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ABSTRACT
GPS-equipped taxis can be regarded as mobile sensors prob-
ing traffic flows on road surfaces, and taxi drivers are usually
experienced in finding the fastest (quickest) route to a des-
tination based on their knowledge. In this paper, we mine
smart driving directions from the historical GPS trajecto-
ries of a large number of taxis, and provide a user with the
practically fastest route to a given destination at a given de-
parture time. In our approach, we propose a time-dependent
landmark graph, where a node (landmark) is a road segment
frequently traversed by taxis, to model the intelligence of
taxi drivers and the properties of dynamic road networks.
Then, a Variance-Entropy-Based Clustering approach is de-
vised to estimate the distribution of travel time between two
landmarks in different time slots. Based on this graph, we
design a two-stage routing algorithm to compute the prac-
tically fastest route. We build our system based on a real-
world trajectory dataset generated by over 33,000 taxis in a
period of 3 months, and evaluate the system by conducting
both synthetic experiments and in-the-field evaluations. As
a result, 60–70% of the routes suggested by our method are
faster than the competing methods, and 20% of the routes
share the same results. On average, 50% of our routes are
at least 20% faster than the competing approaches.

Keywords
Driving directions, time-dependent fast route, taxi trajecto-
ries, T-Drive, landmark graph

Categories and Subject Descriptors
H.2.8. [Database applications]: Data mining, Spatial
databases and GIS.
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Finding efficient driving directions has become a daily ac-
tivity and been implemented as a key feature in many map
services like Google and Bing Maps. A fast driving route
saves not only the time of a driver but also energy consump-
tion (as most gas is wasted in traffic jams). In practice,
big cities with serious traffic problems usually have a large
number of taxis traversing on road surfaces. For the sake of
management and security, these taxis have already been em-
bedded with a GPS sensor, which enables a taxi to report on
its present location to a data center in a certain frequency.
Thus, a large number of time-stamped GPS trajectories of
taxis have been accumulated and are easy to obtain.

Intuitively, taxi drivers are experienced drivers who can
usually find out the fastest route to send passengers to a
destination based on their knowledge (we believe most taxi
drivers are honest although a few of them might give passen-
gers a roundabout trip). When selecting driving directions,
besides the distance of a route, they also consider other fac-
tors, such as the time-variant traffic flows on road surfaces,
traffic signals and direction changes contained in a route, as
well as the probability of accidents. These factors can be
learned by experienced drivers but are too subtle and diffi-
cult to incorporate into existing routing engines. Therefore,
these historical taxi trajectories, which imply the intelligence
of experienced drivers, provide us with a valuable resource
to learn practically fast driving directions.

In this paper, we propose to mine smart driving directions
from a large number of real-world historical GPS trajectories
of taxis. As shown in Figure 1, taxi trajectories are aggre-
gated and mined in the Cloud to answer queries from ordi-
nary drivers or Internet users. Given a start point and desti-
nation, our method can suggest the practically fastest route
to a user according to his/her departure time and based on
the intelligence mined from the historical taxi trajectories.
As the taxi trajectories are constantly updated in the Cloud,
the suggested routes are state-of-the-art.

When proposing the above-mentioned strategy, two ma-
jor concerns come to people’s minds. First, some routes on
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Figure 1: A cloud-based driving directions service



which a taxi can quickly traverse might not be feasible for
normal drivers, e.g., the carpool tracks in some highways
and a few bus-taxi-preserved tracks in a city. But, in most
cases, especially in many urban cities like New York and
Beijing, private cars can share the same tracks with taxis.
That is, taxis’ trajectories can still be referenced by other
drivers when finding driving directions in an urban city. Sec-
ond, the historical trajectory-based approach might not be
agile enough to handle some urgent accidents in contrast
to real-time traffic analysis. Intrinsically, the traffic flows
of a city follow some patterns unless some emergent events
happen, such as serious accidents, traffic control and road-
works. Given that the probability of these events is much
lower than that of regular traffic patterns, our method is
still very useful in most situations. At the same time, be-
sides the traffic flow, our method also implicitly incorporates
additional factors, such as direction changes and traffic sig-
nals. Moreover, this method can find the fastest route in
a future time and needs less online communication for data
transition. Thus, our solution and the real-time-based ap-
proach can complement each other.

However, we need to face the following three challenges
when performing our method.

Intelligence Modeling: As a user can select any place
as a source or destination, there would be no taxi trajectory
exactly passing the query points. That is, we cannot answer
user queries by directly mining trajectory patterns from the
data. Therefore, how to model taxi drivers’ intelligence that
can answer a variety of queries is a challenge.

Data Sparseness and Coverage: We cannot guarantee
there are sufficient taxis traversing on each road segment
even if we have a large number of taxis. That is, we cannot
accurately estimate the speed pattern of each road segment.

Low-sampling-rate Problem: To save energy and com-
munication loads, taxis usually report on their locations in
a very low frequency, like 2-5 minutes per point. This in-
creases the uncertainty of the routes traversed by a taxi[11].
As shown in Figure 2, there could exist four possible routes
(R1-R4) traversing the sampling points a and b.

R1 R2

R3

a

b

R4

Figure 2: Low-sampling-rate problem

In our approach, we model a large number of historical
taxi trajectories with a time-dependent landmark graph, in
which a node (landmark) represents a road segment fre-
quently traversed by taxis. Based on this landmark graph,
we perform a two-stage routing algorithm that first searches
the landmark graph for a rough route (represented by a se-
quence of landmarks) and then finds a refined route sequen-
tially connecting these landmarks. The contributions of this
paper lie in the following aspects:

∙ We propose the notion of a landmark graph, which
well models the intelligence of taxi drivers based on the
taxi trajectories and reduces the online computation of
route-finding.

