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Abstract. Capacitive input devices are becoming increasingly prevalent in 

consumer devices.  This paper presents the hardware and algorithms for the low 

cost implementation of a capacitive 2.5D input device.  The low cost and low 

power consumption of the device make it suitable for use in portable devices 

such as cellular phones.  The electrical properties used are such that the pre-

existing snap dome technologies in such devices can be used as capacitive 

sensing elements, further reducing the cost and size impact of the capacitive 

sensor. 
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1 Introduction 
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Figure 1.  Sensing Circuit Instance 

Capacitive sensing is becoming a hot topic in embedded devices; currently 

popularized by Apple‟s iPod and iPhone.  In this paper, we will describe a very cost 

effective technique for producing a two and a half dimensional capacitive touch 

sensor.  The sensor will give absolute X-Y position, as well as some useful pressure 

information that can be used to emulate button presses and/or provide a simplistic Z 

coordinate. 

The basic circuit used for capacitive sensing is illustrated in Figure 1.  The 

capacitive sense pad is connected to a large pullup resistor and a GPIO pin on the 
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microcontroller.  The object is to measure the capacitance between a finger, or other 

pointing device, and the sense pad.  As a finger approaches the sense pad, the 

capacitance at the sense pad increases.  This change in capacitance is measured by 

using the GPIO to first ground the sense pad, and then tri-state it (change it to be an 

input).  A timer inside the microcontroller then measures the amount of time needed 

for the total capacitance attached to the GPIO to charge and register as a logical 1.  

The time elapsed is an indication of the combined capacitance of the sense pad, the 

GPIO pin and the rest of the circuit.  The characteristic voltage curve of such a circuit 

follows the typical exponential curve for capacitive charging, resulting in a non-linear 

relationship between timer counts and actual time elapsed, but it is sufficient for our 

purposes.  This is similar to what is discussed in [1]. The value of the pullup resistor 

allows the designer to optimize the circuit for more sensitivity (higher values) or more 

noise immunity (lower values).  A value of 10MΩ is shown, but a wide range of 

values are possible depending on the application.  

The system is exceedingly inexpensive because all that is required is a single 

microcontroller with multiple available GPIO pins, one resistor per sense pad, and the 

sense pads themselves.  The sense pads can be fabricated in etched copper or other 

conductor directly on the circuit board for the cheapest possible implementation.  The 

conductors used for the sense pads do not need to be very low resistance because the 

pullup resistor is of very high value.  This suggests many possible materials and 

modalities for use of the basic principle.  

We have used a Texas Instruments MSP430 as the microcontroller.  These 

processors are useful because of the very low leakage current exhibited by their GPIO 

pins; less than 50nA as specified in the datasheet [1].  The low leakage current allows 

a large value pullup resistor to be used, which increases the effective resolution of the 

timer reading.  Other processors could be used, but we have found the MSP430 to be 

exceptional in this regard.  Further, this entire application was made to work in the 

Flash-based MSP430F2011, which currently has a list price of $0.80 in 100 unit 

quantities.  It is generally known that this price can be much lower in higher 

quantities; particularly if a production ROM part is chosen.  Since the microcontroller 

is at least 90% of the cost of the system, its cost can be used as an estimated 

implementation cost. 

The average current needed is less than 40µA at 3.3V at with a 16 MHz clock, 

owing to the low power capacitive sensing method, and the low power performance 

of the MSP430.  Lower power consumption is possible by lowering the operating 

voltage or sampling frequency, but the choice of operating voltage is often a cost 

issue in consumer devices, and 3.3V is a reasonable choice in today‟s technology. 

2 Sense Pad Design 

The PCB electrode layout is shown in Figure 2 where E1…E9 are the sensing 

electrodes. With this solution we want to use a low-cost microcontroller which 

usually means one with a low pin count. Of course, if dozens of pins (and electrodes) 

were available with which to construct the sensor, 2D finger sensing would be much 

easier since the electrode size could be made small with respect to the finger size and 
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the sensing would not alias with the sample size of the electrode. In our 

implementation, the finger size (the size of the finger pad in contact with the sensing 

surface) is on the order of the electrode size so some form of anti-aliasing technique is 

required for sub-sample positions to be detected and properly processed. 

E1            E2           E3

E4           E5           E6

E7           E8           E9

Approximate 

Finger Size

 

Figure 2.  Anti-Aliased Electrode Layout 

In the imaging world, anti-aliasing is usually accomplished with a 2D anti-aliasing 

filter placed over the sensor which effectively blurs the boundary between pixels.  We 

used a ragged pattern on the PCB to create anti-aliasing in our design.  Figure 2 shows 

this pattern, which creates a „blurring‟ or a smooth transition of capacitances between 

the electrodes. 

