policies.  

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection – invasive 
software; C.2.0 [Computer-Communication Networks]: 
Security and Protection 

General Terms: Security 

Keywords 
browser, domain isolation bug, accenting, same-origin policy 

1. INTRODUCTION 
Web browsers can render contents originated from different 

Internet domains. A major consideration of web security is the 
appropriate enforcement of the same-origin principle: although it 
has never been strictly defined, this principle can be loosely 
interpreted as “a script originated from one Internet domain  
 

should not be able to read, manipulate or infer the contents 
originated from another domain”, which is essentially the non-
interference property [9] in the web security context. Failures to 
enforce this principle result in severe security consequences, e.g., 
a script from an arbitrary website can steal the user’s banking 
information or perform unintended money transfers from the 
user’s account. The malicious script can do almost anything that 
the victim user can do on the browser. 

Same-origin-principle violations can be due to insufficient 
script-filtering of the web application on the server, or due to 
flaws in the browser domain-isolation mechanisms: 1) Script-
filtering flaws are commonly referred to as cross-site scripting (or 
XSS) bugs [17]. By exploiting these bugs, malicious scripts from 
attacker websites can survive the filtering and later be executed in 
the same security context of the authentic web application. A 
wealth of work in the security literature addresses prevention and 
defense techniques against XSS attacks. We do not focus on XSS 
in this paper; 2) On the browser side, the same-origin-principle 
violations are due to the improper isolation of the contents from 
different domains, which is one of the biggest security problems 
faced by browser developers. Although at the policy-specification 
level, certain isolation policies still need to be standardized to 
support more browser functionalities while preserving security, 
we found that even for a well-specified policy, the 
implementation of the enforcement mechanism can be 
surprisingly hard and error-prone. For example, the most well-
known isolation policy is the cross-frame same-origin policy, 
which states that scripts running inside a frame of http://a.com is 
not allowed to access objects inside a frame of http://b.com. Bugs 
in the enforcement mechanism of this seemingly simple policy 
have been discovered on major browsers, including Internet 
Explorer (IE), Firefox, Opera and Netscape Navigator [1][2][3].  

Although browser vendors are aware of real-world attacks 
against browser isolation mechanisms, there is little work in the 
academic literature about this serious security problem. In order 
to better understand the problem space, we conducted a focused 
study of IE’s domain-isolation bugs and real attacks discovered in 
the past. The study shows that browser’s flaws in the isolation 
mechanism are due to many convoluted factors, including the 
navigation mechanism, function aliasing, excessive 
expressiveness of navigation methods, the semantics of user 
events and IE’s interactions with other system components. The 
exploitations of these flaws, which we will explain in details, are 
highly heterogeneous, and thus it would be very challenging to 
exhaustively reason about every scenario that the isolation 
mechanism may encounter. Of course, the unsolved challenge 
suggests that the browser may have new bugs of this type 
discovered in the future, similar to the situation that we have with 
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buffer overrun bugs – individual bug patches would not solve the 
problem as a whole. 

The prevalence of browser isolation bugs in all major 
browser products naturally calls for a comprehensive defense 
technique. However, two practical constraints need to be 
considered when we design the defense technique: 1) the 
technique must be transparent to existing browser functionalities. 
A large volume of web applications have been developed based 
on existing browser functionalities. It would be a significant 
deployment hurdle if a defense mechanism broke these 
applications; 2) we have only limited understanding of the 
browser implementation. Browser products have very large code 
bases. The comprehensiveness of the defense should only rely on 
the correct understanding of a small subset of the source code, 
and thus should be straightforward.  

In this paper, we propose a light-weight transparent defense 
technique with the consideration of the above practical constraints.  
The technique is based on the notion of “script accenting”. The 
basic idea is analogous to the accent in human languages, in 
which the accent is essentially an identifier of a person’s origin 
that is carried in communications. To implement this, we slightly 
modified a few functions at the interface of the script engine and 
the HTML engine so that (1) each domain is associated with a 
random “accent key”, and (2) scripts and HTML object names are 
in their accented forms at the interface. Without needing an 
explicit check for the domain IDs, the accenting mechanism 
naturally implies that two frames cannot interfere if they have 
different accent keys. 

The concept of script accenting provides a higher assurance 
for the implementation of the browser isolation mechanism. We 
are able to confidently define the script ownership and the object 
ownership, which are easily followed in our implementation 
without any confusion. A prototype of the technique has been 
implemented on IE. The evaluation showed that all known cross-
frame attacks were defeated. Moreover, because the accenting 
mechanism only slightly changes the interface between the script 
engine and the HTML engine, it is fully transparent to web 
applications. Our stress test showed a 3.16% worst-case 
performance overhead, but the measurement of the end-to-end 
browsing time did not show any noticeable slowdown.  

The rest of the paper is organized as follows: Section 2 
discusses related work. We briefly introduce the basics of IE’s 
domain-isolation mechanism in Section 3. Section 4 presents a 
case study of real-world attacks. We discuss the design and the 
implementation of the script accenting mechanism in Section 5, 
followed by experimental evaluations in Section 6. Section 7 
concludes the paper. 

2. RELATED WORK 
Researchers have been studying security issues related to the 

same-origin principle, among which the cross-site scripting (XSS) 
problem has attracted much attention. Although it is not the focus 
of this paper, we summarize a few interesting projects here. 
Livshits and Lam proposed a static analysis technique to find 
XSS bugs in Java applications [14]. Johns studied XSS attacks 
and identified the prerequisites for the attacks to hijack sessions. 
He proposed the SessionSafe approach that removes the 
prerequisites to protect browser sessions [11]. Because XSS 
attacks are due to the failures of script filtering, Xu et al proposed 
using taint tracking to detect the attacks [15]. The attacks 
discussed in this paper are a different type of attacks. They 

exploit flaws in the browser isolation mechanism, not the input-
filtering bugs on the web applications. 

