
An Analysis of Browser Domain-Isolation Bugs
and A Light-Weight Transparent Defense Mechanism

Shuo Chen
Microsoft Research
One Microsoft Way

Redmond, WA 98052
1-425-722-8238

shuochen@microsoft.com

David Ross
Security Technology Unit, Microsoft

One Microsoft Way
Redmond, WA 98052

1-425-705-2116
dross@microsoft.com

Yi-Min Wang
Microsoft Research
One Microsoft Way

Redmond, WA 98052
1-425-706-3467

ymwang@microsoft.com

ABSTRACT

Browsers’ isolation mechanisms are critical to users’ safety
and privacy on the web. Achieving proper isolations, however, is
very difficult. Historical data show that even for seemingly simple
isolation policies, the current browser implementations are
surprisingly error-prone. Isolation bugs have been exploited on
most major browser products. This paper presents a focused
study of browser isolation bugs and attacks. We found that
because of the intrinsic complexity of browser components, it is
impractical to exhaustively examine the browser implementation
to eliminate these bugs. In this paper, we propose the script
accenting mechanism as a light-weight transparent defense to
enhance the current domain isolation mechanism. The basic idea
is to introduce domain-specific “accents” to scripts and HTML
object names so that two frames cannot communicate/interfere if
they have different accents. The mechanism has been prototyped
on Internet Explorer. Our evaluations showed that all known
attacks were defeated, and the proposed mechanism is fully
transparent to existing web applications. The measurement about
end-to-end browsing time did not show any noticeable slowdown.
We also argue that accenting could be a primitive that is general
enough for implementing other domain-isolation policies.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – invasive
software; C.2.0 [Computer-Communication Networks]:
Security and Protection

General Terms: Security

Keywords
browser, domain isolation bug, accenting, same-origin policy

1. INTRODUCTION
Web browsers can render contents originated from different

Internet domains. A major consideration of web security is the
appropriate enforcement of the same-origin principle: although it
has never been strictly defined, this principle can be loosely
interpreted as “a script originated from one Internet domain

should not be able to read, manipulate or infer the contents
originated from another domain”, which is essentially the non-
interference property [9] in the web security context. Failures to
enforce this principle result in severe security consequences, e.g.,
a script from an arbitrary website can steal the user’s banking
information or perform unintended money transfers from the
user’s account. The malicious script can do almost anything that
the victim user can do on the browser.

Same-origin-principle violations can be due to insufficient
script-filtering of the web application on the server, or due to
flaws in the browser domain-isolation mechanisms: 1) Script-
filtering flaws are commonly referred to as cross-site scripting (or
XSS) bugs [17]. By exploiting these bugs, malicious scripts from
attacker websites can survive the filtering and later be executed in
the same security context of the authentic web application. A
wealth of work in the security literature addresses prevention and
defense techniques against XSS attacks. We do not focus on XSS
in this paper; 2) On the browser side, the same-origin-principle
violations are due to the improper isolation of the contents from
different domains, which is one of the biggest security problems
faced by browser developers. Although at the policy-specification
level, certain isolation policies still need to be standardized to
support more browser functionalities while preserving security,
we found that even for a well-specified policy, the
implementation of the enforcement mechanism can be
surprisingly hard and error-prone. For example, the most well-
known isolation policy is the cross-frame same-origin policy,
which states that scripts running inside a frame of http://a.com is
not allowed to access objects inside a frame of http://b.com. Bugs
in the enforcement mechanism of this seemingly simple policy
have been discovered on major browsers, including Internet
Explorer (IE), Firefox, Opera and Netscape Navigator [1][2][3].

Although browser vendors are aware of real-world attacks
against browser isolation mechanisms, there is little work in the
academic literature about this serious security problem. In order
to better understand the problem space, we conducted a focused
study of IE’s domain-isolation bugs and real attacks discovered in
the past. The study shows that browser’s flaws in the isolation
mechanism are due to many convoluted factors, including the
navigation mechanism, function aliasing, excessive
expressiveness of navigation methods, the semantics of user
events and IE’s interactions with other system components. The
exploitations of these flaws, which we will explain in details, are
highly heterogeneous, and thus it would be very challenging to
exhaustively reason about every scenario that the isolation
mechanism may encounter. Of course, the unsolved challenge
suggests that the browser may have new bugs of this type
discovered in the future, similar to the situation that we have with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0010...$5.00.

buffer overrun bugs – individual bug patches would not solve the
problem as a whole.

The prevalence of browser isolation bugs in all major
browser products naturally calls for a comprehensive defense
technique. However, two practical constraints need to be
considered when we design the defense technique: 1) the
technique must be transparent to existing browser functionalities.
A large volume of web applications have been developed based
on existing browser functionalities. It would be a significant
deployment hurdle if a defense mechanism broke these
applications; 2) we have only limited understanding of the
browser implementation. Browser products have very large code
bases. The comprehensiveness of the defense should only rely on
the correct understanding of a small subset of the source code,
and thus should be straightforward.

In this paper, we propose a light-weight transparent defense
technique with the consideration of the above practical constraints.
The technique is based on the notion of “script accenting”. The
basic idea is analogous to the accent in human languages, in
which the accent is essentially an identifier of a person’s origin
that is carried in communications. To implement this, we slightly
modified a few functions at the interface of the script engine and
the HTML engine so that (1) each domain is associated with a
random “accent key”, and (2) scripts and HTML object names are
in their accented forms at the interface. Without needing an
explicit check for the domain IDs, the accenting mechanism
naturally implies that two frames cannot interfere if they have
different accent keys.

The concept of script accenting provides a higher assurance
for the implementation of the browser isolation mechanism. We
are able to confidently define the script ownership and the object
ownership, which are easily followed in our implementation
without any confusion. A prototype of the technique has been
implemented on IE. The evaluation showed that all known cross-
frame attacks were defeated. Moreover, because the accenting
mechanism only slightly changes the interface between the script
engine and the HTML engine, it is fully transparent to web
applications. Our stress test showed a 3.16% worst-case
performance overhead, but the measurement of the end-to-end
browsing time did not show any noticeable slowdown.

