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Abstract – The Speedy DDR2 controller is intended as an 

improvement on the Xilinx MIG controller for Virtex 5 

FPGAs.  Designed entirely from scratch on the ML505 

development board, it achieves better performance at the same 

clock rate than the MIG controller while consuming 

comparable resources.  The tight timing constraints imposed 

by high speed DDR2 clash with the worst case timing 

constraint style of FPGA design in a way that presents unique 

challenges.  This paper discusses the primary design problems 

resulting from that paradox and contrasts approaches to their 

solution.  Performance is then compared between the Speedy 

DDR2 controller and the MIG controller from Xilinx.  The 

source code has been written to be more readable, 

maintainable and modifiable than the MIG design, and is also 

freely downloadable from the web. 
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1 Introduction 

 The Xilinx MIG controller for DDR2 interfaces has 

existed in FPGAs for some time [1][4].  Even though the 

source code is provided, MIG is essentially a black box 

implementation that is very difficult to understand beyond a 

very superficial level.  If the customization instructions are 

followed, and it still does not work, the designer is left 

holding the bag with a non-functional DDR2 controller.  Such 

an experience was the motivation for the Speedy DDR2 

project. 

 Designing a DDR2 controller in an FPGA is a non-trivial 

endeavor due to the problems of satisfying regimented timing 

relationships on a device that only provides guarantees on 

maximum propagation delays, with nothing promised about 

absolute delays.  This paper discusses the major issues that 

arise from this dilemma and provides methods of overcoming 

them.  While many of the methods have been seen before, 

Speedy DDR2 wraps them up in a package that is more easily 

understood than the MIG design.  Speedy DDR2 is also freely 

downloadable from the web. 

 At the same time, Speedy DDR2 lives up to its name by 

improving on the clock for clock performance of the standard 

Xilinx MIG controller in all but the most ideal streaming case, 

where the two controllers run neck and neck.  It is hoped that 

Speedy DDR2 can be more easily understood by the average 

user, will be easier to customize to a particular design 

environment and will provide more insight into the design of 

high speed DDR2 controllers in general. 

 

2 DDR2 External Interface 

 The DDR2 interface consists of clock, control, and 

address inputs along with a bi-directional data bus.  The 

protocol that is followed by these signals mimics earlier RAM 

technologies in that the user is still addressing a particular row 

and column of the internal RAM structure [2].  The user must 

issue an ACTIVATE command using the Row Address Strobe 

(RAS) to open a particular row of the DDR2, and then must 

assert the Column Address Strobe (CAS) to issue a READ or 

a WRITE to access a particular column within that row.  The 

READ or WRITE will result in either a four or eight word 

burst, selectable by the controller at setup time.  If the user 

accesses another column within the same row, the CAS signal 

may be asserted again issuing another READ or WRITE.  

However, if the user changes rows, the old row must be closed 

with a PRECHARGE command, and then the RAS and CAS 

steps must be performed again.  Hence, it is advantageous to 

change rows as little as possible. 

 From a performance point of view, four word bursts can 

perform just as well as eight word bursts due to the pipelined 

nature of the command stream.  During a transfer, data is 

moved on both the positive and negative edges of the clock, 

leading to the name Double Data Rate.  This enables the 

completion of a four word burst in just two clock cycles. 

 Internally, DDR2 is actually divided into four separate 

banks, each with an independent notion of the open row; so 

that it is possible to have four different rows open at the same 

time.  It is helpful for the controller to maintain independent 

control of all four rows so that four times as much memory 

may be accessed without the penalty of a row change. 

 The control signals are broken out into chip select (CS), 

row address strobe (RAS), column address strobe (CAS), 

write enable (WE), data strobe (DQS), byte write enable (DM) 

and a few other signals.  Several data signals (DQ) are 

typically ganged with a single data strobe (DQS), and data 

timing alignment is actually maintained with respect to the 

strobe rather than the clock (except in a gross sense).  This 

eases the burden on the PCB designer by allowing them the 

freedom of maintaining trace length matching on just the set 

of data signals that are ganged with a particular strobe, rather 

than the entire data bus. 