Interesting research has also led to the proposals of new 
policies of the browser isolation mechanism. Significant effort is 
spent on the discussion and the standardization of the browser’s 
mechanisms to securely retrieve data from servers, among which 
XMLHTTPRequest [16] and JSONRequest [7] are the 
representatives. In addition to the effort on data retrieval 
mechanisms, researchers also found that the timing characteristics 
of caches and the coloring of visited links allow malicious scripts 
to infer certain browser states and thus track users’ browsing 
histories. Accordingly, they specified the same-origin policies for 
browser caches and visited links [4][8][10]. In this paper, we do 
not discuss how to specify better policies, but focus on how to 
correctly and securely implement those that are well-specified. 

The isolation bugs that we discuss are at the HTML and 
Javascript level, rather than the OS process level. One can 
imagine that if the IE process is compromised by buffer overrun 
or other binary code attacks, then the malicious binary code can 
directly access pages from different domains without exploiting 
any domain-isolation bugs at the HTML/Javascript level. These 
attacks can be thwarted by OS-level process isolations. For 
example, Tahoma is a web browsing system based on virtual 
machine monitor (VMM) [6]. It implements a browser operating 
system (BOS) to guarantee that each web application runs inside 
its own virtual machine. Therefore, even when a browser instance 
in a web application is compromised, it cannot interfere with 
other web applications. It should be noted that HTML/Javascript 
isolation and OS-level process isolation are very much orthogonal 
in today’s browsers because no matter how the underlying 
processes are isolated, the HTML/Javascript semantics require the 
capabilities of cross-domain navigations, frame-hosting, event 
capturing, etc, which are the source of isolation bugs discussed in 
this paper. 

3. THE BASIC MECHANISM FOR 
DOMAIN ISOLATION OF IE 
This section gives a short introduction of IE’s basic isolation 

mechanism – the frame-based isolation. In IE, each HTML 
document is hosted in a frame (or an inline frame)1. A browser 
window is the top-level frame, which hosts the top-level 
document that may contain other frames. IE implements a 
security mechanism to guarantee that scripts from one frame can 
access documents in another frame if and only if the two frames 
are from the same domain. 

Figure 1 shows Frame1 and Frame2 that represent two 
frames in the browser. The document in Frame1 is downloaded 
from http://a.com. The objects in the frame are stored in a DOM 
tree (i.e., a Document Object Model tree). The root of the DOM 
tree is a window object. Note that “window” in the DOM 
terminology actually represents a frame, which is not necessarily 
the entire browser window. The children of window include: 
location, which is the URL of the document; event, which 
is the event received by this frame; document, which is the 
parsed HTML document contents; history, which is a 
collection of the URLs having been visited in this frame. The 
objects body and scripts have the common parent object 
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regular frames. In the rest of this paper, the term “frame” refers to 
regular frames and inline frames. 



document. The body object contains primarily the static 
contents to be rendered in the frame. Scripts is a collection of 
scripts that manipulate the DOM tree of its own frame and 
communicate with other frames. These scripts are compiled from 
the script source text embedded in the HTML file or passed from 
another frame. They are in a format of “byte-code”, essentially 
the instruction set of the script engine. 

window 

location event document history

scriptsbody

Text box anchor button

image

DOM

body

div input font

Script Runtime Program 
counterheapstack

Frame1: from http:/ /a.com

window 

location event document history

scripts

DOM

Script Runtime

heapstack

Frame2: from http:/ /b.com

windowProxy2:
To service Frame1

windowProxy1: 
To service Frame2

Window references: 
{window, windowProxy2}

Window references: 
{window, windowProxy1}

Program 
counter

 
Figure 1: Cross-Frame References and the Isolation 

Between Frame1 and Frame2 

Each frame has a script runtime, which includes a stack, a 
heap, a program counter pointing to the current instruction in the 
scripts object, and a set of window references (to be discussed 
in the next paragraph). When the script accesses a DOM object, 
the script runtime executes an instruction 
“LoadMember baseObj,nameString” to get the object’s 
reference. For example, to access document.body, the script 
runtime executes “LoadMember RefDocument, ‘body’”, 
where RefDocument is a reference to the document object. 
LoadMember is an instruction to look up a child object name 
and return the object’s reference. 

The script runtime keeps a window references object. 
The reference to the window object of Frame1 is in the 
window references of Frame1’s runtime, so any script 
running in Frame1 can get the reference to every object in its 
own DOM and manipulate it. Hypothetically, if a script running 
in Frame2 from http://b.com had a reference to the window 
object of Frame1, the script could also totally control the DOM 
of Frame1, which violates the same-origin policy. Therefore it is 
a crucial security requirement that the reference to the window 
object should never be passed outside its own frame. Instead, 
Frame2 has a window proxy windowProxy1 to communicate 
with Frame1. Conceptually the window proxy is a clone of the 
window object, but it is specifically created for Frame2 to 
access Frame1. The window proxy is the object in which the 
cross-frame check is performed: for any operation2 to get the 
reference of a child of windowProxy1, a domain-ID check is 
made to ensure that the domains of Frame1 and Frame2 are 
identical. For example, assuming a script is running in Frame2, 
and windowProxy1 is represented as WND1 in the script, then 

                                                 
2 The write operation to the location object is an exceptional 
case. It does not follow the same-origin policy. The domain check 
is explicitly bypassed for this operation. 

the script expression “WND1.document” will fail with an 
access-denied error, because WND1 (i.e., windowProxy1) is the 
proxy between two frames from different domains. The domain-
ID check in the window proxy is simply a string comparison to 
check if the two domains expressed in the plain text format are 
identical.  

