
The Speedy DDR2 Controller For FPGAs

Ray Bittner
1

1
Microsoft Research, Redmond, Washington, USA

Abstract – The Speedy DDR2 controller is intended as an

improvement on the Xilinx MIG controller for Virtex 5

FPGAs. Designed entirely from scratch on the ML505

development board, it achieves better performance at the same

clock rate than the MIG controller while consuming

comparable resources. The tight timing constraints imposed

by high speed DDR2 clash with the worst case timing

constraint style of FPGA design in a way that presents unique

challenges. This paper discusses the primary design problems

resulting from that paradox and contrasts approaches to their

solution. Performance is then compared between the Speedy

DDR2 controller and the MIG controller from Xilinx. The

source code has been written to be more readable,

maintainable and modifiable than the MIG design, and is also

freely downloadable from the web.

Keywords: FPGA, Xilinx, DDR2, Virtex 5, ML505

1 Introduction

 The Xilinx MIG controller for DDR2 interfaces has

existed in FPGAs for some time [1][4]. Even though the

source code is provided, MIG is essentially a black box

implementation that is very difficult to understand beyond a

very superficial level. If the customization instructions are

followed, and it still does not work, the designer is left

holding the bag with a non-functional DDR2 controller. Such

an experience was the motivation for the Speedy DDR2

project.

 Designing a DDR2 controller in an FPGA is a non-trivial

endeavor due to the problems of satisfying regimented timing

relationships on a device that only provides guarantees on

maximum propagation delays, with nothing promised about

absolute delays. This paper discusses the major issues that

arise from this dilemma and provides methods of overcoming

them. While many of the methods have been seen before,

Speedy DDR2 wraps them up in a package that is more easily

understood than the MIG design. Speedy DDR2 is also freely

downloadable from the web.

 At the same time, Speedy DDR2 lives up to its name by

improving on the clock for clock performance of the standard

Xilinx MIG controller in all but the most ideal streaming case,

where the two controllers run neck and neck. It is hoped that

Speedy DDR2 can be more easily understood by the average

user, will be easier to customize to a particular design

environment and will provide more insight into the design of

high speed DDR2 controllers in general.

2 DDR2 External Interface

 The DDR2 interface consists of clock, control, and

address inputs along with a bi-directional data bus. The

protocol that is followed by these signals mimics earlier RAM

technologies in that the user is still addressing a particular row

and column of the internal RAM structure [2]. The user must

issue an ACTIVATE command using the Row Address Strobe

(RAS) to open a particular row of the DDR2, and then must

assert the Column Address Strobe (CAS) to issue a READ or

a WRITE to access a particular column within that row. The

READ or WRITE will result in either a four or eight word

burst, selectable by the controller at setup time. If the user

accesses another column within the same row, the CAS signal

may be asserted again issuing another READ or WRITE.

However, if the user changes rows, the old row must be closed

with a PRECHARGE command, and then the RAS and CAS

steps must be performed again. Hence, it is advantageous to

change rows as little as possible.

 From a performance point of view, four word bursts can

perform just as well as eight word bursts due to the pipelined

nature of the command stream. During a transfer, data is

moved on both the positive and negative edges of the clock,

leading to the name Double Data Rate. This enables the

completion of a four word burst in just two clock cycles.

 Internally, DDR2 is actually divided into four separate

banks, each with an independent notion of the open row; so

that it is possible to have four different rows open at the same

time. It is helpful for the controller to maintain independent

control of all four rows so that four times as much memory

may be accessed without the penalty of a row change.

 The control signals are broken out into chip select (CS),

row address strobe (RAS), column address strobe (CAS),

write enable (WE), data strobe (DQS), byte write enable (DM)

and a few other signals. Several data signals (DQ) are

typically ganged with a single data strobe (DQS), and data

timing alignment is actually maintained with respect to the

strobe rather than the clock (except in a gross sense). This

eases the burden on the PCB designer by allowing them the

freedom of maintaining trace length matching on just the set

of data signals that are ganged with a particular strobe, rather

than the entire data bus.