The rest of the paper is organized as follows: Section 2
discusses related work. We briefly introduce the basics of IE’s
domain-isolation mechanism in Section 3. Section 4 presents a
case study of real-world attacks. We discuss the design and the
implementation of the script accenting mechanism in Section 5,
followed by experimental evaluations in Section 6. Section 7
concludes the paper.

2. RELATED WORK
Researchers have been studying security issues related to the

same-origin principle, among which the cross-site scripting (XSS)
problem has attracted much attention. Although it is not the focus
of this paper, we summarize a few interesting projects here.
Livshits and Lam proposed a static analysis technique to find
XSS bugs in Java applications [14]. Johns studied XSS attacks
and identified the prerequisites for the attacks to hijack sessions.
He proposed the SessionSafe approach that removes the
prerequisites to protect browser sessions [11]. Because XSS
attacks are due to the failures of script filtering, Xu et al proposed
using taint tracking to detect the attacks [15]. The attacks
discussed in this paper are a different type of attacks. They

exploit flaws in the browser isolation mechanism, not the input-
filtering bugs on the web applications.

Interesting research has also led to the proposals of new
policies of the browser isolation mechanism. Significant effort is
spent on the discussion and the standardization of the browser’s
mechanisms to securely retrieve data from servers, among which
XMLHTTPRequest [16] and JSONRequest [7] are the
representatives. In addition to the effort on data retrieval
mechanisms, researchers also found that the timing characteristics
of caches and the coloring of visited links allow malicious scripts
to infer certain browser states and thus track users’ browsing
histories. Accordingly, they specified the same-origin policies for
browser caches and visited links [4][8][10]. In this paper, we do
not discuss how to specify better policies, but focus on how to
correctly and securely implement those that are well-specified.

The isolation bugs that we discuss are at the HTML and
Javascript level, rather than the OS process level. One can
imagine that if the IE process is compromised by buffer overrun
or other binary code attacks, then the malicious binary code can
directly access pages from different domains without exploiting
any domain-isolation bugs at the HTML/Javascript level. These
attacks can be thwarted by OS-level process isolations. For
example, Tahoma is a web browsing system based on virtual
machine monitor (VMM) [6]. It implements a browser operating
system (BOS) to guarantee that each web application runs inside
its own virtual machine. Therefore, even when a browser instance
in a web application is compromised, it cannot interfere with
other web applications. It should be noted that HTML/Javascript
isolation and OS-level process isolation are very much orthogonal
in today’s browsers because no matter how the underlying
processes are isolated, the HTML/Javascript semantics require the
capabilities of cross-domain navigations, frame-hosting, event
capturing, etc, which are the source of isolation bugs discussed in
this paper.

3. THE BASIC MECHANISM FOR
DOMAIN ISOLATION OF IE
This section gives a short introduction of IE’s basic isolation

mechanism – the frame-based isolation. In IE, each HTML
document is hosted in a frame (or an inline frame)1. A browser
window is the top-level frame, which hosts the top-level
document that may contain other frames. IE implements a
security mechanism to guarantee that scripts from one frame can
access documents in another frame if and only if the two frames
are from the same domain.

Figure 1 shows Frame1 and Frame2 that represent two
frames in the browser. The document in Frame1 is downloaded
from http://a.com. The objects in the frame are stored in a DOM
tree (i.e., a Document Object Model tree). The root of the DOM
tree is a window object. Note that “window” in the DOM
terminology actually represents a frame, which is not necessarily
the entire browser window. The children of window include:
location, which is the URL of the document; event, which
is the event received by this frame; document, which is the
parsed HTML document contents; history, which is a
collection of the URLs having been visited in this frame. The
objects body and scripts have the common parent object

1 The security aspect of inline frames is very similar to that of
regular frames. In the rest of this paper, the term “frame” refers to
regular frames and inline frames.

document. The body object contains primarily the static
contents to be rendered in the frame. Scripts is a collection of
scripts that manipulate the DOM tree of its own frame and
communicate with other frames. These scripts are compiled from
the script source text embedded in the HTML file or passed from
another frame. They are in a format of “byte-code”, essentially
the instruction set of the script engine.

window

location event document history

scriptsbody

Text box anchor button

image

DOM

body

div input font

Script Runtime Program
counterheapstack

Frame1: from http:/ /a.com

window

location event document history

scripts

DOM

Script Runtime

heapstack

Frame2: from http:/ /b.com

windowProxy2:
To service Frame1

windowProxy1:
To service Frame2

Window references:
{window, windowProxy2}

Window references:
{window, windowProxy1}

Program
counter

Figure 1: Cross-Frame References and the Isolation

Between Frame1 and Frame2

Each frame has a script runtime, which includes a stack, a
heap, a program counter pointing to the current instruction in the
scripts object, and a set of window references (to be discussed
in the next paragraph). When the script accesses a DOM object,
the script runtime executes an instruction
“LoadMember baseObj,nameString” to get the object’s
reference. For example, to access document.body, the script
runtime executes “LoadMember RefDocument, ‘body’”,
where RefDocument is a reference to the document object.
LoadMember is an instruction to look up a child object name
and return the object’s reference.

The script runtime keeps a window references object.
The reference to the window object of Frame1 is in the
window references of Frame1’s runtime, so any script
running in Frame1 can get the reference to every object in its
own DOM and manipulate it. Hypothetically, if a script running
in Frame2 from http://b.com had a reference to the window
object of Frame1, the script could also totally control the DOM
of Frame1, which violates the same-origin policy. Therefore it is
a crucial security requirement that the reference to the window
object should never be passed outside its own frame. Instead,
Frame2 has a window proxy windowProxy1 to communicate
with Frame1. Conceptually the window proxy is a clone of the
window object, but it is specifically created for Frame2 to
access Frame1. The window proxy is the object in which the
cross-frame check is performed: for any operation2 to get the
reference of a child of windowProxy1, a domain-ID check is
made to ensure that the domains of Frame1 and Frame2 are
identical. For example, assuming a script is running in Frame2,
and windowProxy1 is represented as WND1 in the script, then

2 The write operation to the location object is an exceptional
case. It does not follow the same-origin policy. The domain check
is explicitly bypassed for this operation.

the script expression “WND1.document” will fail with an
access-denied error, because WND1 (i.e., windowProxy1) is the
proxy between two frames from different domains. The domain-
ID check in the window proxy is simply a string comparison to
check if the two domains expressed in the plain text format are
identical.