The mechanism described above appeared to provide a good 
isolation between frames of different domains. However, in the 
next section, we analyze a number of real attacks that bypass or 
fool it to allow a malicious script to control a frame of another 
domain. 

4. A Study of Real-World Attacks Against IE 
The isolation mechanism presented in Figure 1 is designed 

to prevent a script from http://a.com to access the DOM from 
http://b.com. The implicit assumptions are (1) every cross-frame 
communication must go through a window proxy, (2) the window 
proxy has the correct domain-IDs of the accessor frame and the 
accessee frame. We studied the Microsoft Security Vulnerability 
database, and found that all discovered frame-isolation bugs are 
because of the invalidity of these assumptions. There are 
unexpected execution paths in the system to bypass the check or 
feed incorrect domain-IDs to the check. These exploit scenarios 
take advantage of the navigation mechanism, IE’s interactions 
with other system components, function aliasing in the script 
runtime, excessive expressiveness of frame navigations, and the 
semantics of user events. In this section, four real attacks are 
discussed to show that it is very hard to for browser developers to 
exhaustively reason about all possible execution scenarios. 

In these examples, we assume the user’s critical information 
is stored on the website http://payroll, and the malicious website 
visited by the user is http://evil. The goal of http://evil is to steal 
the payroll information and/or actively change the direct deposit 
settings of the user, for example. We use “doEvil” to represent 
a piece of malicious Javascript payload supplied by http://evil that 
does the damage. In the following discussion, the attacker’s goal 
is to execute doEvil in the context of http://payroll.  

4.1 Exploiting the Interactions between IE 
and Windows Explorer 

IE and Windows Explorer 3  have tight interactions. For 
example, if we type “file:c:\” in the address bar of IE, the 
content area will load the folder of the local C drive. Similarly, if 
we type “http://msn.com” in the address bar of Windows 
Explorer, the content area displays the homepage of MSN. On 
Windows XP prior to Service Pack 2, this convenient feature 
gave the attacker a path to bypass the security check. 

Attack 1. Figure 2 illustrates an attack where the script of 
http://evil loads a frame for http://payroll and manipulates it by 
injecting doEvil into the frame. The script of http://evil, 
running in Frame1, first opens the http://payroll page in 
Frame2, and then navigates Frame2 to the URL “file: 
javascript:doEvil”. Because the protocol portion of the 
URL is “file:”, IE passes the URL to Windows Explorer. 
Windows Explorer treats it as a normal file-URL and removes 
“files:” from it, and treats the remainder of the URL as a 
filename. However, the remainder is “javascript:doEvil”, 

                                                 
3 Windows Explorer is the application to display the local folders 
and files. It is sometimes referred to as the Shell. 



so Windows Explorer passes it back to IE as a javascript-URL. 
According to the “javascript:” protocol, navigating Frame2 to 
such a URL is to add doEvil into the scripts of Frame2 and 
execute it [13]. Normally, one frame navigating another frame to 
a javascript-URL is subject to the same-origin policy. For 
example, the statement open(“javascript: 
doEvil”,”frame2”) will result in an access denied error. 
However, since the javascript-URL is passed from the Windows 
Explorer, Frame2 receives the script as if it was from the local 
machine, not from the Internet, which bypasses the same-origin 
check. 

Frame2 = open(“http:/ /payroll”, “frame2”);
open(“file: javascript: doEvil”, “frame2”)

Frame1:  URL=http:/ /evil Frame2:  URL=http:/ /payroll

Windows Explorer 
Address Parser

Salary=$1234
Direct deposit settings …

Window Explorer 
IE

 
Figure 2: Illustration of Attack 1 

4.2 Exploiting Function Aliasing  
In Javascript, a method (i.e., a member function) itself is also 

an object, and thus its reference can be assigned to another object, 
which is essentially an alias of the function. The aliasing 
combined with the frame navigation could result in a very 
complicated scenario where the real meaning of a script 
statement is difficult to obtain based on its syntactical form.  

Attack 2. The attack shown in Figure 3 has four steps: (1) 
Frame1 loads the script from http://evil, which sets a timer in 
Frame2 to execute a statement after one second; (2) the script 
makes “frame2.location.assign” an alias of 
“window.location.assign”. According to the DOM 
specification, executing the method location.assign(URL) 
of a frame is to navigate the frame to URL; (3) the script 
navigates its own frame (i.e., frame1) to http://payroll; (4) 
when the timer expires, location.assign 
(‘javascript:doEvil’) is executed in Frame2. Because 
of the aliasing, the statement really means 
“frame1.location.assign(‘javascript:doEvil’)
”. Despite that it is physically a cross-frame navigation to a 
javascript-URL, the operation is syntactically an intra-frame 
operation, which does not trigger the cross-frame check. As a 
result, doEvil is merged into the scripts of the http://payroll 
DOM, and get executed. 

Frame1:  URL=http:/ /evil Frame2: URL=http:/ /evil

After 1 second, execute:
“location.assign(‘

javascript:doEvil’)”

(1) Set a timer in Frame2 to execute a 
statement after 1 second
(2) Frame2.location.assign 

=window.location.assign
(3) Navigate Frame1 to http://payroll

(1)

(4)

 
Figure 3: Illustration of Attack 2 

4.3 Exploiting the Excessive Expressiveness 
of Frame Navigation Calls 

The syntax of frame navigation calls can be very expressive. 
An attacker page can exploit the excessive expressiveness to 
confuse IE about who really initiates the operation. 