The device is built by connecting each pad-resistor pair to a single microcontroller 

as shown in Figure 1.  The microcontroller firmware cycles through the ground, tri-

state, sense logic 1 cycle as described above.  In the prototype device, the 

microcontroller‟s internal clock rate is 16MHz, and all 9 sense pads are connected to 

interrupt-capable GPIOs, allowing precise and repeatable timing within the firmware. 

3 Mean Zero Value Calculation 

The coordinate calculation algorithm requires a known zero reference capacitance for 

each sensor, which will be termed the mean zero value.  This mean zero value is the 

summation of timing delays in the firmware, plus the inherent capacitance of the 

sensing pin and the PCB design.  Calculation of the mean zero value must be done per 

pin, per design, and possibly per device instance since each design and sensing chip 

will be slightly different, and because these values change with device aging and 

environmental effects.  To combat these problems, an adaptive algorithm was 

developed to calculate the mean zero value at run-time per pin in each device. 

The problem is to find a value as close as possible to the true mean zero value in 

the presence of noise during normal use.  Difficulties are encountered since the 

sensors may be covered by an object that registers as a high capacitance such as a pen 

or thigh, or someone may be attempting to use the device.  What is needed then is an 

algorithm that can make successive approximations of the true mean zero value while 

classifying sensed capacitive events.  We have developed an algorithm for this task 

called the Method of Split Averages. 
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Two running averages are kept for each capacitive sensor.  One of these, the 

average high value, represents an average of all the readings that are believed to have 

been taken when a capacitive event is registered.  The average low value is the 

average of all readings that are believed to have been taken when no capacitive 

stimulus was present.  At initialization, the average low value may be set to zero, or to 

some value that is considered to be reasonable for that device.  The average high 

value is initialized to be some increment above the average low value, where the 

increment is greater than the expected noise levels for the device.  The following steps 

are then performed per capacitive sample taken: 

1. Compare the new sample to average high value and average low value. 

2. If the new sample is closer to the average high value, average it into the average 

high value and set the “finger present” flag. 

3. If the new sample is closer to the average low value, average it into the average 

low value and clear the “finger present” flag. 

Over time, the average low value will approach the true mean zero value for that 

capacitive sensor.  The capacitive values that are fed into the algorithm are already 

pre-averaged to some small extent, rather than using the raw readings.  This helps the 

algorithm in the discrimination process in a noisy environment.  The raw capacitive 

values are averaged using an exponential filter, using the shift and add method, so that 

the memory and processing requirements are manageable in a microcontroller 

environment.  Typically, the initial averaging window is over two to four values at a 

sampling rate of 80 Hz. 

The window length used for the algorithm‟s average high and average low values 

is longer.  If this window too short, then the two averages will track noise spikes and 

finger events too closely.  If the window is too long, the averages will not correct 

themselves quickly enough at initialization or in the event that a long series of 

abnormal readings occurred.  We have found that a shift by 12, giving an averaging 

window of approximately 4096 values, works well. 

In a production environment, the initialization values for the average high value 

and average low value may be standardized across all devices based on values that are 

found to be generally applicable to the system at hand.  This will reduce the initial 

calibration time so that it should not be noticeable to the end user. 

The “finger present” flag is used to trigger the coordinate calculation algorithm, 

and may also be used to implement capacitive button press detection.  Finally, the 

difference between the average high value and average low value is the dynamic 

range of the capacitance reading, which is a concept that will be used later. 

4 Memory Saving Technique 

Microcontrollers typically have a very small amount of RAM and as presented the 

Method of Split Averages would require two separate running sums to be kept for 

each sensor pad.  Each running sum is likely a 24-bit or 32-bit quantity; requiring 

significant space when multiplied by the number of sensor pads.  The number of bytes 

required is equal to the number of pads multiplied by the width of the sums times two. 
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If the dynamic range of the pads may be assumed to be roughly similar, then 

significant memory may be recovered by maintaining only a single average dynamic 

range for all of the sensor pads and eliminating the average high value completely.  In 

that case, a separate average low running average is kept for each sense pad, and then 

a single common average dynamic range is kept for all of them.  This reduces the 

memory needed by nearly a factor of 2.  In practice, the assumption of similar 

dynamic range turned out to be a good one for our applications and so this 

optimization was used. 
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Figure 3.  Row/Column Weight Assignment 

5 Coordinate Calculation Algorithm 

A 3x3 sensor array will be used as an example, but the method scales to larger sensor 

grids as well.  Figure 3 shows a logical view of the capacitive array and not 

necessarily the exact dimensions or pad shapes used in a real design.  The goal of the 

algorithm is to produce X-Y coordinates in the range of 0 to 1, so that these can be 

multiplied by a scaling factor to achieve whatever integer range is desired. 