The mechanism described above appeared to provide a good
isolation between frames of different domains. However, in the
next section, we analyze a number of real attacks that bypass or
fool it to allow a malicious script to control a frame of another
domain.

4. A Study of Real-World Attacks Against IE
The isolation mechanism presented in Figure 1 is designed

to prevent a script from http://a.com to access the DOM from
http://b.com. The implicit assumptions are (1) every cross-frame
communication must go through a window proxy, (2) the window
proxy has the correct domain-IDs of the accessor frame and the
accessee frame. We studied the Microsoft Security Vulnerability
database, and found that all discovered frame-isolation bugs are
because of the invalidity of these assumptions. There are
unexpected execution paths in the system to bypass the check or
feed incorrect domain-IDs to the check. These exploit scenarios
take advantage of the navigation mechanism, IE’s interactions
with other system components, function aliasing in the script
runtime, excessive expressiveness of frame navigations, and the
semantics of user events. In this section, four real attacks are
discussed to show that it is very hard to for browser developers to
exhaustively reason about all possible execution scenarios.

In these examples, we assume the user’s critical information
is stored on the website http://payroll, and the malicious website
visited by the user is http://evil. The goal of http://evil is to steal
the payroll information and/or actively change the direct deposit
settings of the user, for example. We use “doEvil” to represent
a piece of malicious Javascript payload supplied by http://evil that
does the damage. In the following discussion, the attacker’s goal
is to execute doEvil in the context of http://payroll.

4.1 Exploiting the Interactions between IE
and Windows Explorer

IE and Windows Explorer 3 have tight interactions. For
example, if we type “file:c:\” in the address bar of IE, the
content area will load the folder of the local C drive. Similarly, if
we type “http://msn.com” in the address bar of Windows
Explorer, the content area displays the homepage of MSN. On
Windows XP prior to Service Pack 2, this convenient feature
gave the attacker a path to bypass the security check.

Attack 1. Figure 2 illustrates an attack where the script of
http://evil loads a frame for http://payroll and manipulates it by
injecting doEvil into the frame. The script of http://evil,
running in Frame1, first opens the http://payroll page in
Frame2, and then navigates Frame2 to the URL “file:
javascript:doEvil”. Because the protocol portion of the
URL is “file:”, IE passes the URL to Windows Explorer.
Windows Explorer treats it as a normal file-URL and removes
“files:” from it, and treats the remainder of the URL as a
filename. However, the remainder is “javascript:doEvil”,

3 Windows Explorer is the application to display the local folders
and files. It is sometimes referred to as the Shell.

so Windows Explorer passes it back to IE as a javascript-URL.
According to the “javascript:” protocol, navigating Frame2 to
such a URL is to add doEvil into the scripts of Frame2 and
execute it [13]. Normally, one frame navigating another frame to
a javascript-URL is subject to the same-origin policy. For
example, the statement open(“javascript:
doEvil”,”frame2”) will result in an access denied error.
However, since the javascript-URL is passed from the Windows
Explorer, Frame2 receives the script as if it was from the local
machine, not from the Internet, which bypasses the same-origin
check.

Frame2 = open(“http:/ /payroll”, “frame2”);
open(“file: javascript: doEvil”, “frame2”)

Frame1: URL=http:/ /evil Frame2: URL=http:/ /payroll

Windows Explorer
Address Parser

Salary=$1234
Direct deposit settings …

Window Explorer
IE

Figure 2: Illustration of Attack 1

4.2 Exploiting Function Aliasing
In Javascript, a method (i.e., a member function) itself is also

an object, and thus its reference can be assigned to another object,
which is essentially an alias of the function. The aliasing
combined with the frame navigation could result in a very
complicated scenario where the real meaning of a script
statement is difficult to obtain based on its syntactical form.

Attack 2. The attack shown in Figure 3 has four steps: (1)
Frame1 loads the script from http://evil, which sets a timer in
Frame2 to execute a statement after one second; (2) the script
makes “frame2.location.assign” an alias of
“window.location.assign”. According to the DOM
specification, executing the method location.assign(URL)
of a frame is to navigate the frame to URL; (3) the script
navigates its own frame (i.e., frame1) to http://payroll; (4)
when the timer expires, location.assign
(‘javascript:doEvil’) is executed in Frame2. Because
of the aliasing, the statement really means
“frame1.location.assign(‘javascript:doEvil’)
”. Despite that it is physically a cross-frame navigation to a
javascript-URL, the operation is syntactically an intra-frame
operation, which does not trigger the cross-frame check. As a
result, doEvil is merged into the scripts of the http://payroll
DOM, and get executed.

Frame1: URL=http:/ /evil Frame2: URL=http:/ /evil

After 1 second, execute:
“location.assign(‘

javascript:doEvil’)”

(1) Set a timer in Frame2 to execute a
statement after 1 second
(2) Frame2.location.assign

=window.location.assign
(3) Navigate Frame1 to http://payroll

(1)

(4)

Figure 3: Illustration of Attack 2

4.3 Exploiting the Excessive Expressiveness
of Frame Navigation Calls

The syntax of frame navigation calls can be very expressive.
An attacker page can exploit the excessive expressiveness to
confuse IE about who really initiates the operation.

Attack 3. Shown in Figure 4 above, Frame0 from
http://evil opens two frames, both loading http://payroll. These
two frames are named Frame1 and Frame2. Then the script
running in Frame0 executes a confusing statement
Frame2.Open(“javascript:doEvil”,Frame1). This
is a statement to navigate Frame1 to the URL
“javascript:doEvil”, but the critical question is who is
the initiator of the navigation, Frame0 or Frame2? In the
unpatched versions of IE, Frame2 is considered the initiator,
because the open method being called is a member of Frame2.
Therefore, the cross-frame check is passed because Frame1 and
Frame2 are both from http://payroll. Similar to all previous
examples, doEvil is then merged into Frame1’s scripts and
get executed.