3 Design Approach

 The primary difficulties in designing a DDR2 controller

in an FPGA arise from maintaining the proper timing

relationships between the signals despite the fact that FPGAs

generally do not offer fine grain timing control except to make

guarantees about maximum propagation delays.

DDR2 Clock, Control,

Address, etc.

ODDR

IOBUF

Control

State Machine

Write Data

BRAM

ODDR

IOBUF

IDDR

IDELAY

Write DataCmd Read Data

DDR2 Data Bus

ODDR

IOBUF

IDDR

IDELAY

DDR2 DQS

Calibration

State Machine

Address

Figure 1. Speedy DDR2 Block Diagram

 Figure 1 shows a high level block diagram of the Speedy

DDR2 controller. The external DDR2 device control signals

connect at the top of the diagram and the user connects to the

bottom internal to the FPGA. The user commands are either

read or write and the data buses are 256-bits each; matching

the four word by 64-bit burst size on the test platform. A

great number of the actual signals are not shown, but this is

illustrative enough for the descriptions below.

3.1 Output Signal Timing

Write

D0 D1 D2 D3

FPGA Clock

FPGA Control

FPGA DQ

FPGA DQS

Figure 2. DDR2 Write Timing

 Figure 2 illustrates the timing relationship needed for a

write command as they should appear at the FPGA pin pads.

All commands are issued to the DDR2 device synchronous to

the positive edge of the clock. However, in the case of an

external DDR device, it is necessary to use the ODDR

primitive to drive the data signals in order to clock the data

out on both the positive and negative edges of the clock. At

the same time, the DDR2 specification demands that the edges

of the data strobe signals (DQS) be center aligned with the

valid data windows on the data signals (DQ). This allows the

DDR2 device to use the DQS strobes as clock signals to latch

the data.

 The ODDR primitive introduces an unknown timing

skew to the data relative to the timing path taken by a normal

signal driven from the IOB output flip flop. This timing skew

affects the DQS, DQ and also all control and clock signals

since the clock period can be 5ns or less, which is easily

within the possible skew envelop of signals leaving the chip

through different device primitives. The solution to this

problem is to drive all clock, DQS, DQ and other control

signals from the ODDR primitive so that they all see

approximately the same skew when leaving the chip and so

maintain the proper timing relationship. The output data path

for all of these signals becomes fabric flip flop -> ODDR ->

IOBUF. Finally, the DQS strobe is center aligned with the

DQ valid data window by clocking the ODDRs that drive the

DQS signals from a clock that lags the normal memory clock

by 90 degrees.

 It is not necessary to know the exact propagation delay

from the ODDR forward in the output driver chain due to the

way that read capture is performed as explained later.

However, it is necessary for all output signals to have

approximately the same output delay. This chain of output

primitives will guarantee that outcome from a logical point of

view, but it is still necessary to place some timing constraints

on those signal paths in the physical constraint (.UCF) file.

Unlike the MIG design, the Speedy DDR2 controller does not

require detailed location constraints for strict timing control.

Rather, a single timing constraint was placed on all output

signals of 3.8ns. This is the minimum possible output delay

for that primitive chain given the Virtex 5-1 device, which

effectively forces the ISE tool chain to place all output drivers

in the local neighborhood of their associated pins, which turn

out to have remarkably similar output propagation delays [5].

3.2 Input Signal Timing

 Data returning from the DDR2 device during a read

operation follows the input path. On a read, the data (DQ)

and the data strobes (DQS) are both driven from the DDR2

device rather than from the FPGA. Further, the DDR2

specification changes the rules for data returning from the

DDR2 device on a read so that the DQS signal is edge aligned

with the transitions of the valid data windows, not center

aligned as for a write. Thus the DDR2 device does not need

to generate offset DQS signals and instead can simply clock

them out together. It is up to the controller to locate the DQS

signal relative to the clock, and from there calculate the

relative position of the center of the valid data windows for

sampling.