Attack 3. Shown in Figure 4 above, Frame0 from 
http://evil opens two frames, both loading http://payroll. These 
two frames are named Frame1 and Frame2. Then the script 
running in Frame0 executes a confusing statement 
Frame2.Open(“javascript:doEvil”,Frame1). This 
is a statement to navigate Frame1 to the URL 
“javascript:doEvil”, but the critical question is who is 
the initiator of the navigation, Frame0 or Frame2? In the 
unpatched versions of IE, Frame2 is considered the initiator, 
because the open method being called is a member of Frame2. 
Therefore, the cross-frame check is passed because Frame1 and 
Frame2 are both from http://payroll. Similar to all previous 
examples, doEvil is then merged into Frame1’s scripts and 
get executed. 

Frame1:  URL=http:/ /payroll Frame2:  URL=http:/ /payroll

Frame0:  URL=http:/ /evil

Frame0 executes a statement:        
Frame2.open(“javascript:doEvil”,Frame1)

 
Figure 4: Illustration of Attack 3 

4.4 Exploiting the Semantics of User Events 
We have discussed a number of attacks in which a piece of 

script from the attacker frame can be merged into the scripts of 
the victim frame. The other form of attacks is to merge the 
victim’s DOM into the attacker’s DOM so that the attacker’s 
script can manipulate it.  

windowProxy2:
To service Frame1

windowProxy1: 
To service Frame2window 

location event document history

scriptsbody

Text box anchor font

image

DOM

body

Frame1: URL=http:/ /payroll

window 

location event document history

scripts

DOM

Frame0: URL = http:/ /evil

srcElement

In body.onCLick(), the script uses
event.srcElement.parentElement.parentElement

to reference  to the “document” object in Frame1

 
Figure 5: Illustration of Attack 4 

Attack 4. The DOM objects have the setCapture method 
to capture all mouse events, including those outside the objects’ 
own screen regions. In the attack shown in Figure 5, the script 
from http://evil in Frame0 creates Frame1 to load 
http://payroll, then calls “document.body. 
setCapture()” to capture all mouse events so that they 
invoke the event handlers of the body element of Frame0 
rather than the element under the mouse cursor. When the user 
clicks inside Frame1, the event is handled by the method 
body.onClick() in Frame0 because of the capture. 



Suppose the user clicks on the font object in Frame1, the 
DOM object event.srcElement in Frame0 becomes an 
alias to the font object, according to the dentition of 
event.srcElement. Therefore, the script of 
body.onClick() can traverse in Frame1’s DOM tree as 
long as the traversal does not reach the window proxy level. In 
other words, Frame1’s document subtree is merged into 
Frame0’s DOM tree, so the script can reference to the 
document object using “F1Doc = event. 
srcElement.parentElement.parentElement”. In 
particular, the script doEvil can be executed in Frame1 by the 
assignment F1Doc.scripts(0).text = doEvil. 

5. DESIGN/IMPLEMENTATION OF THE 
SCRIPT ACCENTING MECHANISM 
FOR DEFENSE 
We have discussed a number of real attacks in Section 4. 

The isolation failures are not because of any errors in the cross-
frame check discussed in Section 3, but because of two reasons: 
(1) there exist unexpected execution scenarios to bypass the 
check; (2) the current mechanism is a single-point check buried 
deep in the call stack – at the time of check, there are confusions 
about where to obtain the domain-IDs of the script and the object. 
It is challenging for developers to enumerate and test all these 
unexpected scenarios because too many code modules are 
involved, including the scripting engine, the HTML engine, the 
navigation mechanism, the event handling mechanism, and even 
non-browser components. Each of them has a large source code 
base which has been actively developed for more than 10 years. It 
is clearly a difficult task to guarantee that the checks are 
performed exhaustively and correctly. 

We propose script accenting as a defense technique. The 
technique takes advantage of the fact that the browser executable 
has a clean interface between the component responsible for the 
DOM (e.g., the HTML engine mshtml.dll in IE) and the 
component responsible for the Javascript execution (e.g., the 
Javascript engine jscript.dll in IE). Because by definition the 
domain-isolation attack is caused by the script of one domain 
accessing the DOM of another domain, if both components carry 
their domain-specific accents in the communications at the 
interface, the communications can succeed only when the accents 
are identical. To achieve this, we assign each domain an accent 
key, which is only visible to the HTML engine and the Javascript 
engine, but not to the Javascript code. Accenting is the operation 
to tightly bind the accent key with the script. This section 
describes our design and implementation of the accenting 
mechanism on IE. 

5.1 The Primitive Operation of Accenting 
A possible implementation of the accenting operation could 

be to attach the accent key with the script when the script is 
generated, and to propagate the accent key with the script in 
memory copies. This mechanism is often referred to as “tainting”. 
Usually, tainting is implemented as a system-wide infrastructure 
at the hardware architecture level or in the virtual machine. We, 
however, want to implement the accenting mechanism completely 
in the browser, where it is not practical to track all memory 
operations because of the complexity of the source code. 
Furthermore, Attack 1 in Section 4.1 is an example to show that 
the script can even travel to a non-browser component, so 
tainting-based implementation is not possible for us.  

 XOR-based randomizations are frequently used in security 
defenses. Our current implementation also uses XOR as the 
primitive operation for accenting: we generate a 32-bit random 
number (four-bytes) as the accent key for each domain. The 
primitive operation to accent a text string is to XOR every 32-bit 
word in the string with the accent key. When there are one, two or 
three bytes remaining in the tail of the string, we mask the accent 
key to the same length, and apply the XOR operation. This 
accenting operation has two clear advantages: (1) it guarantees 
that the accented script or any portion of the script is illegible to 
other domains, regardless of how the script travels; (2) the 
operation does not increase the length of the script, so the existing 
browser code can correctly handle the accented script without the 
possibility of buffer overflow. This is important for the 
transparency of our mechanism. 