∙ We devise Variance-Entropy-Based Clustering (called

VE-Clustering) to learn the time-variant distributions
of the travel times between any two landmarks.

∙ We build our system by using a real-world trajectory
dataset generated by 33,000+ taxis in a period of 3
months, and evaluate the system by conducting both
synthetic experiments and in-the-field evaluations (per-
formed by real drivers). The results show that our
method can find out faster routes with less online com-
putation than competing methods.

In the remainder of this paper, we first formally define our
problem in Section 2 and give an overview of our approach in
Section 3. Then we elaborate on the time-dependent land-
mark graph construction in Section 4 and route computing
in Section 5. After that, we report on the evaluation in Sec-
tion 6. Finally, we discuss related work in Section 7 and
conclude this paper in Section 8.

2. PROBLEM DEFINITION
In this section, we first introduce some terms used in this

paper, then define our problem.

Definition 1. (Road Segment): A road segment r is a di-
rected (one-way or bidirectional) edge that is associated with
a direction symbol (r.dir), two terminal points (r.s, r.e), and
a list of intermediate points describing the segment using a
polyline. If r.dir=one-way, r can only be traveled from r.s to
r.e, otherwise, people can start from both terminal points,
i.e., r.s→ r.e or r.e→ r.s. Each road segment has a length
r.lengtℎ and a speed constraint r.speed, which is the maxi-
mum speed allowed on this road segment.

Definition 2. (Dynamic Road Network): A dynamic road
network Gr is a directed graph, Gr = (Vr, Er), where Vr

is a set of nodes representing the terminal points of road
segments, and Er is a set of edges denoting road segments.
The time needed for traversing an edge is dynamic at least
in the following two aspects: (1) Time-dependent. Typically,
the traffic flow on a road surface varies over days of the week
and time of day, e.g., a road could become crowded in rush
hours while be quite smooth at other times. (2) Location-
variant. Different roads have different time-variant traffic
patterns. For instance, some streets could still be very fast
even in the morning rush. However, the rush hours of a few
roads may last for a whole day.

Definition 3. (Route): A route R is a set of connected
road segments, i.e., R : r1 → r2 → ⋅ ⋅ ⋅ → rn, where rk+1.s =
rk.e, (1 ≤ k < n). The start point and end point of a route
can be represented as R.s = r1.s and R.e = rn.e.

Definition 4. (Taxi Trajectory): A taxi trajectory Tr is a
sequence of GPS points pertaining to one trip. Each point
p consists of a longitude, latitude and a time stamp p.t, i.e.,
Tr : p1 → p2 → ⋅ ⋅ ⋅ → pn, where 0 < pi+1.t − pi.t < △T
(1 ≤ i < n). △T defines the maximum sampling interval
between two consecutive GPS points.

Problem Definition: Given a user query with a start point
qs, a destination qd and a departure time td, find the fastest
route R in a dynamic road network Gr = (Vr, Er) which is
learned from a trajectory archive A.



3. OVERVIEW
As shown in Figure 3, the architecture of our system con-

sists of three major components: Trajectory Preprocessing,
Landmark Graph Construction, and Route Computing. The
first two components operate offline and the third is running
online. The offline parts only need to be performed once un-
less the trajectory archive is updated.

Trajectory Preprocessing : This component first seg-
ments GPS trajectories into effective trips, then matches
each trip against the road network. 1) Trajectory segmenta-
tion: In practice, a GPS log may record a taxi’s movement
of several days, in which the taxi could send multiple pas-
sengers to a variety of destinations. Therefore, we partition
a GPS log into some taxi trajectories representing individual
trips according to the taximeter’s transaction records. There
is a tag associated with a taxi’s reporting when the taximeter
is turn on or off, i.e., a passenger gets in or out of the taxi. 2)
Map matching : We employ our IVMM algorithm [14], which
has a better performance than existing map-matching algo-
rithms when dealing with the low-sampling-rate trajectories,
to map each GPS point of a trip to the corresponding road
segment where the point was recorded. As a result, a taxi
trajectory is converted to a sequence of road segments.

Landmark Graph Construction : We separate the week-
day trajectories from the weekend ones, and build a land-
mark graph for weekdays and weekends respectively. When
building the graph, we first select the top-k road segments
with relatively more projections (i.e., being frequently tra-
versed by taxis) as the landmarks. Then, we connect two
landmarks with a landmark edge if there are a certain num-
ber of trajectories passing these two landmarks. Later, we
estimate the distribution of travel time of each landmark
edge by using the VE-clustering algorithm. Now, a time-
dependent landmark graph is ready for online computation.
Figure 4 demonstrates the key concept of our work.

Route Computing : Given a query (qs, qd, td), we carry
out a two-stage routing algorithm to find out the fastest
route. In the first stage, we perform a rough routing that
searches the time-dependent landmark graph for the fastest
rough route represented by a sequence of landmarks. In
the second stage, we conduct a refined routing algorithm,
which computes a detailed route in the real road network to
sequentially connect the landmarks in the rough route.

4. TIME-DEPENDENT LANDMARK GRAPH
This section first describes the construction of the time-

dependent landmark graph, and then details the travel time
estimation of landmark edges.

4.1 Building the Landmark Graph

Road Networks

Time-Dependent 

Landmark Graph

 Trace Preprocessing Landmark Graph Construction Route Computing

Trace Archive

GPS Logs

Trace Segmentation Landmark Graph Building

User Query

Rough Routing

Refined Routing

User Interface

Travel Time Estimation

Map Matching

Figure 3: System overview
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Figure 4: Hierarchical architecture

Definition 5. (Landmark): A landmark is one of the top-
k road segments that are frequently traversed by taxi drivers
according to the trajectory archive.