Read

D0 D1 D2 D3

FPGA Clock

DDR2 Clock

FPGA Control

DDR2 DQ

ReadDDR2 Control

DDR2 DQS

Figure 3. DDR2 Read Timing

 Figure 3 shows the data transition aligned DQS signals

as well as the cumulative effect of the clock/control signal

output path discussed above. The FPGA signals are as seen

from the internal FPGA ODDR driving flip flops, and the

DDR2 signals are as seen at the FPGA IDDR inputs, after

skew. The ODDR output path for the clock/control signals

skews them relative to the FPGA’s internal clock by an

unknown amount. Additionally, the DDR2 device skews the

returned DQS/DQ signals even further; albeit by a smaller

amount.

 The exact delay incurred by the returning DQS/DQ

signals is unknown and likely falls somewhere in between

clock edges, which necessitates the use of the IDELAY

primitive for accurate sub-cycle sampling of those signals.

The input path for the DQS and DQ signals consists of

IOBUF -> IDELAY -> IDDR -> Fabric Flip Flop. The

IDELAY allows pad signals to be delayed in 78.125ps

increments, up to 5ns [6]. This gives the sub-cycle resolution

necessary for accurate DQS/DQ acquisition.

 Similar to the output timing, the input timing paths

require only a single timing constraint of 2.1ns from pad to

IDDR, rather than the lengthy list of constraints that need to

be customized for current MIG designs. 2.1ns is just a bit

longer than the minimum possible propagation delay for that

chain of primitives on the Virtex 5-1 device; forcing the tools

to use the fastest local connections for all inputs and

guaranteeing that they have uniform propagation delays.

 Note that the possible delay range of the IDELAY puts a

lower bound on the allowed DDR2 clock rate. The IDDR

allows capture on both the positive and negative edges of the

clock, which limits the “digital” resolution of the capture to

the nearest half clock cycle. It is then up to the IDELAY to

locate the transition point within that half clock cycle.

Therefore, the IDELAY must be able to sweep across an

entire half clock cycle in order to obtain an accurate transition

location. Hence, the slowest allowable clock rate is 100MHz.

In practice, the hardware attempts to place guard bands

around the adjustment range so that later temperature related

changes to the exact skew can be accounted for without

jumping to the next positive or negative edge. For that reason,

it is advisable to choose a clock rate somewhat faster than

100MHz.

3.3 Read Calibration

 Since the input signal delay is unknown, the controller

must search for the first rising edge of the DQS signal after a

read in order to determine the exact cycle, edge and IDELAY

offset where that edge is located. The search is conducted by

generation of a read and then observing the outputs of the

IDDR one or more cycles later while also adjusting the

IDELAY offset. This process is referred to as calibration.

Once the search state machine finds the correct number of

cycle delays, the correct edge and the correct IDELAY offset,

the controller is calibrated to receive read signals and normal

operation may begin.

 The calibration controller could be designed to either

track the transition of the DQS signal (being representative of

the delay of all of its associated DQs), or a known pattern

could be written to the RAM and each individual DQ signal

could be independently tracked. It was decided that only the

DQS signal would be tracked, both for minimization of the

hardware required, and also so that calibrations could continue

to occur after initialization without requiring special patterns

to be written to any part of the RAM.

 Several search algorithms were experimented with in the

Speedy DDR2 controller. First, several parallel state

machines were used; one for each of the eight DQS signals on

the test platform. Each of these employed a slow sequential

search starting from the minimum expected

cycle/edge/IDELAY out past the maximum expected

cycle/edge/IDELAY. During initial calibration, dummy reads

were generated until all eight state machines reported having a

signal lock, which typically required on the order of 100

reads. This worked well, but for the sake of faster calibration

both initially and at runtime, a binary search algorithm was

implemented that would converge in just eight reads. The

binary search worked, but it was found to add approximately

20% more resources to the entire design, and this seemed too

high of a penalty for little pay back.

 In practice, sequential search was fast enough and

consumed far less resources. In fact, the calibration state

machine was changed once again so that a single state

machine was used for all eight DQS signals which are

calibrated one at a time via the use of a multiplexer. That

resulted in the smallest implementation and is still fast enough

to keep it well calibrated.