Frame1: URL=http:/ /payroll Frame2: URL=http:/ /payroll

Frame0: URL=http:/ /evil

Frame0 executes a statement:
Frame2.open(“javascript:doEvil”,Frame1)

Figure 4: Illustration of Attack 3

4.4 Exploiting the Semantics of User Events
We have discussed a number of attacks in which a piece of

script from the attacker frame can be merged into the scripts of
the victim frame. The other form of attacks is to merge the
victim’s DOM into the attacker’s DOM so that the attacker’s
script can manipulate it.

windowProxy2:
To service Frame1

windowProxy1:
To service Frame2window

location event document history

scriptsbody

Text box anchor font

image

DOM

body

Frame1: URL=http:/ /payroll

window

location event document history

scripts

DOM

Frame0: URL = http:/ /evil

srcElement

In body.onCLick(), the script uses
event.srcElement.parentElement.parentElement

to reference to the “document” object in Frame1

Figure 5: Illustration of Attack 4

Attack 4. The DOM objects have the setCapture method
to capture all mouse events, including those outside the objects’
own screen regions. In the attack shown in Figure 5, the script
from http://evil in Frame0 creates Frame1 to load
http://payroll, then calls “document.body.
setCapture()” to capture all mouse events so that they
invoke the event handlers of the body element of Frame0
rather than the element under the mouse cursor. When the user
clicks inside Frame1, the event is handled by the method
body.onClick() in Frame0 because of the capture.

Suppose the user clicks on the font object in Frame1, the
DOM object event.srcElement in Frame0 becomes an
alias to the font object, according to the dentition of
event.srcElement. Therefore, the script of
body.onClick() can traverse in Frame1’s DOM tree as
long as the traversal does not reach the window proxy level. In
other words, Frame1’s document subtree is merged into
Frame0’s DOM tree, so the script can reference to the
document object using “F1Doc = event.
srcElement.parentElement.parentElement”. In
particular, the script doEvil can be executed in Frame1 by the
assignment F1Doc.scripts(0).text = doEvil.

5. DESIGN/IMPLEMENTATION OF THE
SCRIPT ACCENTING MECHANISM
FOR DEFENSE
We have discussed a number of real attacks in Section 4.

The isolation failures are not because of any errors in the cross-
frame check discussed in Section 3, but because of two reasons:
(1) there exist unexpected execution scenarios to bypass the
check; (2) the current mechanism is a single-point check buried
deep in the call stack – at the time of check, there are confusions
about where to obtain the domain-IDs of the script and the object.
It is challenging for developers to enumerate and test all these
unexpected scenarios because too many code modules are
involved, including the scripting engine, the HTML engine, the
navigation mechanism, the event handling mechanism, and even
non-browser components. Each of them has a large source code
base which has been actively developed for more than 10 years. It
is clearly a difficult task to guarantee that the checks are
performed exhaustively and correctly.

We propose script accenting as a defense technique. The
technique takes advantage of the fact that the browser executable
has a clean interface between the component responsible for the
DOM (e.g., the HTML engine mshtml.dll in IE) and the
component responsible for the Javascript execution (e.g., the
Javascript engine jscript.dll in IE). Because by definition the
domain-isolation attack is caused by the script of one domain
accessing the DOM of another domain, if both components carry
their domain-specific accents in the communications at the
interface, the communications can succeed only when the accents
are identical. To achieve this, we assign each domain an accent
key, which is only visible to the HTML engine and the Javascript
engine, but not to the Javascript code. Accenting is the operation
to tightly bind the accent key with the script. This section
describes our design and implementation of the accenting
mechanism on IE.

5.1 The Primitive Operation of Accenting
A possible implementation of the accenting operation could

be to attach the accent key with the script when the script is
generated, and to propagate the accent key with the script in
memory copies. This mechanism is often referred to as “tainting”.
Usually, tainting is implemented as a system-wide infrastructure
at the hardware architecture level or in the virtual machine. We,
however, want to implement the accenting mechanism completely
in the browser, where it is not practical to track all memory
operations because of the complexity of the source code.
Furthermore, Attack 1 in Section 4.1 is an example to show that
the script can even travel to a non-browser component, so
tainting-based implementation is not possible for us.

 XOR-based randomizations are frequently used in security
defenses. Our current implementation also uses XOR as the
primitive operation for accenting: we generate a 32-bit random
number (four-bytes) as the accent key for each domain. The
primitive operation to accent a text string is to XOR every 32-bit
word in the string with the accent key. When there are one, two or
three bytes remaining in the tail of the string, we mask the accent
key to the same length, and apply the XOR operation. This
accenting operation has two clear advantages: (1) it guarantees
that the accented script or any portion of the script is illegible to
other domains, regardless of how the script travels; (2) the
operation does not increase the length of the script, so the existing
browser code can correctly handle the accented script without the
possibility of buffer overflow. This is important for the
transparency of our mechanism.

5.2 Accent Key Generation and Assignments
We keep a lookup table in the HTML engine (mshtml.dll) to

map each domain name to an accent key. The keys are generated
in a Just-In-Time fashion: immediately after the document
object is created for each frame, we look up the table to find the
key associated with the domain of the frame (if not found, create
a new key for the domain), and assign the key to the window
object (i.e., the frame containing the document).

When the scripts object is created, it copies the key from
the window object. This is for the sake of runtime efficiency
when the script runtime references the key later. Otherwise, it
would be time-consuming for the script runtime to retrieve the
key from the DOM because the script runtime and the HTML
engine are implemented in different DLLs.

The browser provides support for a frame to change its
domain during the page rendering and the execution of its scrip4.
For example, the Virtual Earth application (at
http://map.live.com) initially runs in the domain
http://map.live.com, and later changes its domain to
http://live.com in order to communicate with other http://live.com
services. To support this feature, we redo the key
generation/assignment operations when the
document.domain attribute is changed. Note that in the
domain isolation mechanism shown in Figure 1,
http://map.live.com and http://live.com are two different domains
once the domain changing operation is done, so each one has its
own accent key. In other words, when a frame is from
http://live.com or from http://map.live.com with its
document.domain set to http://live.com, its accent key is the
one correspondent to http://live.com; if a frame is from
http://map.live.com without its document.domain being set,
its accent key is the one correspondent to http://map.live.com.