The reason why we use “landmark” to model the taxi
drivers’ intelligence is that: 1) The notion of landmarks fol-
lows the natural thinking pattern of people, and can give
users a more understandable and memorable presentation
of driving directions beyond detailed descriptions. For in-
stance, the typical pattern that people introduce a route to
a driver is like this “take I-405 South at NE 4th Street, then
change to I-90 at exit 11, and finally exit at Qwest Field”.
Instead of giving turn-by-turn directions, which a driver can-
not remember, people prefer to use a few landmarks (like NE
4th Street) that highlight key directions to the destination.
2) The sparseness and low-sampling-rate of the taxi trajec-
tories do not support the speed estimation for each road
segment while we can estimate the traveling time between
two landmarks. Meanwhile, the low-sampling-rate trajecto-
ries cannot offer sufficient information for inferring the exact
route traversed by a taxi (refer to Figure 2). Thus, we can
only use a road segment instead of their terminal points as
a landmark.

Here, we detect the top-k road segments as the landmarks
instead of setting up a fixed threshold, since a threshold will
vary in the scale of taxi trajectories. Later, we connect two
landmarks according to definitions 6, 7 and 8.

Definition 6. (Transition): Given a trajectory archive A,
a time threshold tmax, two landmarks u, v, arriving time ta,
leaving time tl, we say s = (u, v; ta, tl) is a transition if the
following conditions are satisfied:
(I) There exists a trajectory Tr = (p1, p2, . . . , pn) ∈ A, after
map matching, Tr is mapped to a road segment sequence
(r1, r2 . . . , rn). ∃ i, j, 1 ≤ i < j ≤ n s.t. u = ri, v = rj .
(II) ri+1, ri+2, . . . , rj−1 are not landmarks.
(III) ta = pi.t, tl = pj .t and the travel time of this transition
is tl − ta ≤ tmax.

Definition 7. (Candidate Edge and Frequency): Given two
landmarks u, v and the trajectory archive A, let Suv be the
set of the transitions connecting (u, v). If Suv ∕= ∅, we say
e = (u, v; Tuv) is a candidate edge, where

Tuv = {(ta, tl)∣(u, v; ta, tl) ∈ Suv}

records all the historical arriving and leaving times. The
support of e, denoted as e.supp, is the number of transitions
connecting (u, v), i.e., ∣Suv∣. The frequency of e is e.supp/� ,
denoted as e.freq, where � represents the total duration of
trajectories in archive A.

Definition 8. (Landmark Edge): Given a candidate edge e
and a minimum frequency threshold �, we say e is a landmark
edge if e.freq ≥ �.



Definition 9. (Landmark Graph): A landmark graph Gl =
(Vl, El) is a directed graph that consists of a set of land-
marks Vl (conditioned by k) and a set of landmark edges E
conditioned by � and tmax.

The threshold � is used to eliminate the edges seldom
traversed by taxis, as the fewer taxis that pass two land-
marks, the lower accuracy of the estimated travel time (be-
tween the two landmarks) could be. Additionally, we set the
tmax value to remove the landmark edges having a very long
travel time. Due to the low-sampling-rate problem, some-
times, a taxi may consecutively traverse three landmarks
while no point is recorded when passing the middle (second)
one. This will result in that the travel time between the
first and third landmark is very long. Such kinds of edges
would not only increase the space complexity of a landmark
graph but also bring inaccuracy to the travel time estimation
(as a farther distance between landmarks leads to a higher
uncertainty of the traversed routes).

We observe (from the taxi trajectories) that different week-
days (e.g., Tuesday and Wednesday) almost share similar
traffic patterns while the weekdays and weekends have dif-
ferent patterns. Therefore, we build two different landmark
graphs for weekdays and weekends respectively. That is, we
project all the weekday trajectories (from different weeks
and months) into one weekday landmark graph, and put all
the weekend trajectories into the weekend landmark graph.

Figure 5 (A)-(C) illustrate an example of building the
landmark graph. If we set k = 4, the top-4 road segments
(r1, r3, r6, r9) with more projections are detected as land-
marks. Note that the consecutive points (like p3 and p4)
from a single trajectory (Tr4) can only be counted once for
a road segment (r10). This aims to handle the situation that
a taxi was stuck in a traffic jam or waiting at a traffic light
where multiple points may be recorded on the same road
segment (although the taxi driver only traversed the seg-
ment once), as shown in Figure 5 (C). After the detection of
landmarks, we convert each taxi trajectory from a sequence
of road segments to a landmark sequence, and then connect
two landmarks with an edge if the transitions between these
two landmarks conform to Definition 8 (supposing �=1 in
this example). Figure 6 shows the detailed algorithm for
landmark graph building where M is a collection of road
segment sequences (derived from original taxi trajectories).

4.2 Travel Time Estimation
Since the road network is dynamic (refer to Definition 2),

we can use neither the same nor a predefined time partition
method for all the landmark edges. Meanwhile, as shown in
Figure 7(a), the travel times of transitions pertaining to a

Algorithm 1: LandmarkGraphConstruction

Input: a road network Gr, a collection of road segment
sequences M , the number of landmarks k, the
thresholds � and tmax