 After the initial acquisition, the calibration state machine

will lock on a particular cycle/edge and will only vary the

IDELAY by up to +/-0.5 clock cycle, because after that point

large jumps in timing would cause complications in the read

pipeline. Limiting the calibration range also avoids the

problem of determining which DQS rising edge should be

referenced in a long series of burst reads, as well as reducing

the possible search space for the calibration controller.

 This limited automatic re-calibration runs continuously

during normal operation, recalibrating the IDELAY timing on

each DQS signal at a user specified rate. The goal is to adjust

for small timings changes that may occur due to temperature

variations. Since only the DQS signal is used to perform

calibration, the data is irrelevant and can remain untouched.

Thus under most circumstances, any user read may also serve

as a calibration reference point. As normal user reads occur,

the calibration controller measures the exact position of the

rising edge of each DQS signal in turn. Using sequential

IDELAY adjustment, this may require as many as 64 reads

per DQS signal. Once the DQS signal is located, its position

is stored and new adjustments are made to the IDELAYs

attached to its associated DQ signals as discussed below.

 In order to guarantee that automated re-calibrations

occur at a known rate, the user passes a parameter to the

Speedy DDR2 controller indicating the maximum amount of

time that may elapse between re-calibrations. If this time

elapses and all DQS signals have not yet been re-calibrated,

the Speedy DDR2 controller will pause normal user activity

and insert dummy reads until a complete re-calibration is

achieved on all DQS signals.

3.4 Read Data Capture

 Once the timing of the DQS/DQ signals has been

determined, there are two generally used methods of latching

the data. The first, used by the current Xilinx MIG design, is

to delay the DQS signal by ¼ clock period and use that as a

clock signal to the associated DQ IDDR primitives to latch the

data [3]. The latched data is then in the “clock domain” of the

DQS signal and must be latched again into the FPGA’s

internal clock domain, which represents extra latency in the

read data path. Another problem with this method is that

further calibrations of the DQS signal require complete

interruption of normal user commands while the IDELAY is

tweaked by the search algorithm. Lastly, this method relies

on the propagation delay from the delayed DQS to all of the

associated DQ IDDR flip flops to be approximately the same;

since the exact capture time for each DQ IDDR will be

skewed by the propagation delay difference of its clock signal.

 The other method, which is used by the Speedy DDR2

controller, and which has been used by MIG in the past, is to

locate the DQS signal relative to one of the edges of the

FPGA’s internal clock, and then delay all of the associated

DQ IDDRs by and additional ¼ clock cycle. Using that

method, the data is latched directly into the FPGA’s internal

clock domain and no retiming is necessary. Further, since the

DQS signal is not actually used to latch the DQ data, the

calibration state machine is free to run in parallel with user

commands without disrupting the flow of user data. Lastly,

there are no clock skew problems with the DQ IDDRs

because they are being driven by the global clock driver used

for the internal FPGA clock.

3.5 DDR2 Timing Parameters

 There are a large number of timing parameters that must

be satisfied in issuing commands to the DDR2 device. When

designing the controller, tradeoffs could be made with regards

to obtaining the absolute minimal timings in all cases, or

providing a more general “catch all” timing structure that

works in a worst case fashion.

 The Speedy DDR2 controller maintains minimal DDR2

device timings in order to ensure the best possible

performance at a given clock rate. This is achieved through

the use of a set of 13 timers arranged in a functionally

inverted fashion. Rather than maintain elapsed time since a

given event, they track the time that must elapse before a new

event of a given type may occur. This means that multiple

timers must be updated when a given command is issued, but

that only a single timer needs to be consulted in order to

determine when the next command may proceed. Since the

determination of the next command is in the critical path, and

the loading of the timers is not, this turns out to be a good

tradeoff.

 Most interestingly, the timers are implemented as long

shift registers rather than binary countdown timers. After

trying both implementations, it was found that the long shift

register approach resulted in the consumption of fewer

resources, likely due to the register rich architecture of the

Virtex 5 FPGA. The shift register implementation also

resulted in better timing since the last register in the chain

could be reference directly as the ready/not ready flag, rather

than having to derive this from the value of a counter.