5.3 Script Ownership and Object Ownership
Section 4 shows that it is challenging to guarantee the

correctness of the current isolation mechanism because the
developers need to reason about it as a system-wide property.
Reasoning about the correctness of the script accenting
mechanism is significantly easier because we only need to

4 The detailed policy about domain changing is out of the scope
of this paper. An article about this subject is located at
http://msdn.microsoft.com/library/default.asp?url=/workshop/aut
hor/dhtml/reference/properties/domain.asp.

guarantee that every script executes and travels in its accented
form. In particular, we conform to two simple rules.

Rule of Script Ownership: One of the difficulties in the
current window-proxy-based check is that at the time when the
check is performed, it is hard to determine the origin of the script.
Attack 2 and Attack 3 exemplify this difficulty. Our
implementation follows the rule that the script always carries its
owner frame’s identity. The rule of script ownership states that a
script is owned by the frame that supplies the source code of the
script, and should be accented at the time when its source code is
supplied. The rationale is that the source code supplier defines
the behavior of the script, so we need to guarantee that the script
is illegible to the frames from domains other than the source code
supplier’s domain. We will discuss in Section 6.1 that this
principle eliminates the attacker’s possibility of using wrong
domain-IDs to fool the check.

Rule of Object Ownership: The rule of object ownership
states that every object is owned by the frame that hosts the DOM
tree of the object, and is always known by its accented name. The
rationale of this principle is that an object can be referenced in
many ways due to aliasing, so it is error-prone to determine the
object’s origin based on its syntactical reference. Instead, an
object’s origin should be only determined by the window object
(i.e., the frame) of its DOM tree, because this ownership relation
is established at the DOM creation time.

5.4 Accenting the Script Source Code to
Defeat Script Merging Attacks

Many cross-frame attacks are because of script merging, as
we showed in Section 4. In the browser, a text string can be sent
to another frame and compiled as a script by (1) calling certain
methods of the window object, including
execScript(ScrSrc), setTimeout(ScrSrc,…) and
setInterval(ScrSrc,…), where ScrSrc is the text string
of the script source code, or (2) navigating the frame to a
Javascript-URL. The format of the Javascript URL is
“javascript:ScrSrc”, where ScrSrc is the script source
code in the plain text format. There are many ways to navigate to
a javascript-URL, such as the method calls “open(…)”,
“location=…”, “location.assign(…)”, “location.
replace(…)”, and HTML hyperlinks “<base href=…>”,
“”, etc. Note that the Javascript function eval is
to evaluate a text string in the current frame, so it is not a cross-
frame operation.

Sender frame

InvokeNavigation

open(…) location = …

location.assign(…)

<base href=…>

location.replace(…)

Accenting, if the URL
is a javascript URL

Receiver frame

compile

De-accenting

Merge into the “scripts” object

Complicated logic of
invocation and navigation

InvokeMemberFunc

Accenting, for setTimeout,
setInterval or execScript

execScript(…)

setInterval(…)

setTimout(…)

m
sh

tm
l.d

ll
jsc

rip
t.d

ll

jscript.dll

mshtml.dll

Figure 6: Accenting/De-Accenting Script Source Code

For each invocation or navigation scenario, we obtained a
call path. These paths form a call graph shown in Figure 6. We
observed that internally a common function called by
execScript, setTimeout and setInterval is
InvokeMemberFunc, and a common function called for all
Javascript URL navigations is InvokeNavigation.
Therefore, we insert the accenting operation before
InvokeMemberFunc and InvokeNavigation. At these
two functions, it is straightforward to conform to the rule of
script ownership: since the caller script supplies the source code
of the script to be sent to another frame, the accent key should be
taken from the frame hosting the caller script.

The call graph in the receiver frame is much simpler.
Because the scripts object in the DOM is in the “byte-code”
format, any received script source code needs to be compiled
before being merged into the scripts object of the receiver
frame. Function Compile is the entry function of the
compilation, which is an ideal location to perform the de-
accenting operation, i.e., removing the accent from the script by
applying an XOR using the accent key of the receiver.

As we discussed in Section 4, exploitable bugs have been
discovered in the past in the complicated logic that implements
cross-frame invocation and navigation, which we represent as a
cloud. A significant advantage of our design is that we do not
need to understand this complicated logic. The security of our
mechanism only relies on the fact that any script needs to be
compiled by the function compile before it is executed. Note
that although we believe InvokeMemberFunc and
InvokeNavigation are able to comprehensively perform
accenting in all script-sending scenarios, the security does not
rely on the comprehensiveness – hypothetically, if there was an
unexpected scenario to send a script without being accented, it
would fail the compilation in the receiver frame. In other words,
the incomprehensiveness would not cause a security compromise,
but a compatibility problem only cause a fail-stop, but not a
security bug. Of course, fail-stop is also undesirable as it causes
application incompatibilities. Section 6.3 will show that we have
not found any incompatibility when we tested our mechanism
against real applications.

5.5 Accenting the Object Name Queries to
Defeat DOM Merging Attacks

Real-world attacks can also be caused by DOM merging, in
which case an object can be directly accessed by a script running
in another domain without going through the window proxy
object.

A script references an object (e.g., “window.
location”), an attribute (e.g., “window.status”) or a
method (e.g., “window.open”) by name. The distinction
between the terms “object”, “attribute” and “method” is not
important in our later discussion, so we use the term “object” for
all of them.

To reference to an object, the script runtime iteratively calls
into the DOM for name lookups. For example, the reference
window.document.body is compiled into a segment of
byte-code, which (1) gets the window object O, and looks up the
name “document” under O to get the object referred to as O1; (2)
looks up the name “body” under the object O1 to get the object
O2, which is the body object. Note that the mapping from a
name to an actual DOM object is not necessarily injective, i.e.,
there can be different names mapped to the same object. In the

example in Section 4.4, the font object can be referenced either
by “Frame1.document.body.children(3)” or by
“window.event.srcElement”. From the perspective of the
script runtime, the execution paths of these two references are
unrelated.