5.2 Accent Key Generation and Assignments 
We keep a lookup table in the HTML engine (mshtml.dll) to 

map each domain name to an accent key. The keys are generated 
in a Just-In-Time fashion: immediately after the document 
object is created for each frame, we look up the table to find the 
key associated with the domain of the frame (if not found, create 
a new key for the domain), and assign the key to the window 
object (i.e., the frame containing the document).  

When the scripts object is created, it copies the key from 
the window object. This is for the sake of runtime efficiency 
when the script runtime references the key later. Otherwise, it 
would be time-consuming for the script runtime to retrieve the 
key from the DOM because the script runtime and the HTML 
engine are implemented in different DLLs.  

The browser provides support for a frame to change its 
domain during the page rendering and the execution of its scrip4. 
For example, the Virtual Earth application (at 
http://map.live.com) initially runs in the domain 
http://map.live.com, and later changes its domain to 
http://live.com in order to communicate with other http://live.com 
services. To support this feature, we redo the key 
generation/assignment operations when the 
document.domain attribute is changed. Note that in the 
domain isolation mechanism shown in Figure 1, 
http://map.live.com and http://live.com are two different domains 
once the domain changing operation is done, so each one has its 
own accent key. In other words, when a frame is from 
http://live.com or from http://map.live.com with its 
document.domain set to http://live.com, its accent key is the 
one correspondent to http://live.com; if a frame is from 
http://map.live.com without its document.domain being set, 
its accent key is the one correspondent to http://map.live.com. 

5.3 Script Ownership and Object Ownership  
Section 4 shows that it is challenging to guarantee the 

correctness of the current isolation mechanism because the 
developers need to reason about it as a system-wide property. 
Reasoning about the correctness of the script accenting 
mechanism is significantly easier because we only need to 

                                                 
4 The detailed policy about domain changing is out of the scope 
of this paper. An article about this subject is located at 
http://msdn.microsoft.com/library/default.asp?url=/workshop/aut
hor/dhtml/reference/properties/domain.asp.  



guarantee that every script executes and travels in its accented 
form. In particular, we conform to two simple rules. 

Rule of Script Ownership: One of the difficulties in the 
current window-proxy-based check is that at the time when the 
check is performed, it is hard to determine the origin of the script. 
Attack 2 and Attack 3 exemplify this difficulty. Our 
implementation follows the rule that the script always carries its 
owner frame’s identity. The rule of script ownership states that a 
script is owned by the frame that supplies the source code of the 
script, and should be accented at the time when its source code is 
supplied.  The rationale is that the source code supplier defines 
the behavior of the script, so we need to guarantee that the script 
is illegible to the frames from domains other than the source code 
supplier’s domain. We will discuss in Section 6.1 that this 
principle eliminates the attacker’s possibility of using wrong 
domain-IDs to fool the check. 

Rule of Object Ownership: The rule of object ownership 
states that every object is owned by the frame that hosts the DOM 
tree of the object, and is always known by its accented name. The 
rationale of this principle is that an object can be referenced in 
many ways due to aliasing, so it is error-prone to determine the 
object’s origin based on its syntactical reference. Instead, an 
object’s origin should be only determined by the window object 
(i.e., the frame) of its DOM tree, because this ownership relation 
is established at the DOM creation time. 

5.4 Accenting the Script Source Code to 
Defeat Script Merging Attacks 

Many cross-frame attacks are because of script merging, as 
we showed in Section 4. In the browser, a text string can be sent 
to another frame and compiled as a script by (1) calling certain 
methods of the window object, including 
execScript(ScrSrc), setTimeout(ScrSrc,…) and 
setInterval(ScrSrc,…), where ScrSrc is the text string 
of the script source code, or (2) navigating the frame to a 
Javascript-URL. The format of the Javascript URL is 
“javascript:ScrSrc”, where ScrSrc is the script source 
code in the plain text format. There are many ways to navigate to 
a javascript-URL, such as the method calls “open(…)”, 
“location=…”, “location.assign(…)”, “location. 
replace(…)”, and HTML hyperlinks “<base href=…>”, 
“<a href=…>”, etc. Note that the Javascript function eval is 
to evaluate a text string in the current frame, so it is not a cross-
frame operation.  
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Figure 6: Accenting/De-Accenting Script Source Code 

For each invocation or navigation scenario, we obtained a 
call path. These paths form a call graph shown in Figure 6. We 
observed that internally a common function called by 
execScript, setTimeout and setInterval is 
InvokeMemberFunc, and a common function called for all 
Javascript URL navigations is InvokeNavigation. 
Therefore, we insert the accenting operation before 
InvokeMemberFunc and InvokeNavigation. At these 
two functions, it is straightforward to conform to the rule of 
script ownership: since the caller script supplies the source code 
of the script to be sent to another frame, the accent key should be 
taken from the frame hosting the caller script.  

The call graph in the receiver frame is much simpler. 
Because the scripts object in the DOM is in the “byte-code” 
format, any received script source code needs to be compiled 
before being merged into the scripts object of the receiver 
frame. Function Compile is the entry function of the 
compilation, which is an ideal location to perform the de-
accenting operation, i.e., removing the accent from the script by 
applying an XOR using the accent key of the receiver.  

As we discussed in Section 4, exploitable bugs have been 
discovered in the past in the complicated logic that implements 
cross-frame invocation and navigation, which we represent as a 
cloud. A significant advantage of our design is that we do not 
need to understand this complicated logic. The security of our 
mechanism only relies on the fact that any script needs to be 
compiled by the function compile before it is executed. Note 
that although we believe InvokeMemberFunc and 
InvokeNavigation are able to comprehensively perform 
accenting in all script-sending scenarios, the security does not 
rely on the comprehensiveness – hypothetically, if there was an 
unexpected scenario to send a script without being accented, it 
would fail the compilation in the receiver frame. In other words, 
the incomprehensiveness would not cause a security compromise, 
but a compatibility problem only cause a fail-stop, but not a 
security bug. Of course, fail-stop is also undesirable as it causes 
application incompatibilities. Section 6.3 will show that we have 
not found any incompatibility when we tested our mechanism 
against real applications. 