4 Design Performance/Evaluation

4.1 Speed of Speedy DDR2

 The Xilinx MIG controller version 2.0 was used as a

standard of reference for performance [1]. Several different

tests were applied to both the MIG and Speedy controllers for

comparison as shown in Table 1.

Table 1. Performance In Terms Of Millions Of Bursts Per

Second At 198MHz.

Speedy

Perf. Perf. Rel. Perf. Rel.

Streaming Read 95.98 95.64 0.36% 95.46 0.54%

Streaming Write 94.47 94.69 -0.23% 94.28 0.20%

Alternating Rd/Wr 17.67 13.90 27.12% 13.08 35.09%

Row Change Read 17.75 14.88 19.29% 14.87 19.37%

Row Change Write 14.97 14.02 6.78% 12.28 21.91%

Random Read 17.86 15.26 17.04% 15.26 17.04%

Random Write 17.01 14.15 20.21% 12.44 36.74%

MIG (AL=0) MIG (AL=2)

 Both the Speedy and MIG controllers were implemented

on a Xilinx ML505 development board running at 198MHz

using ISE 10.1 SP2. This board used a Xilinx XC5VLX50T-

1FF1136 part with the standard supplied 256 MegaByte

unbuffered Micron SODIMM (MT4HTF3264HY-53E). The

DDR2 was programmed for bursts of four 64-bit words for

each read/write operation, resulting in 32 bytes per burst

transfer. The results in the table are expressed in terms of

millions of bursts per second, so these could be converted to

bytes per second by multiplying by 32. Four tests were

applied:

 Streaming Read/Write – Increments through all possible

memory addresses linearly and either reads or writes each

depending on the test. This results in the minimum

number of DDR2 row changes for full memory coverage

and should produce the best possible performance.

 Alternating Read/Write – Increments through all possible

memory addresses linearly, first writing and then reading

each location back before proceeding to the next address.

 Row Change Read/Write – Skips from one DDR2 row to

the next either reading or writing each in succession

depending on the test. This produces the worst possible

DDR2 row change behavior.

 Random Read/Write – Uses an LFSR to generate random

23-bit burst addresses in order to read or write each,

depending on the test. The LFSR guarantees that all

addresses except zero are visited exactly once before

cycling around again. This could be a first approximation

to normal microprocessor behavior where the software

makes no attempt to minimize DDR2 row changes.

 The columns of Table 1 show the performance of the

Speedy controller for each test, followed by the performance

of the MIG controller in two different configurations along

with the performance of Speedy relative to MIG. The two

MIG configurations are with Additive Latency (AL) set to 0

and 2, respectively. In all cases but one, the Speedy DDR2

controller exceeds the performance of the MIG controller,

with the remaining case being only marginally worse.

 The streaming tests represent the best possible

performance because they require the fewest number of row

changes in order to address all memory locations. If there

were no row changes, no refresh cycles (tRFI), and no row

closing timeouts (tRAS max), the ideal performance would be

198MH/2 = 99 million bursts per second, since a burst

requires two clock cycles to complete. Neither controller can

reach that performance due to the presence of those effects.

 The streaming tests show the smallest difference in

performance between the controllers, since both designs are

well pipelined and differences in command latency are hidden

by the sequential access pattern. The Speedy controller is

slightly slower on the streaming write test because of the

automated recalibration mechanism built into Speedy. All

tests were run with a guaranteed read timing recalibration

interval of not more than 1 millisecond, meaning that the

Speedy controller will recalibrate the read timings at least

1,000 times per second. During the streaming write test, this

meant that the Speedy controller periodically forced a series

of dummy reads, and possibly a DDR2 row change, in order

to guarantee that requirement; thus affecting performance

slightly. Running the steaming write test with guaranteed

recalibration set for 100 microseconds, the streaming write

performance lagged behind the MIG controller by

approximately 5%. It is believed that the MIG controller does

not perform these recalibrations, and so no disruption of the

write stream occurred for MIG. This was not an issue with

the streaming read tests, since the Speedy controller is capable

of opportunistically performing recalibrations on normal user

read operations.