 

3 Design Approach 

 The primary difficulties in designing a DDR2 controller 

in an FPGA arise from maintaining the proper timing 

relationships between the signals despite the fact that FPGAs 

generally do not offer fine grain timing control except to make 

guarantees about maximum propagation delays. 
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Figure 1.  Speedy DDR2 Block Diagram 

 Figure 1 shows a high level block diagram of the Speedy 

DDR2 controller.  The external DDR2 device control signals 

connect at the top of the diagram and the user connects to the 

bottom internal to the FPGA.  The user commands are either 

read or write and the data buses are 256-bits each; matching 

the four word by 64-bit burst size on the test platform.  A 

great number of the actual signals are not shown, but this is 

illustrative enough for the descriptions below. 

 

3.1 Output Signal Timing 
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Figure 2.  DDR2 Write Timing 

 Figure 2 illustrates the timing relationship needed for a 

write command as they should appear at the FPGA pin pads.  

All commands are issued to the DDR2 device synchronous to 

the positive edge of the clock.  However, in the case of an 

external DDR device, it is necessary to use the ODDR 

primitive to drive the data signals in order to clock the data 

out on both the positive and negative edges of the clock.  At 

the same time, the DDR2 specification demands that the edges 

of the data strobe signals (DQS) be center aligned with the 

valid data windows on the data signals (DQ).  This allows the 

DDR2 device to use the DQS strobes as clock signals to latch 

the data. 

 The ODDR primitive introduces an unknown timing 

skew to the data relative to the timing path taken by a normal 

signal driven from the IOB output flip flop.  This timing skew 

affects the DQS, DQ and also all control and clock signals 

since the clock period can be 5ns or less, which is easily 

within the possible skew envelop of signals leaving the chip 

through different device primitives.  The solution to this 

problem is to drive all clock, DQS, DQ and other control 

signals from the ODDR primitive so that they all see 

approximately the same skew when leaving the chip and so 

maintain the proper timing relationship.  The output data path 

for all of these signals becomes fabric flip flop -> ODDR -> 

IOBUF.   Finally, the DQS strobe is center aligned with the 

DQ valid data window by clocking the ODDRs that drive the 

DQS signals from a clock that lags the normal memory clock 

by 90 degrees. 

 It is not necessary to know the exact propagation delay 

from the ODDR forward in the output driver chain due to the 

way that read capture is performed as explained later.  

However, it is necessary for all output signals to have 

approximately the same output delay.  This chain of output 

primitives will guarantee that outcome from a logical point of 

view, but it is still necessary to place some timing constraints 

on those signal paths in the physical constraint (.UCF) file.  

Unlike the MIG design, the Speedy DDR2 controller does not 

require detailed location constraints for strict timing control.  

Rather, a single timing constraint was placed on all output 

signals of 3.8ns.  This is the minimum possible output delay 

for that primitive chain given the Virtex 5-1 device, which 

effectively forces the ISE tool chain to place all output drivers 

in the local neighborhood of their associated pins, which turn 

out to have remarkably similar output propagation delays [5]. 

 

3.2 Input Signal Timing 

 Data returning from the DDR2 device during a read 

operation follows the input path.  On a read, the data (DQ) 

and the data strobes (DQS) are both driven from the DDR2 

device rather than from the FPGA.  Further, the DDR2 

specification changes the rules for data returning from the 

DDR2 device on a read so that the DQS signal is edge aligned 

with the transitions of the valid data windows, not center 

aligned as for a write.  Thus the DDR2 device does not need 

to generate offset DQS signals and instead can simply clock 

them out together.  It is up to the controller to locate the DQS 

signal relative to the clock, and from there calculate the 

relative position of the center of the valid data windows for 

sampling. 
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Figure 3.  DDR2 Read Timing 

 Figure 3 shows the data transition aligned DQS signals 

as well as the cumulative effect of the clock/control signal 

output path discussed above.  The FPGA signals are as seen 

from the internal FPGA ODDR driving flip flops, and the 

DDR2 signals are as seen at the FPGA IDDR inputs, after 

skew.  The ODDR output path for the clock/control signals 

skews them relative to the FPGA’s internal clock by an 

unknown amount.  Additionally, the DDR2 device skews the 



returned DQS/DQ signals even further; albeit by a smaller 

amount. 