Output: landmark graph Gl

M ← ∅, E ← ∅, Count[ ]← 0;1
foreach road segment sequence S ∈M do2

foreach road segment r ∈ S do3
Count[r]++4

Vl ← Top-k(Count[ ], k);5
foreach road segment sequence S ∈M do6

S ←Convert(S,Vl)/* Converted to landmark sequence */7
for i← 1 to ∣S∣ − 1 do8

u← S[i], v ← S[i+ 1] ;9
if v.t− u.t < tmax then10

if euv = (u, v; Tuv) /∈ E then11
E.Insert(euv)12

euv.supp++;13
Tuv .Add((u.t, v.t))14

foreach edge e = (u, v; Tuv) ∈ E do15
if e.freq < � then E.Remove(e) ;16

return Gl ← (Vl, E);17

Figure 6: Landmark graph construction algorithm

landmark edge clearly gather around some values (like a set
of clusters) rather than a single value or a typical Gaussian
distribution, as many people expected. This may be induced
by 1) the different number of traffic lights encountered by
different drivers, 2) the different routes chosen by different
drivers traveling the landmark edge, and 3) drivers’ personal
behavior, skill and preferences. Therefore, different from ex-
isting methods [9, 12] regarding the travel time of an edge
as a single-valued function based on time of day, we consider
a landmark edge’s travel time as a set of distributions cor-
responding to different time slots. For example, as shown in
the bottom part of Figure 5 D), 41 percent of drivers need to
spend 10∼14 minutes (refer to the red bar) to traverse e16
(r1 → r6) in the time slot 17:00–19:00, while 44 percent of
drivers can accomplish this transition with a 5∼10 minute
cost (represented by the yellow bar) and the rest of them
need less than 5 minutes (denoted as the green bar).

Moreover, the distribution will change over time of day,
e.g., the time slots 9:00–14:00 and 14:00–17:00 have differ-
ent distributions. Additionally, the distributions of different
edges, such as e13 and e16, change differently over time. To
address this issue, we develop the VE-Clustering algorithm,
which is a two-phase clustering method, to learn different
time partitions for different landmark edges based on the
taxi trajectories. In the first phase, called V-clustering, we
cluster the travel times of transitions pertaining to a land-
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Figure 7: An example of VE-Clustering Algorithm

mark edge into several categories based on the variance of
these transitions’ travel times. In the second phase, termed
E-clustering, we employ the information gain to automati-
cally learn a proper time partition for each landmark edge.
Later, we can estimate the distributions of travel times in
different time slots of each landmark edge.

Figure 7 demonstrates an example of the VE-Clustering
algorithm. Given a landmark edge e = (u, v; Tuv), our goal
is to estimate the travel time from u to v based on Tuv (Tuv

is the collection of (ta, tl) pairs of e defined in Definition 7).
Figure 7(a) plots the travel time of the transitions (on week-
days during 3 months) pertaining to a real landmark edge in
a two dimensional space, where the x and y axes denote the
arriving time (ta) and travel time (tl − ta) respectively. As
the number of clusters and the boundary of these clusters
vary in different landmark edges, we conduct the following
V-Clustering instead of using some k-means-like algorithm
or a predefined partition.

V-Clustering : We first sort Tuv according to the values
of travel time (tl − ta), and then partition the sorted list
L into several sub-lists in a binary-recursive way. In each
iteration, we first compute the variance of all the travel times
in L. Later, we find the“best”split point having the minimal
weighted average variance (WAV) defined as Equation 1:

WAV(i;L) =
∣L1(i)∣
∣L∣ Var(L1(i)) +

∣L2(i)∣
∣L∣ Var(L2(i)) (1)

where L1(i) and L2(i) are two sub-lists of L split at the
ith element and Var represents the variance. This best split
point leads to a maximum decrease of

△V (i) = Var(L)−WAV(i;L). (2)

The algorithm terminates when maxi{△V (i)} is less than
a threshold. As a result, we can find out a set of split
points dividing the whole list L into several clusters C =
{c1, c2, . . . , cm}, each of which represents a category of travel
times.1 As shown in Figure 7(b), the travel times of the land-
mark edges have been clustered into three categories plotted
in different colors and symbols.

E-Clustering : This step aims to split the x-axis into
several time slots such that the travel times have a rela-
tively stable distribution in each slot. After V-Clustering,
we can represent each travel time yi with the category it
pertains to (c(yi)), and then sort the pair collection Sxc =
{(xi, c(yi))}ni=1 according to xi (arriving time). The infor-
mation entropy of the collection Sxc is given by:

Ent(Sxc) = −
m∑
i=1

pi log(pi) (3)

where pi is the proportion of a category ci in the collection.
The E-Clustering algorithm runs in a similar way to the V-
Clustering to iteratively find out a set of split points. The
only difference between them is that, instead of the WAV,
we use the weighted average entropy of Sxc defined as:

WAE(i;Sxc) =
∣Sxc

1 (i)∣
∣Sxc∣ Ent(Sxc

1 (i)) +
∣Sxc

2 (i)∣
∣Sxc∣ Ent(Sxc

2 (i))

in the E-Clustering, where Sxc
1 and Sxc

2 are two subsets of
Sxc when split at the ith pair. The best split point induces
a maximum information gain[6] which is given by

△E(i) = Ent(Sxc)−WAE(i;Sxc).

The recursive partition within a set stops iff the MDLPC
criterion is satisfied[6]. As demonstrated in Figure 7(c), we
can compute the distribution of the travel times in each time
slot after the E-Clustering process.

Figure 8 shows the framework of the VE-Clustering al-
gorithm where xi = ta, yi = tl − ta. Figure 9 details the
procedure of V-Clustering. As E-Clustering is similar to V-
Clustering, we skip the details of the E-Clustering algorithm.