 The remaining tests show a much larger gap in

performance between the Speedy and MIG controllers. For

greater insight as to why this is the case, a behavioral

simulation was run with each of the controllers in order to

measure some of the relevant timing latencies.

 Table 2 shows the ideal, Speedy and MIG command

latencies in terms of clock cycles at 198MHz. The ideal

latency represents the minimum possible number of clock

cycles that the controller would need to wait before issuing

the read or write command according to the DDR2 timing

constraints. For example, a read to the same row could

theoretically be issued on the same clock cycle that it was

received from the user, but it would need to wait a minimum

of 4 clock cycles before returning any data due to the tCL

parameter of the DDR2. A row changing read on the other

hand must also satisfy the precharge time (tRP) and the RAS

to CAS delay (tRCD) in addition to tCL before returning data.

Ideal write numbers are calculated similarly, except that the

write is considered complete on the cycle that the write is

issued on the external DDR2 bus control signals. Hence, the

ideal write latency is 0.

 Of course, no controller can meet the ideal timings

because of the practical limitations of propagation delays and

the design of the DDR interface circuits of the FPGA. The

Speedy and two MIG columns of Table 2 show these realities.

Command latencies were measured from the cycle that the

read or write command was accepted from the internal

interface until the result appears on the external DDR2 bus.

In the case of writes, this would be the write command being

asserted on the external bus. In the case of reads, this would

be when all data has been returned for a burst.

 Overall, it can be seen that the MIG controller adds

several more clock cycles of latency to these crucial timings,

which are ultimately reflected in terms of performance for the

non-linear addressing tests shown in Table 1. Row Change

Writes, for example, would ideally require 6 clock cycles of

latency, but in reality Speedy has a latency of 12 cycles for

perform this operation and MIG with AL=0 requires 16

cycles. In other words, if the addressing pattern demands that

a row change is required for a write, MIG will need 4 (AL=0)

or 5 (AL=2) additional clock cycles to perform that operation.

When the requested user operations use a linear addressing

pattern this difference in latencies does not matter because it

is all pipelined, but when row changes are required the extra

latency shows itself in poorer performance. For some

applications, one clock cycle may be subtracted from the MIG

read latencies because the MIG returns the lower 16 bytes one

cycle earlier than shown. The upper 16 bytes of a 32 byte

burst are returned one cycle after that, matching the latencies

shown in Table 2.

 Interestingly, the use of Additive Latency did not help

the MIG controller at all in the performance tests, and in fact

this feature seems to be implemented by inserting additional

pipeline stages into the MIG controller, which actually hurts it

in some tests. Likely, the additional cycles of latency were

needed in order to meet timing at 333MHz, as advertised by

the MIG controller in the fastest Virtex 5-3 parts. The Speedy

controller will pass timing analysis on the fastest Virtex 5-3

parts at speeds of up to approximately 290MHz. However, it

Table 2. DDR2 Controller Command Latencies

Same Row Read Same Row Write Row Change Read Row Change Write

tRP=3 tRP=3

tRCD=3 tRCD=3

tCL=4 tCL=4

Total Ideal 4 0 10 6

Speedy 13 6 19 12

MIG (AL=0) 18 9 25 16

MIG (AL=2) 20 9 27 17

Relevant Timing

Parameters

could not be tested at this speed given the Virtex 5-1 part on

the ML505. Assuming the 20% relative clock for clock speed

increase for Speedy, as shown in some of the tests, Speedy

would attain an effective clock rate of 290*1.2 = 348MHz

relative to the MIG, depending on the data access pattern. For

pure streaming performance, MIG would still win at 333MHz

compared to Speedy’s 290MHz.

 While it may be possible to redesign the Speedy

controller to run faster, for the time being the designer is left

with the trade off of higher clock rate with MIG, or the

benefits of lower command latencies with the Speedy

controller. Using the slowest Virtex 5-1 parts, the design

process starts to become tedious at around 200MHz, when

multiple extra pipeline stages are needed in order to maintain

timing closure. So, this was considered to be a good tradeoff.