 The exact delay incurred by the returning DQS/DQ 

signals is unknown and likely falls somewhere in between 

clock edges, which necessitates the use of the IDELAY 

primitive for accurate sub-cycle sampling of those signals.  

The input path for the DQS and DQ signals consists of 

IOBUF -> IDELAY -> IDDR -> Fabric Flip Flop.  The 

IDELAY allows pad signals to be delayed in 78.125ps 

increments, up to 5ns [6].  This gives the sub-cycle resolution 

necessary for accurate DQS/DQ acquisition. 

 Similar to the output timing, the input timing paths 

require only a single timing constraint of 2.1ns from pad to 

IDDR, rather than the lengthy list of constraints that need to 

be customized for current MIG designs.  2.1ns is just a bit 

longer than the minimum possible propagation delay for that 

chain of primitives on the Virtex 5-1 device; forcing the tools 

to use the fastest local connections for all inputs and 

guaranteeing that they have uniform propagation delays. 

 Note that the possible delay range of the IDELAY puts a 

lower bound on the allowed DDR2 clock rate.  The IDDR 

allows capture on both the positive and negative edges of the 

clock, which limits the “digital” resolution of the capture to 

the nearest half clock cycle.  It is then up to the IDELAY to 

locate the transition point within that half clock cycle.  

Therefore, the IDELAY must be able to sweep across an 

entire half clock cycle in order to obtain an accurate transition 

location.  Hence, the slowest allowable clock rate is 100MHz.  

In practice, the hardware attempts to place guard bands 

around the adjustment range so that later temperature related 

changes to the exact skew can be accounted for without 

jumping to the next positive or negative edge.  For that reason, 

it is advisable to choose a clock rate somewhat faster than 

100MHz. 

 

3.3 Read Calibration 

 Since the input signal delay is unknown, the controller 

must search for the first rising edge of the DQS signal after a 

read in order to determine the exact cycle, edge and IDELAY 

offset where that edge is located.  The search is conducted by 

generation of a read and then observing the outputs of the 

IDDR one or more cycles later while also adjusting the 

IDELAY offset.  This process is referred to as calibration.  

Once the search state machine finds the correct number of 

cycle delays, the correct edge and the correct IDELAY offset, 

the controller is calibrated to receive read signals and normal 

operation may begin. 

 The calibration controller could be designed to either 

track the transition of the DQS signal (being representative of 

the delay of all of its associated DQs), or a known pattern 

could be written to the RAM and each individual DQ signal 

could be independently tracked.  It was decided that only the 

DQS signal would be tracked, both for minimization of the 

hardware required, and also so that calibrations could continue 

to occur after initialization without requiring special patterns 

to be written to any part of the RAM. 

 Several search algorithms were experimented with in the 

Speedy DDR2 controller.  First, several parallel state 

machines were used; one for each of the eight DQS signals on 

the test platform.  Each of these employed a slow sequential 

search starting from the minimum expected 

cycle/edge/IDELAY out past the maximum expected 

cycle/edge/IDELAY.  During initial calibration, dummy reads 

were generated until all eight state machines reported having a 

signal lock, which typically required on the order of 100 

reads.  This worked well, but for the sake of faster calibration 

both initially and at runtime, a binary search algorithm was 

implemented that would converge in just eight reads.  The 

binary search worked, but it was found to add approximately 

20% more resources to the entire design, and this seemed too 

high of a penalty for little pay back. 

 In practice, sequential search was fast enough and 

consumed far less resources.  In fact, the calibration state 

machine was changed once again so that a single state 

machine was used for all eight DQS signals which are 

calibrated one at a time via the use of a multiplexer.  That 

resulted in the smallest implementation and is still fast enough 

to keep it well calibrated. 