In order to generate the 0 to 1 fractional scale, each row and column of the array is 

assigned a weight.  Intuitively, the columns would be assigned weights 0, 0.5 and 1, 

as would the respective rows, representing the desired range of output values.  

However, a weight of 0 is problematic because when used as a multiplicative factor it 

will zero out the contribution of that row or column in the final result.  For that 

reason, a value of 1 is added to all weights, making the range 1 to 2, which is what is 

depicted in Figure 3.  The added 1 can be subtracted back out later. 

The calculation of the X-Y coordinates uses these weights in a weighted average to 

give far more resolution than the apparent 3x3 array.  The X position is given by: 

  (1) 

Where Ci,j represents the adjusted capacitance value from the associated pad and 

CTotal is the sum of all the adjusted capacitances.  As can be seen, the summation 

multiplies the weight of each column by the fractional contribution of that column to 

the total capacitance measured.  The -1 on the right had side adjusts the output range 
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back down to a 0 to 1 fractional scale.  The resulting X value may be multiplied by 

any scaling factor, such as 256, to obtain a useful integer range.  By carefully 

performing all summations and multiplications before any divisions, floating point 

math may be avoided.  A power of 2 scaling factor further simplifies the amount of 

code needed.  As an example, the formula may be rewritten as: 

  (2) 

The corresponding unscaled equation for the Y coordinate is: 

  (3) 

Except in this case, the sums are computed across the rows.  By using the 

proportional contribution from each pad, rather than absolutes, the weighted average 

avoids problems with moment to moment sensing differences such as humidity, 

temperature, the actual distance between the finger and the sense pads, etc. 

Note that this same method may be used for other array dimensions by assigning 

more intermediate weights to the rows and columns of the array.  For example, if a 

4x4 grid is desired, then starting weights of 0, 0.33, 0.66 and 1 could be used. 

A larger grid may be desired in the case where the finger size of the user is smaller 

than the size of a sense pad.  In that case, the algorithm may not have enough 

capacitive contribution from adjacent pads to give sufficient resolution.  In that case, 

larger array dimensions may be needed to make the size of the sense pad 

commensurate with, or smaller than, the size of the user‟s finger. 

The algorithm expects the dynamic range of all pads to be roughly equal under a 

given set of conditions.  This translates to making the sensing pads all have roughly 

the same surface area.  Though, even if they are not, the disparity could be adjusted 

by individual pad weights. 

6 Experimental Results 

In order to show the effectiveness of this approach, we placed the device on a 

precision stepper table and used a brass finger as the pointing device.  The stepper 

table was moved in 0.1” increments in both X and Y.  At each step, the finger 

remained stationary briefly while sample data was collected at the rate of 80 samples 

per second.  The finger was electrically connected it to the operator, but was not 

grounded through any other path.  In practice, we have found that a real finger 

performs better than the brass one, but this provides a worst case scenario.  The 

individual sensor pads measured 0.545” square from point to point, and the overall 

3x3 pad measured 1.4” square from point to point. 

The left hand graph of Figure 4 shows the results of skimming the finger across the 

top of the plastic keys on the keypad, which places the finger 0.060” off of the top of 

the sensors on the circuit board.  This simulates normal use most closely, where the 

finger is in contact with the plastic buttons.  A scaling factor of 256 was used, giving 

a nominal response of 0 to 255 along both axes.  The averaging being applied on a 
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sample by sample basis uses a shift by 2 in this case, resulting in a moving average 

window over approximately 4 capacitance values per sensor.  The slower moving 

averages used to track the mean zero value for each pad used a shift by 12. 