To obtain the call graph of name querying, we studied
various name querying scenarios, including the queries of objects
as well as the aliases of them. Because IE uses the COM
programming model [5], the browser objects are implemented as
dispatches, each represented by a dispatch ID. Obtaining the
dispatch ID is a necessary step before a script can do anything to
the object. In the script runtime, the interface function for name
querying is InvokeByName, which is responsible for mapping
an object name string to a dispatch-ID. However, the script
runtime does not have the knowledge about the dispatch ID table,
so the name query is passed into the HTML engine (mshtml.dll),
where the function GetDispatchID performs the actual
lookup.

Accenting

InvokeByName

GetDispatchID

m
sh

tm
l.d

ll
jsc

rip
t.d

ll

Key of the DOM = k

Key of the script = k (“foo”)k

De-accenting

Dispatch
ID
Table

Object name = “foo”

(“foo”)k

Figure 7: Accenting/De-Accenting of Name Queries

Having the above knowledge, it is obvious how to
implement our mechanism: (1) the accenting should happen at
function InvokeByName using the key of the frame of the
script; (2) the de-accenting should happen at function
GetDispatchID using the key of the frame hosting the DOM
(Figure 7). This reflects the rule of object ownership – every
object is owned by the frame that hosts its DOM, regardless of
how the object is referenced. In this design, the security only
relies on the fact that every object-reference needs to call
GetDispatchID to obtain the dispatch-ID, which we believe
is a simple assertion to make based on the browser
implementation. We do not need any assumption about the code
paths of object-name querying, which are difficult to
exhaustively enumerate.

Note that in IE’s implementation, the object names in DOM
trees and scripts are represented using wide-characters (two bytes
per character). In a rare situation when the object name of the
cross-DOM reference has only a wide-character, the strength of
the XOR operation is weaker than usual, because the probability
of a successful random guess is 1/(2562), not 1/(2564). A
straightforward solution is to pad a wide-character, e.g.,
“0x0001”, to the original one-character object name before
applying the accenting operation. After the de-accenting, the
padding character “0x0001” should be removed from the name
string.

5.6 Other Ways of Implementing the Script
Accenting Mechanism

The basic idea of accenting is to introduce domain-specific
versions of scripts and HTML object names. As a concrete

implementation, we use the XOR operation to bind a domain-
specific secret with the string being accented. This is by no means
the only way to implement the accenting mechanism. Our XOR
operation is conceptually equivalent to tagging a domain ID to the
string. A possible alternative implementation is to use a hash
value of the domain name as the accent key K, and a string S can
be accented as “K#S”. When it is deaccented, K is compared with
the accent key of the destination frame, and removed if identical.
Nevertheless, this scheme might have some concerns: (1) the
string S still travels inside the browser in its plain text form. If the
attack has a way to reference to it, it can be precisely corrupted;
(2) this scheme requires extra bytes for the accented string.
Reallocating larger buffers is not always easy when we work on
legacy code. It may cause compatibility problems, and requires
source code understanding in order to free these buffers correctly.

However, except these potential concerns, we believe that
“accenting” is a high-level idea which may have several valid
implementations.

6. EVALUATIONS
The script accenting mechanism can be implemented on the

current version of IE (version 7) and the version shipped with
Windows XP RTM (version 6), because their isolation
mechanisms have no significant difference. Currently, we choose
IE version 6 as the platform to prototype the technique because
most known cross-frame bugs have been patched individually in
IE version 7. In this section, we evaluate the effectiveness of our
defense against real attacks in the past. Because the script
accenting is a generic technique, we believe that it will also be
effective against this type of attacks discovered in the future.
This section also presents the evaluation results about the
transparency and the performance overhead of our defense
mechanism.

6.1 Protection
We now revisit the attack scenarios discussed in Section 4

and demonstrate how the script accenting mechanism can defeat
all these attacks. Also, these examples support our argument that
the correct implementation of the accenting/de-accenting
operations is significantly more robust than that of the current
frame-based isolation mechanism. While the latter attempts to
enforce a global property about how information is propagated in
the system, the former focuses on the more tractable task of
enforcing local properties at a few instrumentation locations.

Attack 1 Revisited. As shown in Figure 2, the attack is to
exploit a path that causes Windows Explorer to send a piece of
script supplied by the malicious frame to the victim frame. It is
very hard for IE developers to anticipate that Windows Explorer,
which is a component outside IE, can be used to relay the
javascript-URL between two IE frames.

The same attack was launched against our IE executable
with the script accenting in place. When the script executed
open(“file:javascript:doEvil”,”frame2”), we
observed that the function InvokeNavigation gets the URL
argument file:javascript:doEvil (see Figure 6 for the
call graph), which was not accented because the URL is not a
javascript-URL. The URL is then passed to Windows Explorer,
corresponding to the cloud of complicated navigation logic in
Figure 6. Windows Explorer removed the “file:” prefix and
handled it as a javascript-URL, so it passed the URL
javascript:doEvil to frame2, which is the receiver frame.

Before the compilation of the string doEvil, the accent key of
frame2 is used to de-accent the string. Because no accenting
operation had been performed on doEvil in the sender frame,
the de-accenting operation makes it illegible for the compilation,
and thus the attack is thwarted.

Attack 2 Revisited. Attack 2 exploits the function aliasing
to confuse Frame1 about which frame really initiated the
“location.assign” call (see Figure 3). Because of function
aliasing, the timer for delayed execution, and the navigation
happening in the meanwhile, the execution path leading to the
attack is highly convoluted.

When the attack was launched against our IE executable,
steps (1) – (3) of the attack are unaffected by the script accenting
mechanism. At step (4), despite the confusion caused by the
aliasing of location.assign, our rule of script ownership is
straightforward to conform to – the string doEvil was supplied
by the script running in Frame2, so it was accented using the
key of http://evil. This accented version of the string doEvil
was then de-accented using the key of http://payroll at the
receiver frame Frame1, and failed to be compiled.

Attack 3 Revisited. In Attack 3, because of the confusing
navigation statement, the cross-frame check is erroneously
performed to examine if frame2 can navigate frame1 to a
javascript-URL. This is a wrong check because frame0, not
frame2, is the real initiator of the navigation.

When the attack was replayed on our IE executable, there
was no confusion about the accenting policy. Frame0 supplied
the javascript-URL, so Frame0’s key, corresponding to
http://evil, was used in the accenting operation. When this URL is
received by Frame1, it was de-accented using the key of
http://payroll, and thus the attack was not effective.