 After the initial acquisition, the calibration state machine 

will lock on a particular cycle/edge and will only vary the 

IDELAY by up to +/-0.5 clock cycle, because after that point 

large jumps in timing would cause complications in the read 

pipeline.  Limiting the calibration range also avoids the 

problem of determining which DQS rising edge should be 

referenced in a long series of burst reads, as well as reducing 

the possible search space for the calibration controller. 

 This limited automatic re-calibration runs continuously 

during normal operation, recalibrating the IDELAY timing on 

each DQS signal at a user specified rate.  The goal is to adjust 

for small timings changes that may occur due to temperature 

variations.  Since only the DQS signal is used to perform 

calibration, the data is irrelevant and can remain untouched.  

Thus under most circumstances, any user read may also serve 

as a calibration reference point.  As normal user reads occur, 

the calibration controller measures the exact position of the 

rising edge of each DQS signal in turn.  Using sequential 

IDELAY adjustment, this may require as many as 64 reads 

per DQS signal.  Once the DQS signal is located, its position 

is stored and new adjustments are made to the IDELAYs 

attached to its associated DQ signals as discussed below. 

 In order to guarantee that automated re-calibrations 

occur at a known rate, the user passes a parameter to the 

Speedy DDR2 controller indicating the maximum amount of 

time that may elapse between re-calibrations.  If this time 

elapses and all DQS signals have not yet been re-calibrated, 

the Speedy DDR2 controller will pause normal user activity 

and insert dummy reads until a complete re-calibration is 

achieved on all DQS signals. 

 

3.4 Read Data Capture 

 Once the timing of the DQS/DQ signals has been 

determined, there are two generally used methods of latching 

the data.  The first, used by the current Xilinx MIG design, is 



to delay the DQS signal by ¼ clock period and use that as a 

clock signal to the associated DQ IDDR primitives to latch the 

data [3].  The latched data is then in the “clock domain” of the 

DQS signal and must be latched again into the FPGA’s 

internal clock domain, which represents extra latency in the 

read data path.  Another problem with this method is that 

further calibrations of the DQS signal require complete 

interruption of normal user commands while the IDELAY is 

tweaked by the search algorithm.  Lastly, this method relies 

on the propagation delay from the delayed DQS to all of the 

associated DQ IDDR flip flops to be approximately the same; 

since the exact capture time for each DQ IDDR will be 

skewed by the propagation delay difference of its clock signal. 

 The other method, which is used by the Speedy DDR2 

controller, and which has been used by MIG in the past, is to 

locate the DQS signal relative to one of the edges of the 

FPGA’s internal clock, and then delay all of the associated 

DQ IDDRs by and additional ¼ clock cycle.  Using that 

method, the data is latched directly into the FPGA’s internal 

clock domain and no retiming is necessary.  Further, since the 

DQS signal is not actually used to latch the DQ data, the 

calibration state machine is free to run in parallel with user 

commands without disrupting the flow of user data.  Lastly, 

there are no clock skew problems with the DQ IDDRs 

because they are being driven by the global clock driver used 

for the internal FPGA clock. 

 

3.5 DDR2 Timing Parameters 

 There are a large number of timing parameters that must 

be satisfied in issuing commands to the DDR2 device.  When 

designing the controller, tradeoffs could be made with regards 

to obtaining the absolute minimal timings in all cases, or 

providing a more general “catch all” timing structure that 

works in a worst case fashion. 

 The Speedy DDR2 controller maintains minimal DDR2 

device timings in order to ensure the best possible 

performance at a given clock rate.  This is achieved through 

the use of a set of 13 timers arranged in a functionally 

inverted fashion.  Rather than maintain elapsed time since a 

given event, they track the time that must elapse before a new 

event of a given type may occur.  This means that multiple 

timers must be updated when a given command is issued, but 

that only a single timer needs to be consulted in order to 

determine when the next command may proceed.  Since the 

determination of the next command is in the critical path, and 

the loading of the timers is not, this turns out to be a good 

tradeoff. 