Algorithm 2: Variance-Entropy-Based Clustering

Input: a set of points S = {(xi, yi)
n
i=1} ⊆ R×R

Output: a sequence of distributions D1, D2, . . . , Dk

Sy ← sorted sequence {yi}ni=1 order by yi asending;1
y split← ∅;2
y split←V-Clustering(Sy,�v,y split);3
C = {c1, c2, . . . , cm} ←Convert(Sy, y split);4
/* Convert Sy into clusters according to y_split */

Sxc ← sort {(xi, c(yi))
n
i=1} order by xi asending;5

/* c(yi) ∈ C is the cluster of yi */

x split← ∅;6
x split←E-Clustering(Sxc,�e,x split);7
/* Divide x-axis into several slots */

for i← 1 to ∣x split∣ do8
Di ←ComputeDistribution(Sxc,i,x split);9
/* Compute the distribution of slot i */

return D = {D1, D2, . . . , Dk};10

Figure 8: Variance-Entropy-Based Clustering

1We can use some outlier detection algorithms or interval
estimation approaches to handle noisy points.



Algorithm 3: V-Clustering

Input: sorted sequence L = {yi}ni=1, threshold �v, a set of
split points &y split; /* a global variable */

Output: a set of split points y split
V ←Var({yi}ni=1); /* the initial variance */1
V ′ ← mini{WAV(i;L)};2
j ← argmini{WAV(i;L)};3
if V − V ′ < �v/∣L∣ then return y split;4
else5

y split.Add(j);6

y split←V-Clustering(Lj
1,�v,y split);7

y split←V-Clustering(Lj
2,�v,y split);8

Figure 9: V-Clustering procedure

5. ROUTE COMPUTING
This section introduces the routing algorithm, which con-

sists of two stages: rough routing in the landmark graph and
refined routing in the real road network.

5.1 Rough Routing
Besides the traffic condition of a road, the travel time of a

route also depends on drivers. Sometimes, different drivers
take different amounts of time to traverse the same route
at the same time slot. The reasons lie in a driver’s driving
habit, skills and familiarity of routes. For example, people
familiar with a route can usually pass the route faster than
a new-comer. Also, even on the same path, cautious people
will likely drive relatively slower than those preferring to
drive very fast and aggressively. To catch the above factor
caused by individual drivers, we define the optimism index
as follows:

Definition 10. (Optimism Index) The optimism index �
indicates how fast a person would like to drive as compared
to taxi drivers. The higher rank (position in taxi drivers),
the faster the person would like to drive.

For example, � = 0.9 means a person usually drives as
fast as the top 10% (i.e., 1-0.9) fast-driving taxi drivers. 0.2
means that drivers can only outperform the bottom 20% of
taxi drivers. In practise, the � can be learned from a driver’s
historical trajectories, or set by themselves, or be configured
to the mean expected value (or the median) if not given.

Given a user’s optimism index �, we can determine his/her
time cost for traversing a landmark edge e in each time slot
based on the learnt travel time distribution. For example,
Figure 10(a) depicts the travel time distribution of an land-
mark edge in a given time slot (c1 ∼ c5 denotes 5 categories
of travel times). Then, we convert this distribution into a
cumulative frequency distribution function and fit a contin-
uous cumulative frequency curve [1] shown in Figure 10(b).
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Figure 10: Travel time w.r.t. optimism index

Note this curve represents the distribution of travel time in a
given time slot. That is, the travel times of different drivers
in the same time slot are different. So, we cannot use a
single-valued function. For example, given �=0.7, we can
find out the corresponding travel time is 272 seconds, while
if we set �=0.3 the travel time becomes 197 seconds.

Now the rough routing problem becomes the typical time-
dependent fastest path problem. The complexity of solv-
ing this problem depends on whether the network satisfies
the “FIFO” (first in, first out) property2: “In a network
G = (V,E), if A leaves node u starting at time t1 and B
leaves node u at time t2 ≥ t1, then B cannot arrive at v be-
fore A for any arc (u,v) in E”. In practise, many networks,
particularly transportation networks, exhibit this behavior
[3]. If a driver’s route spans more than one time slot, we use
the method proposed in[4] to refine the travel time cost to
be FIFO.

In the rough routing, we first search m (in our system,
we set m = 3) nearest landmarks for qs and qd respec-
tively (a spatial index is used), and formulate m ×m pair
of landmarks. For each pair of landmarks, we find the time-
dependent fastest route on the landmark graph by using the
Label-Setting algorithm [3]. For any visited landmark edge,
we use the optimism index (or expected travel time) to de-
termine the travel time. The time costs for traveling from
qs and qe to their nearest landmarks are estimated in terms
of speed constraint.

For example, in Figure 11 (A), if we start at time td = 0,
the fastest route from qs to qd is qs → r3 → r4 → qd. When
we arrive at r3, the time stamp is 0.1, the travel time of
e34 is 1, then the total time of this route is 0.1+1+0.1=1.2.
However, if we start at td = 1, the route qs → r1 → r2 → qd
now becomes the fastest rough route since when we arrive at
r3, the travel time of the e34 becomes 2 and the total time
of the previous route is now 2.2.
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Figure 11: Route computing

5.2 Refined Routing
This stage finds in the real road network a detailed fastest

route that sequentially passes the landmarks of a rough
route by dynamic programming. Assume r1, r2, . . . , rn is
the landmark sequence obtained from the rough routing.
Recall Definition 1, each landmark ri has its start point
ri.s and end point ri.e. Let fs(i) and fe(i) be the earliest
leaving times (after traversing ri) at nodes ri.s and ri.e re-
spectively. Let T (a, b, c) be the travel time of the fastest
route from road node a to b without crossing node c. Let
tse(i) = ri.lengtℎ/ri.speed, i.e., the time (estimated based
on speed constraint) for traveling from ri.s to ri.e, and

tes(i) =

{
tse(i) if ri is bidirectional

∞ if ri is one-way.

2If the network is non-FIFO, the problem is at least NP-
Hard when waiting at a node is not allowed[12].