5.5 Accenting the Object Name Queries to 
Defeat DOM Merging Attacks 

Real-world attacks can also be caused by DOM merging, in 
which case an object can be directly accessed by a script running 
in another domain without going through the window proxy 
object. 

A script references an object (e.g., “window. 
location”), an attribute (e.g., “window.status”) or a 
method (e.g., “window.open”) by name. The distinction 
between the terms “object”, “attribute” and “method” is not 
important in our later discussion, so we use the term “object” for 
all of them.  

To reference to an object, the script runtime iteratively calls 
into the DOM for name lookups. For example, the reference 
window.document.body is compiled into a segment of 
byte-code, which (1) gets the window object O, and looks up the 
name “document” under O to get the object referred to as O1; (2) 
looks up the name “body” under the object O1 to get the object 
O2, which is the body object. Note that the mapping from a 
name to an actual DOM object is not necessarily injective, i.e., 
there can be different names mapped to the same object. In the 



example in Section 4.4, the font object can be referenced either 
by “Frame1.document.body.children(3)” or by 
“window.event.srcElement”. From the perspective of the 
script runtime, the execution paths of these two references are 
unrelated.    

To obtain the call graph of name querying, we studied 
various name querying scenarios, including the queries of objects 
as well as the aliases of them. Because IE uses the COM 
programming model [5], the browser objects are implemented as 
dispatches, each represented by a dispatch ID. Obtaining the 
dispatch ID is a necessary step before a script can do anything to 
the object. In the script runtime, the interface function for name 
querying is InvokeByName, which is responsible for mapping 
an object name string to a dispatch-ID. However, the script 
runtime does not have the knowledge about the dispatch ID table, 
so the name query is passed into the HTML engine (mshtml.dll), 
where the function GetDispatchID performs the actual 
lookup. 
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Figure 7: Accenting/De-Accenting of Name Queries 

Having the above knowledge, it is obvious how to 
implement our mechanism: (1) the accenting should happen at 
function InvokeByName using the key of the frame of the 
script; (2) the de-accenting should happen at function 
GetDispatchID using the key of the frame hosting the DOM 
(Figure 7). This reflects the rule of object ownership – every 
object is owned by the frame that hosts its DOM, regardless of 
how the object is referenced. In this design, the security only 
relies on the fact that every object-reference needs to call 
GetDispatchID to obtain the dispatch-ID, which we believe 
is a simple assertion to make based on the browser 
implementation. We do not need any assumption about the code 
paths of object-name querying, which are difficult to 
exhaustively enumerate.  

Note that in IE’s implementation, the object names in DOM 
trees and scripts are represented using wide-characters (two bytes 
per character). In a rare situation when the object name of the 
cross-DOM reference has only a wide-character, the strength of 
the XOR operation is weaker than usual, because the probability 
of a successful random guess is 1/(2562),  not 1/(2564). A 
straightforward solution is to pad a wide-character, e.g., 
“0x0001”, to the original one-character object name before 
applying the accenting operation. After the de-accenting, the 
padding character “0x0001” should be removed from the name 
string. 

5.6 Other Ways of Implementing the Script 
Accenting Mechanism 

The basic idea of accenting is to introduce domain-specific 
versions of scripts and HTML object names. As a concrete 

implementation, we use the XOR operation to bind a domain-
specific secret with the string being accented. This is by no means 
the only way to implement the accenting mechanism. Our XOR 
operation is conceptually equivalent to tagging a domain ID to the 
string. A possible alternative implementation is to use a hash 
value of the domain name as the accent key K, and a string S can 
be accented as “K#S”. When it is deaccented, K is compared with 
the accent key of the destination frame, and removed if identical. 
Nevertheless, this scheme might have some concerns: (1) the 
string S still travels inside the browser in its plain text form. If the 
attack has a way to reference to it, it can be precisely corrupted; 
(2) this scheme requires extra bytes for the accented string. 
Reallocating larger buffers is not always easy when we work on 
legacy code. It may cause compatibility problems, and requires 
source code understanding in order to free these buffers correctly.  

However, except these potential concerns, we believe that 
“accenting” is a high-level idea which may have several valid 
implementations.       

6. EVALUATIONS 
The script accenting mechanism can be implemented on the 

current version of IE (version 7) and the version shipped with 
Windows XP RTM (version 6), because their isolation 
mechanisms have no significant difference. Currently, we choose 
IE version 6 as the platform to prototype the technique because 
most known cross-frame bugs have been patched individually in 
IE version 7. In this section, we evaluate the effectiveness of our 
defense against real attacks in the past. Because the script 
accenting is a generic technique, we believe that it will also be 
effective against this type of attacks discovered in the future. 
This section also presents the evaluation results about the 
transparency and the performance overhead of our defense 
mechanism. 

6.1 Protection 
We now revisit the attack scenarios discussed in Section 4 

and demonstrate how the script accenting mechanism can defeat 
all these attacks. Also, these examples support our argument that 
the correct implementation of the accenting/de-accenting 
operations is significantly more robust than that of the current 
frame-based isolation mechanism. While the latter attempts to 
enforce a global property about how information is propagated in 
the system, the former focuses on the more tractable task of 
enforcing local properties at a few instrumentation locations.   

Attack 1 Revisited. As shown in Figure 2, the attack is to 
exploit a path that causes Windows Explorer to send a piece of 
script supplied by the malicious frame to the victim frame. It is 
very hard for IE developers to anticipate that Windows Explorer, 
which is a component outside IE, can be used to relay the 
javascript-URL between two IE frames.  