 Most interestingly, the timers are implemented as long 

shift registers rather than binary countdown timers.  After 

trying both implementations, it was found that the long shift 

register approach resulted in the consumption of fewer 

resources, likely due to the register rich architecture of the 

Virtex 5 FPGA.   The shift register implementation also 

resulted in better timing since the last register in the chain 

could be reference directly as the ready/not ready flag, rather 

than having to derive this from the value of a counter. 

 

4 Design Performance/Evaluation 

4.1 Speed of Speedy DDR2 

 The Xilinx MIG controller version 2.0 was used as a 

standard of reference for performance [1].  Several different 

tests were applied to both the MIG and Speedy controllers for 

comparison as shown in Table 1. 

 

Table 1. Performance In Terms Of Millions Of Bursts Per 

Second At 198MHz. 

Speedy

Perf. Perf. Rel. Perf. Rel.

Streaming Read 95.98 95.64 0.36% 95.46 0.54%

Streaming Write 94.47 94.69 -0.23% 94.28 0.20%

Alternating Rd/Wr 17.67 13.90 27.12% 13.08 35.09%

Row Change Read 17.75 14.88 19.29% 14.87 19.37%

Row Change Write 14.97 14.02 6.78% 12.28 21.91%

Random Read 17.86 15.26 17.04% 15.26 17.04%

Random Write 17.01 14.15 20.21% 12.44 36.74%

MIG (AL=0) MIG (AL=2)

 
 

 Both the Speedy and MIG controllers were implemented 

on a Xilinx ML505 development board running at 198MHz 

using ISE 10.1 SP2.  This board used a Xilinx XC5VLX50T-

1FF1136 part with the standard supplied 256 MegaByte 

unbuffered Micron SODIMM (MT4HTF3264HY-53E).  The 

DDR2 was programmed for bursts of four 64-bit words for 

each read/write operation, resulting in 32 bytes per burst 

transfer.  The results in the table are expressed in terms of 

millions of bursts per second, so these could be converted to 

bytes per second by multiplying by 32. Four tests were 

applied: 

 

 Streaming Read/Write – Increments through all possible 

memory addresses linearly and either reads or writes each 

depending on the test.  This results in the minimum 

number of DDR2 row changes for full memory coverage 

and should produce the best possible performance. 

 Alternating Read/Write – Increments through all possible 

memory addresses linearly, first writing and then reading 

each location back before proceeding to the next address. 

 Row Change Read/Write – Skips from one DDR2 row to 

the next either reading or writing each in succession 

depending on the test.  This produces the worst possible 

DDR2 row change behavior. 

 Random Read/Write – Uses an LFSR to generate random 

23-bit burst addresses in order to read or write each, 

depending on the test.  The LFSR guarantees that all 

addresses except zero are visited exactly once before 

cycling around again.  This could be a first approximation 

to normal microprocessor behavior where the software 

makes no attempt to minimize DDR2 row changes. 

 

 The columns of Table 1 show the performance of the 

Speedy controller for each test, followed by the performance 

of the MIG controller in two different configurations along 

with the performance of Speedy relative to MIG.  The two 

MIG configurations are with Additive Latency (AL) set to 0 



and 2, respectively.  In all cases but one, the Speedy DDR2 

controller exceeds the performance of the MIG controller, 

with the remaining case being only marginally worse. 

 The streaming tests represent the best possible 

performance because they require the fewest number of row 

changes in order to address all memory locations.  If there 

were no row changes, no refresh cycles (tRFI), and no row 

closing timeouts (tRAS max), the ideal performance would be 

198MH/2 = 99 million bursts per second, since a burst 

requires two clock cycles to complete.  Neither controller can 

reach that performance due to the presence of those effects. 