4.2 Size of Speedy DDR2

 The relative sizes of the MIG and Speedy controllers

were determined by examining section 14 of the map report in

ISE.

Table 3. DDR2 Controller Resource Comparison At 198MHz

Speedy MIG MIG

(AL=0) (AL=2)

Slices 1175 1337 1190

Slice Regs 1530 2097 2108

LUTs 2198 1736 1720

LUTRAM 2 20 19

BRAM 4 3 3

Table 3 shows these results, although it should be mentioned

that these numbers varying depending on compiler settings

and target clock rate. The numbers shown reflect compilation

for operation at 198MHz, and seem to indicate that the

designs are comparable in size overall, depending on the

metric of interest.

 In order to determine the effect of clock frequency on

the area of the Speedy controller, a study was performed

showing the resources used in terms of slices versus clock rate

in Figure 4. The compilation target for this study was the

Virtex 5-1 part, which results in a maximum frequency of

approximately 209MHz when compiling for area, and

222MHz when compiling for speed. As can be seen,

speed/area settings and clock rate had very little effect on the

overall size as measured in slices. The one notable exception

was at the very high end of the compilation for speed

numbers, where the size of the design grew from 1175 at

198MHz to 1330 (+13.2%) at 222MHz. Likely this was the

result of the tools using replication in order to obtain that last

bit of performance.

4.3 Shortcomings of Speedy DDR2

 While the performance of the Speedy controller has

advantages, there are some features that MIG implements that

Speedy does not.

 DDR2 Only – The MIG controller supports DDR as well

as DDR3.

 Additive Latency Not Supported – The MIG controller

does support this feature, although it seems to be more of

a penalty in the performance tests.

 Dual Rank RAMs Not Supported – These are DIMMS or

SODIMMS that use more than one chip select. Again,

the MIG does support this feature, and while some of the

plumbing to support it is there in the Speedy controller, it

is not fully implemented and so is not supported.

 No ECC Support – This is something that could be added

to Speedy DDR2, but ECC is not commonly supported by

0

200

400

600

800

1000

1200

1400

120 140 160 180 200 220

Speed Area

Figure 4. Speedy Slices Used vs. Clock Rate (MHz)

commercial DIMMs and SODIMMs and was deemed

unnecessary.

 No Buffered DDR2 Support – Like ECC, buffered RAMs

are not the norm, and unbuffered RAMs are much more

prevalent.

5 Conclusions

 The Speedy DDR2 controller is a high speed

implementation of DDR2 running with minimal DDR2 timing

parameters and a minimum of internal latency in the

processing pipeline. It has been shown to be competitive with

or better than the Xilinx standard MIG design at a clock rate

of 198MHz, and the ISE tools indicate that it can run as fast as

290MHz on a Virtex 5-3 device, while remaining

approximately equal to the MIG design in device resource

requirements.

 A detailed discussion of the primary design challenges

arising during the implementation of the Speedy DDR2

controller has been given, along with practical solutions. It is

hoped that these insights and the design itself can be useful to

others facing similar problems, and/or who would like an

alternative to the MIG controller. The associated ISE project

and source code may be downloaded from:

http://research.microsoft.com/people/raybit

6 References

[1] http://www.xilinx.com/memorycorner, Xilinx

Corporation.

[2] Bruce Jacob, Spencer W. Ng, David T. Wang.

“Memory Systems: Cache, DRAM, Disk”. Morgan

Kaufmann, 2008.

[3] Adrian Cosoroaba. “Memory Interfaces Made Easy

with Xilinx FPGAs and the Memory Interface Generator”.

Xilinx Corporation, white paper 260, February 16, 2007.

[4] “Xilinx Memory Interface Generator (MIG) User

Guide”. Xilinx Corporation, user guide 86, October 2, 2008.

[5] “Virtex-5 FPGA Data Sheet: DC and Switching

Characteristics”. Xilinx Corporation, data sheet 202,

February 6, 2009.

[6] “Virtex-5 FPGA User Guide”. Xilinx Corporation, user

guide 190, January 9, 2009.

http://research.microsoft.com/people/raybit
http://www.xilinx.com/memorycorner