The same attack was launched against our IE executable 
with the script accenting in place. When the script executed 
open(“file:javascript:doEvil”,”frame2”), we 
observed that the function InvokeNavigation gets the URL 
argument file:javascript:doEvil (see Figure 6 for the 
call graph), which was not accented because the URL is not a 
javascript-URL. The URL is then passed to Windows Explorer, 
corresponding to the cloud of complicated navigation logic in 
Figure 6. Windows Explorer removed the “file:” prefix and 
handled it as a javascript-URL, so it passed the URL 
javascript:doEvil to frame2, which is the receiver frame. 



Before the compilation of the string doEvil, the accent key of 
frame2 is used to de-accent the string. Because no accenting 
operation had been performed on doEvil in the sender frame, 
the de-accenting operation makes it illegible for the compilation, 
and thus the attack is thwarted.  

Attack 2 Revisited. Attack 2 exploits the function aliasing 
to confuse Frame1 about which frame really initiated the 
“location.assign” call (see Figure 3). Because of function 
aliasing, the timer for delayed execution, and the navigation 
happening in the meanwhile, the execution path leading to the 
attack is highly convoluted.  

When the attack was launched against our IE executable, 
steps (1) – (3) of the attack are unaffected by the script accenting 
mechanism. At step (4), despite the confusion caused by the 
aliasing of location.assign, our rule of script ownership is 
straightforward to conform to – the string doEvil was supplied 
by the script running in Frame2, so it was accented using the 
key of http://evil. This accented version of the string doEvil 
was then de-accented using the key of http://payroll at the 
receiver frame Frame1, and failed to be compiled. 

Attack 3 Revisited. In Attack 3, because of the confusing 
navigation statement, the cross-frame check is erroneously 
performed to examine if frame2 can navigate frame1 to a 
javascript-URL. This is a wrong check because frame0, not 
frame2, is the real initiator of the navigation. 

When the attack was replayed on our IE executable, there 
was no confusion about the accenting policy. Frame0 supplied 
the javascript-URL, so Frame0’s key, corresponding to 
http://evil, was used in the accenting operation. When this URL is 
received by Frame1, it was de-accented using the key of 
http://payroll, and thus the attack was not effective. 

Attack 4 Revisited. Attack 4 exploits the semantics of user 
events. The script in Frame0 can reference to the DOM objects in 
frame1 through event.srcElement, and therefore does not 
need to pass the cross-frame check performed by the window proxy 
between frame0  and frame1.  

Our IE executable defeated this attack because of the 
accenting of object name queries. The script in frame0 was able 
to reference to event.srcElement, which is an alias of an 
object in frame1. However, because of the mismatch between the 
DOM key and the script key (see Figure 7), the script cannot access 
to any attribute/method/sub-object of the object. Therefore, merely 
obtaining the cross-frame object reference is useless. This is similar 
to the situation in a C program where a pointer references to a 
memory location that is not readable, writable or executable, and 
any dereference of the pointer results in a memory fault.   

6.2 Impossibility of XOR Probing Attacks 
Because our current implementation uses XOR (⊕) as the 

primitive operation for accenting, the security relies on the 
invisibility of the accent keys to the attacker’s script. 
Hypothetically, if the attacker’s script had the knowledge about katk 
⊕ kvtm, where katk is the accent key of the attacker frame and kvtm is 
the accent key of the victim frame, then the attacker can send the 
script “doEvil ⊕ (katk ⊕ kvtm)” to the victim frame, which will be 
accented and then deaccented to “doEvil”. Therefore, a caveat of 
XOR-based security approach is that the attacker might have smart 
methods to efficiently guess the value of (katk ⊕ kvtm). 

Remember that the accent keys are four-byte words. The 
attacker could guess the first two bytes of (katk ⊕ kvtm) and send the 

script (“//xx” ⊕ (katk ⊕ kvtm)) to the victim frame. If the guess is 
correct, the script will be compiled correctly because “//” denote a 
comment line in javascript. If the guess is incorrect, a syntax error 
will be generated by the victim frame. If the attacker can catch the 
syntax errors, he/she can successfully guess the first two bytes in 
65536 attempts. Then he/she can probe the third byte by using 
“;//x” in 256 attempts, and the fourth byte by using “;;//” in another 
256 attempts. 

Although the above probing attack seems plausible at the first 
glance, it is not effective for two reasons. First, we observe that 
scripts in IE are always represented using wide-characters, which 
means the string “//” is already four-byte long. It requires 2564 
attempts to guess. More fundamentally, even for a browser not 
using the wide-character representation, the attack still lacks an 
important prerequisite – there is no way for the attacker frame to 
detect a syntax error in the victim frame, because the two frames 
are in different domains. In other words, for the probing attack to 
succeed, the attacker frame already needs the capability to 
communicate with the victim frame (e.g., through the onerror 
method of the victim frame), but such a prerequisite is exactly the 
domain-isolation violation that the attacker tries to achieve. This is 
a cyclical cause-and-effect situation. Therefore, the XOR-probing is 
not a real concern of the accenting mechanism.  

Another issue related to XOR probing is the potential 
weakness in accenting an object name that has only one wide-
character. We have discussed this in the last paragraph in Section 
5.5: we need to pad another wide-character so that the object name 
is four-byte long. 

6.3 Application Compatibility 
Although our technique is to offer the protection for the 

browser, it is also important that the technique is fully transparent 
to existing web applications. It would be a significant deployment 
hurdle if the mechanism is not transparent to current browser 
features and causes web applications to malfunction.  

Table 1: Representative Web Applications 
App Description of the Web Application 

Virtual 
Earth 

Microsoft’s map service. The features include the road 
map, the satellite map, the bird eye view, and the driving 
direction planner. It supports rich user interactions, 
including zooming the map, drag-and-drop, and gadget 
moving, etc.  