 The streaming tests show the smallest difference in 

performance between the controllers, since both designs are 

well pipelined and differences in command latency are hidden 

by the sequential access pattern.  The Speedy controller is 

slightly slower on the streaming write test because of the 

automated recalibration mechanism built into Speedy.  All 

tests were run with a guaranteed read timing recalibration 

interval of not more than 1 millisecond, meaning that the 

Speedy controller will recalibrate the read timings at least 

1,000 times per second.  During the streaming write test, this 

meant that the Speedy controller periodically forced a series 

of dummy reads, and possibly a DDR2 row change, in order 

to guarantee that requirement; thus affecting performance 

slightly.  Running the steaming write test with guaranteed 

recalibration set for 100 microseconds, the streaming write 

performance lagged behind the MIG controller by 

approximately 5%.  It is believed that the MIG controller does 

not perform these recalibrations, and so no disruption of the 

write stream occurred for MIG.  This was not an issue with 

the streaming read tests, since the Speedy controller is capable 

of opportunistically performing recalibrations on normal user 

read operations. 

 The remaining tests show a much larger gap in 

performance between the Speedy and MIG controllers.  For 

greater insight as to why this is the case, a behavioral 

simulation was run with each of the controllers in order to 

measure some of the relevant timing latencies. 

 Table 2 shows the ideal, Speedy and MIG command 

latencies in terms of clock cycles at 198MHz.  The ideal 

latency represents the minimum possible number of clock 

cycles that the controller would need to wait before issuing 

the read or write command according to the DDR2 timing 

constraints.  For example, a read to the same row could 

theoretically be issued on the same clock cycle that it was 

received from the user, but it would need to wait a minimum 

of 4 clock cycles before returning any data due to the tCL 

parameter of the DDR2.  A row changing read on the other 

hand must also satisfy the precharge time (tRP) and the RAS 

to CAS delay (tRCD) in addition to tCL before returning data.  

Ideal write numbers are calculated similarly, except that the 

write is considered complete on the cycle that the write is 

issued on the external DDR2 bus control signals.  Hence, the 

ideal write latency is 0. 

 Of course, no controller can meet the ideal timings 

because of the practical limitations of propagation delays and 

the design of the DDR interface circuits of the FPGA.  The 

Speedy and two MIG columns of Table 2 show these realities.  

Command latencies were measured from the cycle that the 

read or write command was accepted from the internal 

interface until the result appears on the external DDR2 bus.  

In the case of writes, this would be the write command being 

asserted on the external bus.  In the case of reads, this would 

be when all data has been returned for a burst. 

 Overall, it can be seen that the MIG controller adds 

several more clock cycles of latency to these crucial timings, 

which are ultimately reflected in terms of performance for the 

non-linear addressing tests shown in Table 1.  Row Change 

Writes, for example, would ideally require 6 clock cycles of 

latency, but in reality Speedy has a latency of 12 cycles for 

perform this operation and MIG with AL=0 requires 16 

cycles.  In other words, if the addressing pattern demands that 

a row change is required for a write, MIG will need 4 (AL=0) 

or 5 (AL=2) additional clock cycles to perform that operation.  

When the requested user operations use a linear addressing 

pattern this difference in latencies does not matter because it 

is all pipelined, but when row changes are required the extra 

latency shows itself in poorer performance.  For some 

applications, one clock cycle may be subtracted from the MIG 

read latencies because the MIG returns the lower 16 bytes one 

cycle earlier than shown.  The upper 16 bytes of a 32 byte 

burst are returned one cycle after that, matching the latencies 

shown in Table 2. 

 Interestingly, the use of Additive Latency did not help 

the MIG controller at all in the performance tests, and in fact 

this feature seems to be implemented by inserting additional 

pipeline stages into the MIG controller, which actually hurts it 

in some tests. Likely, the additional cycles of latency were 

needed in order to meet timing at 333MHz, as advertised by 

the MIG controller in the fastest Virtex 5-3 parts.  The Speedy 

controller will pass timing analysis on the fastest Virtex 5-3 

parts at speeds of up to approximately 290MHz.  However, it 

Table 2.  DDR2 Controller Command Latencies 

Same Row Read Same Row Write Row Change Read Row Change Write

tRP=3 tRP=3

tRCD=3 tRCD=3

tCL=4 tCL=4

Total Ideal 4 0 10 6

Speedy 13 6 19 12

MIG (AL=0) 18 9 25 16

MIG (AL=2) 20 9 27 17

Relevant Timing 

Parameters

 



could not be tested at this speed given the Virtex 5-1 part on 

the ML505.  Assuming the 20% relative clock for clock speed 

increase for Speedy, as shown in some of the tests, Speedy 

would attain an effective clock rate of 290*1.2 = 348MHz 

relative to the MIG, depending on the data access pattern.  For 

pure streaming performance, MIG would still win at 333MHz 

compared to Speedy’s 290MHz. 