Attack 4 Revisited. Attack 4 exploits the semantics of user
events. The script in Frame0 can reference to the DOM objects in
frame1 through event.srcElement, and therefore does not
need to pass the cross-frame check performed by the window proxy
between frame0 and frame1.

Our IE executable defeated this attack because of the
accenting of object name queries. The script in frame0 was able
to reference to event.srcElement, which is an alias of an
object in frame1. However, because of the mismatch between the
DOM key and the script key (see Figure 7), the script cannot access
to any attribute/method/sub-object of the object. Therefore, merely
obtaining the cross-frame object reference is useless. This is similar
to the situation in a C program where a pointer references to a
memory location that is not readable, writable or executable, and
any dereference of the pointer results in a memory fault.

6.2 Impossibility of XOR Probing Attacks
Because our current implementation uses XOR (⊕) as the

primitive operation for accenting, the security relies on the
invisibility of the accent keys to the attacker’s script.
Hypothetically, if the attacker’s script had the knowledge about katk
⊕ kvtm, where katk is the accent key of the attacker frame and kvtm is
the accent key of the victim frame, then the attacker can send the
script “doEvil ⊕ (katk ⊕ kvtm)” to the victim frame, which will be
accented and then deaccented to “doEvil”. Therefore, a caveat of
XOR-based security approach is that the attacker might have smart
methods to efficiently guess the value of (katk ⊕ kvtm).

Remember that the accent keys are four-byte words. The
attacker could guess the first two bytes of (katk ⊕ kvtm) and send the

script (“//xx” ⊕ (katk ⊕ kvtm)) to the victim frame. If the guess is
correct, the script will be compiled correctly because “//” denote a
comment line in javascript. If the guess is incorrect, a syntax error
will be generated by the victim frame. If the attacker can catch the
syntax errors, he/she can successfully guess the first two bytes in
65536 attempts. Then he/she can probe the third byte by using
“;//x” in 256 attempts, and the fourth byte by using “;;//” in another
256 attempts.

Although the above probing attack seems plausible at the first
glance, it is not effective for two reasons. First, we observe that
scripts in IE are always represented using wide-characters, which
means the string “//” is already four-byte long. It requires 2564
attempts to guess. More fundamentally, even for a browser not
using the wide-character representation, the attack still lacks an
important prerequisite – there is no way for the attacker frame to
detect a syntax error in the victim frame, because the two frames
are in different domains. In other words, for the probing attack to
succeed, the attacker frame already needs the capability to
communicate with the victim frame (e.g., through the onerror
method of the victim frame), but such a prerequisite is exactly the
domain-isolation violation that the attacker tries to achieve. This is
a cyclical cause-and-effect situation. Therefore, the XOR-probing is
not a real concern of the accenting mechanism.

Another issue related to XOR probing is the potential
weakness in accenting an object name that has only one wide-
character. We have discussed this in the last paragraph in Section
5.5: we need to pad another wide-character so that the object name
is four-byte long.

6.3 Application Compatibility
Although our technique is to offer the protection for the

browser, it is also important that the technique is fully transparent
to existing web applications. It would be a significant deployment
hurdle if the mechanism is not transparent to current browser
features and causes web applications to malfunction.

Table 1: Representative Web Applications
App Description of the Web Application

Virtual
Earth

Microsoft’s map service. The features include the road
map, the satellite map, the bird eye view, and the driving
direction planner. It supports rich user interactions,
including zooming the map, drag-and-drop, and gadget
moving, etc.

Google
Map

Google’s map service. The features include the road map,
the satellite map and the driving direction planner. It
supports rich user interaction capabilities.

Citi Bank An online banking application. The features include user
authentication, electronic bank statement and other
banking services.

Hotmail A popular web-based email system.
CNN A popular news page which contains many browser

features,
Netflix A popular movie-rental application. The page is user-

specific.
YouOS A web operating system. It provides the user a unix/linux-

style operating system inside the browser. It supports rich
user interactions.

Outlook
Web
Access

A web-based email system. It provides the user interface
of Microsoft Outlook in the browser. The user interaction
capabilities of Outlook Web Access are similar to those of
Microsoft Outlook.

Slashdot A popular technology-related news website. It is similar to
a blogging site.

As stated earlier, if the accenting was not performed
comprehensively in all legitimate execution paths, normal
browser functionalities would be broken because scripts could not
be correctly deaccented and compiled. To verify the transparency
of our implementation, our modified IE executable has been
tested on many web applications. Table 1 shows a number of
representative examples. We intentionally selected the web
applications with rich user interaction capabilities in order to test
the transparency of the mechanism. We observed that all these
applications run properly in our IE executable.

In addition to the popular web applications, we conducted
another test to verify that our mechanism is fully transparent to
legitimate cross-frame communications: the attacks discussed
earlier are interesting and convoluted scenarios to accomplish
illegitimate cross-frame communications. In our transparency test,
each attack scenario was converted into a legitimate cross-frame
access scenario by loading all frames with pages from the domain
http://payroll. Therefore, each previous attack script became a
script containing convoluted but legitimate cross-frame accesses.
We observed that all these scripts ran successfully, and all cross-
frame accesses happened as expected. This is a good evidence
that the script accenting mechanism does not affect
communications conforming to the same-origin policy.

6.4 Performance
As described previously, the accenting mechanism is

performed in two situations: (1) When a frame sends a script to
another frame. The performance overhead incurred by our code is
negligible in this situation because it simply applies an XOR
primitive on every 4-byte word in a string. This is insignificant
compared to the runtime overhead for the sending, receiving,
compiling and merging of the script. (2) When a script queries the
name of a DOM object. Name querying happens frequently
during the execution of a script. We perform an accenting
operation and a de-accenting operation for every query, which
may incur noticeable performance overhead. Intuitively, the
overhead should not be significant because every name query is
made through a deep stack of function calls from jscript.dll to
mshtml.dll, which is already a non-trivial operation. To measure
the upper bound of the performance overhead, we queried
window.document.body.innerText for 400,000 times.
The execution times for the original IE and our modified IE are
17.812 seconds and 18.374 seconds, respectively. The observed
performance overhead is 3.16%.