Google 
Map 

Google’s map service. The features include the road map, 
the satellite map and the driving direction planner. It 
supports rich user interaction capabilities. 

Citi Bank An online banking application. The features include user 
authentication, electronic bank statement and other 
banking services. 

Hotmail  A popular web-based email system. 
CNN  A popular news page which contains many browser 

features,  
Netflix  A popular movie-rental application. The page is user-

specific. 
YouOS  A web operating system. It provides the user a unix/linux-

style operating system inside the browser. It supports rich 
user interactions. 

Outlook 
Web 
Access 

A web-based email system. It provides the user interface 
of Microsoft Outlook in the browser. The user interaction 
capabilities of Outlook Web Access are similar to those of 
Microsoft Outlook.  

Slashdot A popular technology-related news website. It is similar to 
a blogging site. 



As stated earlier, if the accenting was not performed 
comprehensively in all legitimate execution paths, normal 
browser functionalities would be broken because scripts could not 
be correctly deaccented and compiled. To verify the transparency 
of our implementation, our modified IE executable has been 
tested on many web applications. Table 1 shows a number of 
representative examples. We intentionally selected the web 
applications with rich user interaction capabilities in order to test 
the transparency of the mechanism. We observed that all these 
applications run properly in our IE executable.  

In addition to the popular web applications, we conducted 
another test to verify that our mechanism is fully transparent to 
legitimate cross-frame communications: the attacks discussed 
earlier are interesting and convoluted scenarios to accomplish 
illegitimate cross-frame communications. In our transparency test, 
each attack scenario was converted into a legitimate cross-frame 
access scenario by loading all frames with pages from the domain 
http://payroll. Therefore, each previous attack script became a 
script containing convoluted but legitimate cross-frame accesses. 
We observed that all these scripts ran successfully, and all cross-
frame accesses happened as expected. This is a good evidence 
that the script accenting mechanism does not affect 
communications conforming to the same-origin policy. 

6.4 Performance 
As described previously, the accenting mechanism is 

performed in two situations: (1) When a frame sends a script to 
another frame. The performance overhead incurred by our code is 
negligible in this situation because it simply applies an XOR 
primitive on every 4-byte word in a string. This is insignificant 
compared to the runtime overhead for the sending, receiving, 
compiling and merging of the script. (2) When a script queries the 
name of a DOM object. Name querying happens frequently 
during the execution of a script. We perform an accenting 
operation and a de-accenting operation for every query, which 
may incur noticeable performance overhead. Intuitively, the 
overhead should not be significant because every name query is 
made through a deep stack of function calls from jscript.dll to 
mshtml.dll, which is already a non-trivial operation. To measure 
the upper bound of the performance overhead, we queried 
window.document.body.innerText for 400,000 times. 
The execution times for the original IE and our modified IE are 
17.812 seconds and 18.374 seconds, respectively. The observed 
performance overhead is 3.16%.  
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Figure 8: Page Initialization Times With and Without Script 

Accenting 
Note that this is the worst-case result, because the test is a 

stress test that does nothing but querying names. To estimate how 
the performance overhead affects the end-to-end browsing time, 
we measured the page initialization time of popular websites. The 
initialization time includes the page downloading and the 
execution of the main script on the page. The measurement is 
made by subscribing a time recording function to the 

BeforeNavigate and the NavigateComplete events of 
the browser [12]. For each page, we measured 50 times. The 
result is shown in Figure 8, where we see the standard deviations 
much larger than the differences between the average numbers for 
the original IE executable and our IE executable. We believe that 
the differences are caused by network conditions, and the script 
accenting mechanism has almost no effect on user’s browsing 
experience.     

7. CONCLUSIONS  
Browsers’ isolation mechanisms are critical to users’ safety 

and privacy on the web. Achieving proper isolations, however, 
has proven to be difficult. Historical data show that even for well-
defined isolation policies, the current enforcement mechanisms 
can be surprisingly error-prone. Browser isolation bugs have been 
exploited on most major browser products. To the best of our 
knowledge, this is the first focused academic study of real-world 
browser isolation bugs.  

We analyzed the implementation of IE’s domain-isolation 
mechanism and the previously reported attacks. The analysis 
showed that the attack scenarios involve complicated 
HTML/script behaviors in the navigation mechanism, the 
function aliasing, the excessive expressiveness of navigation 
methods, the semantics of user events and IE’s interactions with 
other system components, which are very difficult to anticipate by 
the developers.  

In this paper, we proposed the script accenting technique as 
a light-weight transparent defense against these attacks. A 
prototype has been implemented on IE. The evaluation showed 
that all known attacks were defeated because of the mismatch of 
the accents of the accessor frame and the accessee frame. We also 
showed that the mechanism is fully transparent to existing web 
applications. Despite a 3.16% worse-case performance overhead, 
the measurement of end-to-end browsing time did not show any 
noticeable slowdown. 

The basic idea of the accenting is that the origin identities 
can be piggybacked on communications at the interfaces between 
different system components without affecting their internal logic. 
This can be a general idea to apply in other isolation mechanisms. 
For example, even within a frame, the browser needs to enforce 
domain isolation for XML objects and XMLHTTPRequest objects, 
whose domains may be different from the domain of the frame. In 
addition to its current implementation on IE, we think the same 
idea can be applied on other browsers if they have well-defined 
interfaces between their HTML engines and script engines. More 
broadly, non-browser platforms need to enforce domain isolation 
as well. For example, CLR is the runtime environment for 
the .NET framework [18] and Application Domain is a security 
infrastructure in CLR. We speculate that the idea of accenting 
might also be applicable to platforms like CLR.  
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