 While it may be possible to redesign the Speedy 

controller to run faster, for the time being the designer is left 

with the trade off of higher clock rate with MIG, or the 

benefits of lower command latencies with the Speedy 

controller.  Using the slowest Virtex 5-1 parts, the design 

process starts to become tedious at around 200MHz, when 

multiple extra pipeline stages are needed in order to maintain 

timing closure.  So, this was considered to be a good tradeoff. 

 

4.2 Size of Speedy DDR2 

 The relative sizes of the MIG and Speedy controllers 

were determined by examining section 14 of the map report in 

ISE. 

Table 3.  DDR2 Controller Resource Comparison At 198MHz 

Speedy MIG MIG

(AL=0) (AL=2)

Slices 1175 1337 1190

Slice Regs 1530 2097 2108

LUTs 2198 1736 1720

LUTRAM 2 20 19

BRAM 4 3 3  
 

Table 3 shows these results, although it should be mentioned 

that these numbers varying depending on compiler settings 

and target clock rate.  The numbers shown reflect compilation 

for operation at 198MHz, and seem to indicate that the 

designs are comparable in size overall, depending on the 

metric of interest. 

 In order to determine the effect of clock frequency on 

the area of the Speedy controller, a study was performed 

showing the resources used in terms of slices versus clock rate 

in Figure 4.  The compilation target for this study was the 

Virtex 5-1 part, which results in a maximum frequency of 

approximately 209MHz when compiling for area, and 

222MHz when compiling for speed.  As can be seen, 

speed/area settings and clock rate had very little effect on the 

overall size as measured in slices.  The one notable exception 

was at the very high end of the compilation for speed 

numbers, where the size of the design grew from 1175 at 

198MHz to 1330 (+13.2%) at 222MHz.  Likely this was the 

result of the tools using replication in order to obtain that last 

bit of performance. 

 

4.3 Shortcomings of Speedy DDR2 

 While the performance of the Speedy controller has 

advantages, there are some features that MIG implements that 

Speedy does not. 

 

 DDR2 Only – The MIG controller supports DDR as well 

as DDR3. 

 Additive Latency Not Supported – The MIG controller 

does support this feature, although it seems to be more of 

a penalty in the performance tests. 

 Dual Rank RAMs Not Supported – These are DIMMS or 

SODIMMS that use more than one chip select.  Again, 

the MIG does support this feature, and while some of the 

plumbing to support it is there in the Speedy controller, it 

is not fully implemented and so is not supported. 

 No ECC Support – This is something that could be added 

to Speedy DDR2, but ECC is not commonly supported by 
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Figure 4.  Speedy Slices Used vs. Clock Rate (MHz) 



commercial DIMMs and SODIMMs and was deemed 

unnecessary. 

 No Buffered DDR2 Support – Like ECC, buffered RAMs 

are not the norm, and unbuffered RAMs are much more 

prevalent. 

 

5 Conclusions 

 The Speedy DDR2 controller is a high speed 

implementation of DDR2 running with minimal DDR2 timing 

parameters and a minimum of internal latency in the 

processing pipeline.  It has been shown to be competitive with 

or better than the Xilinx standard MIG design at a clock rate 

of 198MHz, and the ISE tools indicate that it can run as fast as 

290MHz on a Virtex 5-3 device, while remaining 

approximately equal to the MIG design in device resource 

requirements. 

 A detailed discussion of the primary design challenges 

arising during the implementation of the Speedy DDR2 

controller has been given, along with practical solutions.  It is 

hoped that these insights and the design itself can be useful to 

others facing similar problems, and/or who would like an 

alternative to the MIG controller.   The associated ISE project 

and source code may be downloaded from: 

 

http://research.microsoft.com/people/raybit 
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