Using these notations, we have the initial states fs(1) and
fe(1) as follows:

fs(1) = T (qs, r1.e, r1.s) + tes(1)

fe(1) = T (qs, r1.s, r1.e) + tse(1)
(4)

As shown in Figure 11 (B), let T i
se = T (ri.s, ri+1.e, ri+1.s)

denote the time of the fastest route (using speed constraint
in real road network) which starts from point ri.s and ends
at point ri+1.e without crossing ri+1.s in road network Gr.
Then T i

ee, T i
ss, T i

es can be similarly defined. Now we have
the state transition equations:

fs(i+ 1) = min{fs(i) + T i
se, fe(i) + T i

ee}+ tes(i+ 1)

fe(i+ 1) = min{fs(i) + T i
ss, fe(i) + T i

es}+ tse(i+ 1)
(5)

After fs(n) and fe(n) are computed, the total travel time
for the optimal route in the real road network is:

min{fs(n) + T (rn.s, qd, rn.e), fe(n) + T (rn.e, qd, rn.s)}

In practise, we can compute T i
se, T i

ee, T i
ss, T i

es and corre-
sponding routes in parallel (for 1 ≤ i ≤ n − 1) by utilizing
the Dijkstra or A*-like Algorithms with a simple modifica-
tion (by ignoring node c). Then the final route is a by-
product of the dynamic programming since we only need to
determine the direction for each landmark road segment.

6. EVALUATION
In this section, we conduct extensive experiments using

both synthetic queries and in-the-field evaluations.

6.1 Settings
6.1.1 Data

Road Network: We perform the evaluation based on the
road network of Beijing, which has 106,579 road nodes and
141,380 road segments.

Taxi Trajectories: We build our system based on a real
trajectory dataset generated by over 33,000 taxis over a pe-
riod of 3 months. The total distance of the data set is more
than 400 million kilometers and the total number of GPS
points reaches 790 million. The average sampling interval of
the data set is 3.1 minutes per point and the average distance
between two consecutive points is about 600 meters. After
the preprocessing, we obtain a trajectory archive containing
4.96 million trajectories.

Real-User Trajectories: We use a 2-month driving history
of 30 real drivers recorded by GPS trajectories to evaluate
travel time estimation. This data is a part of the released
GeoLife dataset[17, 16], and the average sampling interval is
about 10s. That is, we can easily determine the exact road
segments a driver traversed and corresponding travel times.

6.1.2 Evaluation Framework
We evaluate our work according to the following 3 steps.
1) Evaluating landmark graphs: We build a set of land-

mark graphs with different values of k ranging from 500 to
13000. The threshold � is set to 10, i.e., at least ten times
per day traversed by taxis (in total over 900 times in a period
of 3 months) and tmax is set to 30 minutes. We project each
real-user trajectory to our time-dependent landmark graph,
and use the landmark graph to estimate the travel time of
the trajectory. We study the accuracy of the time estima-
tion changing over k and �. We also investigate the accuracy
changing over the scale of the taxi trajectory dataset.

2) Evaluation based on synthetic queries: We generate
1200 queries with different geo-distances and departure times.
The geo-distances between the start point and destination
ranges from 3 to 23km and follows a uniform distribution.
The departure time ranges from 6am to 10pm and was gen-
erated randomly in different time slots.

We compare our approach with the speed-constraint-based
(denoted as SC) method and a real-time-traffic-analysis-based
(termed RT) method in the aspects of efficiency and ef-
fectiveness. The SC method (offered by Google and Bing
Maps) is based on the shortest path algorithm like A* using
the speed constraint of each road segment. The RT method
first estimates the speed of each segment at a given time ac-
cording to the road sensor readings and the GPS readings of
the taxis traversing on the road segment, and then calculates
the fastest route according to the estimated speeds.

3) In-the-field evaluation: We conduct two types of in the
field studies: 1) The same driver traverses the routes sug-
gested by our method and baselines at different times. 2)
Two drivers (with similar driving skills and habits) travel
different routes (recommended by different methods) simul-
taneously. As shown in Table 1, we conducted both types of
evaluations multiple times and recorded each traverse with
a GPS logger. Later, we perform a statistical comparison in
the aspects of travel time and distance.

Table 1: Trajectories of the In-the-field Study

Evaluation 1 Evaluation 2

Num. Trajectories 360 60
Num. Users 30 2
Total Distance (km) 5304 814
Total Duration (hour) 165.24 25.09
Evaluation Days 10 6

6.2 Evaluating Landmark Graphs
Figure 12 visualizes two landmark graphs when k = 500

and k = 4000. The red points represent landmarks and blue
lines denote landmark edges. Generally, the graph (k =
4000) well covers Beijing city, and its distribution follows
our commonsense knowledge.

(a) k=500 (b) k=4000

Figure 12: Visualized landmark graphs

In Table 3, the second column (SR(N)) denotes the storage
ratio between the number of landmarks and that of original
road nodes. The third column shows the number of land-
mark edges. The last column (SR(E)) is the storage ratio
between the number of landmark edges and that of road seg-
ments. Clearly, our landmark graph is only a small subset of
the original road network and the storage cost is lightweight.

By mapping the real-user trajectories to the road seg-
ments, we calculate the travel times of these trajectories

http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/default.aspx


Table 3: Storage Cost of Landmark Graphs

k SR(N) Num. Edges SR(E)

2,000 0.019 5,518 0.039
4,000 0.038 10,999 0.078
6,000 0.056 15,850 0.112
8,000 0.075 21,219 0.150
1,0000 0.094 25,901 0.183
1,2000 0.113 30,901 0.219

based on our landmark graph. Then, we compare our esti-
mated time with the real travel time (logged by GPS) using
the criteria error ratio (ER) defined by:

ER =
estimated time−real travel time

real travel time
.