0

100

200

300

400

www.google.com map.google.com map.live.com slashdot.comPa
ge

 In
iti

al
iza

tio
n

Ti
m

e
in

M

ill
is

ec
on

ds

Original IE executable Our IE executable
Figure 8: Page Initialization Times With and Without Script

Accenting
Note that this is the worst-case result, because the test is a

stress test that does nothing but querying names. To estimate how
the performance overhead affects the end-to-end browsing time,
we measured the page initialization time of popular websites. The
initialization time includes the page downloading and the
execution of the main script on the page. The measurement is
made by subscribing a time recording function to the

BeforeNavigate and the NavigateComplete events of
the browser [12]. For each page, we measured 50 times. The
result is shown in Figure 8, where we see the standard deviations
much larger than the differences between the average numbers for
the original IE executable and our IE executable. We believe that
the differences are caused by network conditions, and the script
accenting mechanism has almost no effect on user’s browsing
experience.

7. CONCLUSIONS
Browsers’ isolation mechanisms are critical to users’ safety

and privacy on the web. Achieving proper isolations, however,
has proven to be difficult. Historical data show that even for well-
defined isolation policies, the current enforcement mechanisms
can be surprisingly error-prone. Browser isolation bugs have been
exploited on most major browser products. To the best of our
knowledge, this is the first focused academic study of real-world
browser isolation bugs.

We analyzed the implementation of IE’s domain-isolation
mechanism and the previously reported attacks. The analysis
showed that the attack scenarios involve complicated
HTML/script behaviors in the navigation mechanism, the
function aliasing, the excessive expressiveness of navigation
methods, the semantics of user events and IE’s interactions with
other system components, which are very difficult to anticipate by
the developers.

In this paper, we proposed the script accenting technique as
a light-weight transparent defense against these attacks. A
prototype has been implemented on IE. The evaluation showed
that all known attacks were defeated because of the mismatch of
the accents of the accessor frame and the accessee frame. We also
showed that the mechanism is fully transparent to existing web
applications. Despite a 3.16% worse-case performance overhead,
the measurement of end-to-end browsing time did not show any
noticeable slowdown.

The basic idea of the accenting is that the origin identities
can be piggybacked on communications at the interfaces between
different system components without affecting their internal logic.
This can be a general idea to apply in other isolation mechanisms.
For example, even within a frame, the browser needs to enforce
domain isolation for XML objects and XMLHTTPRequest objects,
whose domains may be different from the domain of the frame. In
addition to its current implementation on IE, we think the same
idea can be applied on other browsers if they have well-defined
interfaces between their HTML engines and script engines. More
broadly, non-browser platforms need to enforce domain isolation
as well. For example, CLR is the runtime environment for
the .NET framework [18] and Application Domain is a security
infrastructure in CLR. We speculate that the idea of accenting
might also be applicable to platforms like CLR.

ACKNOWLEDGEMENTS
We thank our colleagues Emre Kiciman and Helen J. Wang

for valuable discussions and suggestions. Anonymous reviewers
provided insightful feedbacks to help improve the quality of the
paper. We also thank our shepherd Dan Boneh for instructing us
towards the final version. Jose Meseguer helped us better
understand the concept of non-interference.

REFERENCES:
[1] Firefox Cross-Frame Vulnerabilities. Security Focus

Vulnerability Database. Bug IDs: 10877, 11177, 12465,
12884, 13231, 20042. http://www.securityfocus.com/ bid

[2] Opera Cross-Frame Vulnerabilities. Security Focus
Vulnerability Database. Bug IDs: 3553, 4745, 6754, 8887,
10763. http://www.securityfocus.com/bid

[3] Netscape Navigator Cross-Frame Vulnerabilities. Security
Focus Vulnerability Database. Bug IDs: 11177, 13231.
http://www.securityfocus.com/bid

[4] A. Clover. CSS visited pages disclosure, 2002.
http://seclists.org/lists/bugtraq/2002/Feb /0271.html.

[5] Don Box. Essential COM. ISBN 0-201-63446-5. Addison
Wesley.

[6] Richard S. Cox, Jacob G. Hansen, Steven D. Gribble and
Henry M. Levy: "A Safety-Oriented Platform for Web
Applications," IEEE Symposium on Security and Privacy,
2006

[7] Douglas Crockford. "JSONRequest," http://www.
json.org/JSONRequest.html

[8] E. W. Felten and M. A. Schneider, “Timing attacks on web
privacy,” in Proc.ACM Conference on Computer and
Communications Security, 2000

[9] J. A. Goguen and J. Meseguer, “Security policies and
security models,” in Proc. 1982 IEEE Symposium on
Security and Privacy

[10] Collin Jackson, Andrew Bortz, Dan Boneh, and John C.
Mitchell. "Protecting Browser State from Web Privacy
Attacks," in Proc. the 15th ACM World Wide Web
Conference, Edinburgh, Scotland, 2006.

[11] Martin Johns. "SessionSafe: Implementing XSS Immune
Session Handling," in Proc. the 11th European Symposium
on Research in Computer Security, Hamburg, Germany,
September, 2006

[12] MSDN Online. http://msdn.microsoft.com
[13] The "Javascript:" Protocol. http://www.webreference.

com/js/column35/protocol.html
[14] Benjamin Livshits and Monica S. Lam. "Finding Security

Vulnerabilities in Java Applications with Static Analysis," in
Proc. Usenix Security Symposium, Baltimore, Maryland,
August 2005.

[15] Wei Xu, Sandeep Bhatkar and R. Sekar. "Taint-Enhanced
Policy Enforcement: A Practical Approach to Defeat a Wide
Range of Attacks," in Proc. the 15th USENIX Security
Symposium, Vancouver, BC, Canada, July 2006.

[16] The XMLHttpRequest Object. W3C Working Draft 27
September 2006. http://www.w3.org/TR/ XMLHttpRequest/

[17] Cross-site scripting. http://en.wikipedia.org/wiki/Cross
_site_scripting

[18] Common Language Runtime (CLR). MSDN Online.
http://msdn2.microsoft.com/en-us/netframework/aa497
266.aspx