For example, as shown in Figure 13, a route is comprised
of 7 road segments, where r1, r3, r5 and r7 are landmarks
and r1 → r3 and r5 → r7 are two landmark edges. Let t1
represent the travel time of landmark edge r1 → r3 given
a departure time t0 and an optimism index �. If a road
segment is not covered by a landmark edge, like r4, we use its
length divided by the speed constraint to estimate the time
cost. So, the estimated time cost of this route is t1 + t2 + t3,
and ER=((t1 + t2 + t3) − T )/T where T is the real travel
time of this route.

r2 r3 r4 r5 r6 r7r1

t3t1         t2 

(r4.length/speed)  t0+t1+t2+t3t0

Figure 13: Time estimation for users’ routes

Figure 14 shows the ER changing over k and � based
on the real-user trajectories. Clearly, when � = 0.6, the
error ratio achieves the best performance (especially when
k = 10000, ER≤ 1%). The results validate that the land-
mark graph can well model the dynamic road network and
precisely estimate the travel time of a route.
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Figure 14: Error ratio w.r.t. optimism index
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Figure 15: Error ratio over scale of taxi trajectories

Figure 15 illustrates the ER changing over the the scale of
taxi trajectories (measured by the number of taxis per km2).
The results show that we can get an acceptable performance
as long as there are over 5 taxis in a region of 1km2.

6.3 Evaluation Based on Synthetic Queries
We use two criteria (Fast Rate 1 and Fast Rate 2) to

compare the effectiveness between method A and method B
(B is the baseline):

FR1 =
Number(A’s travel time<B’s travel time)

Number(queries)

FR2 =
B’s travel time−A’s travel time

B’s travel time
.

FR1 represents how many routes suggested by method A are
faster than that of baseline method B, and FR2 reflects to
what extent the routes suggested by A are faster than the
baseline’s. Meanwhile, we use SR to represent the ratio of
method A’s routes being equivalent to the baseline’s.

Figure 16 and 17 and Table 4 show the overall performance
(FR1, FR2 and SR) of our method. When calculating the
FR1, FR2, and SR, both our method and the RT approach
use the SC method as a baseline.
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Figure 16: Overall performance

Table 4: FR1, SR of
TDrive and RT methods

� k FR1 SR

0.4 6,000 0.509 0.281
0.4 9,000 0.647 0.222
0.6 6,000 0.511 0.272
0.6 9,000 0.653 0.216
0.7 6,000 0.544 0.227

TDrive

0.7 9,000 0.672 0.214

RT approach 0.206 0.671
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Figure 17: FR2 over k

Figure 16 studies the overall FR1 of our method changing
over k and �. When k = 9000, the lowest FR1 is still over
60%, i.e., 60% of the routes suggested by our method are
faster than that of the SC approach. Figure 16(b) further
details the FR1 and SR of our method when � = 0.7 (due to
the page limitation, we only present the results of a few � in
the later evaluations). Here, FR1 is being enhanced with the
increase of k when k < 9000, and becomes stable when k >
9000. That is, it is not necessary to keep on expanding the
scale of a landmark graph to achieve a better performance.
Also, as shown in Table 4, our method outperforms the RT
approach in terms of FR1, and most routes (67%) suggested
by the RT approach are the same as that of the SC method.
Figure 17 plots the FR2 of ours and RT. For example, when
k = 9000, over 50% routes suggested by our method are at
least 20% faster than the SC approach.

We further study the FR1 of our approach and RT in
different time slots in Figure 18, and investigate their per-



formance influenced by the geo-distance between the start
point and destination of a query in Figure 19. As shown in
Figure 18, both our method and the RT approach have a
stable performance in different time slots on weekdays and
weekends. Moreover, our method has a 30% (on average)
improvement over the RT approach when k ≥ 5000. As
depicted in Figure 19, the FR1 of both our method and
the RT approach grow as the distance increases, and our
method is more capable of answering queries with a longer
distance, e.g., FR1>0.8 when distance>20KM. As a longer
distance between a source and destination means that more
road segments with various traffic conditions are involved,
our method and RT both show a clear advantage over the
SC approach.

6 9 12 15 18 21

0.2

0.4

0.6

time of day (hour) 

F
R

1

k=5000
k=7000

k=9000
RT

(a) Weekdays

6 9 12 15 18 21

0.2

0.4

0.6

time of day (hour) 

F
R

1

k=5000
k=7000

k=9000
RT

(b) Weekends

Figure 18: FR1 w.r.t. time of day
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The reason why our method outperforms the RT approach
is: 1) Coverage: Many road segments have neither embedded
road sensors nor taxis traveling on them at a given time.
At this moment, the speed constraint of a road segment is
used to represent the real time traffic on the road segment.
That is also the reason why the RT approach returns many
of the same routes as the SC method. 2) Spareness: in
a time interval, the estimated travel time is still not very
accurate if the number of the taxis is not large enough. 3)
Open challenges: As compared to the history-based method,
the RT approach is more vulnerable to noise, such as traffic
lights, human factors (pedestrians crossing a street), and
taxis looking for parking places and passengers.

Though outperforming the baselines, our method still has
less than 12% (see Table 4, �=0.7, k=9000) of routes falling
behind the SC method. The reason is that: 1) our time
estimation method is not perfect, and 2) the three challenges
mentioned in the Introduction cannot be fully tackled 100%.
However, after studying these fall-behind routes, we find
that they are only slightly (on average, FR2=-3%) slower
than the SC method.

Figure 20 reports the efficiency of our method by using the
average node accesses per query. Obviously, our two-stage

routing approach is more efficient than the baselines. The
reasons are that: 1) The landmark graph is a small subset of
the original road network; 2) the rough route has specified
the key directions, hence, reduces the searching area (Figure
21 gives an example); 3) the detailed route between two
consecutive landmarks can be computed in parallel.

A

B

(a) The SC method

A

B

(b) T-Drive

Figure 21: An example of searching areas

6.4 In-the-Field Evaluation
Table 5 and Table 6 respectively show the results of the

two types of in-the-field evaluations (refer to Section 6.1.2
for details). In these two tables, the symbol △ stands for
the difference value of distance or duration, R1 represents
the ratio of our routes outperforming the baseline (Google
Maps), and R2 denotes to what extent our routes are be-
yond that of the baseline. For example, as shown in Table
5, 80.8% of the routes suggested by our T-Drive system are
faster than that of Google Maps and on average our routes
save 11.9% of time (T-test: p < 0.005). In Table 6, we also
record the wait time of a route which indicates how long a
drive remained stationary due to the traffic lights or traffic
jams, e.g., on average, our routes save 26.7% more time than
the baseline approach. When doing the in-the-field evalua-
tions, we set �=0.6 and k=9000, where � is learned from
these users’ driving histories (trajectories, refer to Figure
14).

Table 5: In-the-field Evaluation 1
T-Drive Google △ R1 R2

Distance 13.91km 15.56km 1.65km 0.517 0.106
Duration 25.80min 29.28min 3.48min 0.808 0.119

Table 6: In-the-field Evaluation 2
T-Drive Google △ R1 R2

Distance 13.58km 13.55km -0.03km 0.367 -0.002
Duration 23.18min 27.00min 3.82min 0.750 0.141
WaitTime 4.77min 6.50min 1.73min 0.633 0.267

7. RELATED WORK
7.1 Time-Dependent Fastest Route

The time-dependent fastest route problem is first consid-
ered in [2]. [5] suggested a straightforward generalization
of the Dijkstra algorithm but the authors did not notice it
does not work for a non-FIFO network[12]. However, under
the FIFO assumption, paper [3] provides a generalization of
Dijkstra algorithm that can solve the problem with the same
time complexity as the static fastest route problem.

7.2 Traffic-Analysis-Based Approaches
As a very complex problem, urban traffic flow analysis

has been studied based on the readings of road sensors and
floating-car-data [9, 13]. These works follow the paradigm of



“sensor data→traffic flow→driving direction”, and are use-
ful in detecting unexpected traffic jams and accidents. The
major challenge of such kinds of solutions is the small cov-
erage and sparse density of the sensor data. For exam-
ple, the traversing speed of a highway with enough road
sensors or floating cars can be accurately estimated, while
the inferred speed of many service roads, streets and lanes
(without enough sensors) are not that precise[8]. Given that
users can select any locations as destinations, sometimes the
path finding algorithms based on the inferred real-time traf-
fic might not perform as well as we expect.

Different from the above methods, our approach is based
on many taxi drivers’ intelligence mined from their histor-
ical trajectories. This intelligence has implied all the key
factors (including traffic flows and signals, etc.) for finding
a fast driving route. Actually, GPS-embedded taxis can be
regarded as mobile sensors probing real-time traffic on roads,
and the accumulated historical GPS trajectories reflect the
long-term traffic patterns of a city. As the traffic flows of a
city follow some patterns in most cases, our method is very
valuable in finding practically fast driving routes for users.

7.3 History-Learning-Based Approaches
Zheng et al.[17, 16, 15] propose several novel approaches

to learn the transportation modes from GPS data. Papers
[10, 18] present some probabilistic based methods to predict
a driver’s destination and route based on historical GPS tra-
jectories. Although [18] also uses GPS trajectories generated
by 25 taxis, this work aims to predict a driver’s destination
instead of providing the fastest route that a user can fol-
low. Paper [7] computes the fastest route by taking into
account the driving and speed patterns learned from histor-
ical GPS trajectories. Our method differs from this work
in the following aspects. First, we do not explicitly detect
speed and driving patterns from the taxi trajectories. In-
stead, we use the concept of landmarks to summarize the
intelligence of taxi drivers. The notion of landmarks fol-
lows people’s natural thinking patterns, and can improve ef-
ficiency of route finding. Second, our approach is driven by
a real dataset while paper [7] is based on the assumption of
synthetic data. Actually, real data causes some challenges,
e.g., low sampling rate and sparseness of trajectories. More-
over, we consider the time-variant and location-dependent
properties of real-world traffic flows.

8. CONCLUSION
This paper presents an approach that finds out the practi-

cally fastest route to a destination at a given departure time
in terms of taxi drivers’ intelligence learned from a large
number of historical taxi trajectories. In our method, we
first construct a time-dependent landmark graph, and then
perform a two-stage routing algorithm based on this graph
to find the fastest route. We build a real system with real-
world GPS trajectories generated by over 33,000 taxis in a
period of 3 months, and evaluate the system with extensive
experiments and in-the-field evaluations. The results show
that our method significantly outperforms both the speed-
constraint-based and the real-time-traffic-based method in
the aspects of effectiveness and efficiency. Given over 5 taxis
in a region of 1km2, more than 60% of our routes are faster
than that of the speed-constraint-based approach, and 50%
of these routes are at least 20% faster than the latter. On
average, our method can save about 16% of time for a trip,

i.e., 5 minutes per 30-minutes driving.
We agree that a recommended route would become crowded

if many people take it. This is the common problem of
path-finding, and this problem is even worse (than ours)
in present shortest-path and real-time-traffic-based methods
(as our method can be customized for different drivers). In
the future, we can reduce this problem by using some strate-
gies, such as load balance (offer top three routes) and data
update (in a relatively fast frequency). Another direction in
which we are going to move forward is combining real-time
traffic information with our approach.
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