 

Figure 4.  XY sample data at keypad surface, before linearization (left), after 

linearization (right) 

 

Figure 5.  XY sample data, 0.050" above keypad (left), 0.100” above keypad (right) 

There is some noise in the system, which was characterized by a standard deviation 

of 2.16 in XY coordinate space.  With a scaling factor of 256, this gives a true XY 

resolution of roughly 100x100.  The system is quite useable as a pointing device in 

this state, as we have demonstrated in the lab by emulating a serial mouse and using it 

to drive a Microsoft Windows based PC.  The pad is also very responsive with shift 

by 2 averaging, and if lower noise is desired the pad would still be very useable if a 

shift by 3 or 4 were employed.  Also evident is the fact that the device was rotated 

slightly clockwise when the samples were taken. 
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Figure 6.  Z sample data from key surface in 0.010" increments 

The distribution of the points shows that the response of the pad is not linear in 

XY, as expected by the non-linear response of the capacitive charging curve, and due 

to the electrical fringing fields that are present on the board.  Under our test mouse 

conditions, this did not prove to be overly difficult to use; likely due to the fact that 

hand-eye coordination can be used to overcome the non-linearity.  However, if 

needed, the non-linearity can be corrected by using a discrete 2D lookup table with 

linear interpolation between table values, as shown in the right hand graph of Figure 

4, where a 7x7 lookup table was used.  Due to quantization error, the standard 

deviation increases to 2.32, but the results give a very good rectangular response.  Of 

course, this comes at the cost of more code and data space in the microcontroller. 

The Z performance of the VersaPatch was tested in two ways; first by holding the 

finger at different heights above the keys and applying the same scanning pattern, and 

then by showing the Z readings resulting from hovering over a single key and raising 

the finger by successive steps.  The left half of Figure 5 shows the data from scanning 

the finger 0.050” higher off of the keypad.  The right half of Figure 5 shows the same 

test with the finger scanning 0.100” off of the top of the keys.  Both tests show 

increased noise as detailed in Table 1. 

Table 1. Summary of 256x256 XY Testing Data 

Altitude # Points Non-Linear 

Std. Dev. 

Linearized 

Std. Dev. 

On Sensors 6,945 0.874 0.7983 

On Keys 11,574 2.16 2.32 

0.050” Above Keys 9,050 3.99 4.592 

0.100” Above Keys 9,541 6.993 10.10 

 

Figure 6 shows the results of holding the finger over the center pad and then taking 

a series of data points at 0.010” increments rising off of the surface of the plastic 

keys.  The exponential fall off of the electric field can be seen as a function of 
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distance.  The X axis shows height above the plastic keys in inches, and the Y axis 

shows the total capacitance value.  Each altitude point is shown as a vertical bar to 

indicate the distribution of total capacitance values at that altitude. 

It is important to note that our test finger does not perform as well as a real finger 

because a real finger deforms across the keys to give a larger cross sectional area.  

Also, body chemistry seems to reduce the overall noise seen by the sensor as 

compared to the brass finger.  However, in order to maintain the best repeatability and 

accuracy in placement, we settled on the metallic finger for use as a stylus. 

7 Implementation Issues & Discoveries 

The main issue noted in our experiments is a sensitivity to electrical noise in the 

power system.  This is not surprising since the input high threshold of the GPIO pin 

determines the detection point.  Movement of that threshold causes fluctuations in the 

capacitive timer values making the system behave erratically.  However, we have 

found that a linear regulator will negate local power supply noise issues. 

The system is also somewhat sensitive to PCB layout issues, and best results will 

be obtained when the traces from the sensing pads are run over a ground plane on the 

PCB.  Our experience is that using wire wrap wire to connect the sense pads to the 

microcontroller will make the system unusable due to electrical noise. 

The CTotal quantity can be used for emulated button presses, as well as fairly coarse 

grain finger altitude detection.  Although, the Z detection falls off quickly with the 

electric field as a function of 1/r
2
. 

The fact that the conductor used for the sense pads can be of relatively poor quality 

has suggested the use of clear conductors overlaid directly on a display to allow for 

finger based device navigation.  This is something that we have not experimented 

with as yet, but will be the subject of future investigations. 

An implementation possibility that we have explored is the use of snap domes as 

the capacitive sensing element.  These are commonly found in electronic devices, 

such as cellular phones, mounted on the PCB beneath the plastic buttons that the user 

sees.  The snap domes make electrical contact for the switch, as well as producing the 

audible click and tactile feedback that is normally expected.  Since these domes are 

metallic, the device can be built so that each dome is at the center of one of the sense 

pads shown in Figure 2, and the dome becomes part of the sense pad.  The same 

algorithms described transform the normal keypad into a gesture or cursor positioning 

device at very little cost, while maintaining button functionality as normal.   In our 

design, the dome electrically “hides” the normal button down contact under the dome 

so that it does not interfere with the capacitive sensing.  The button down contact is 

grounded so that when activated, the sense pad appears to be stuck to ground, which 

is captured as a timeout by the firmware and reported as a button press.  We have 

implemented this in a prototype device and have found it to work quite well. 
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8 Prior Work 

A Texas Instruments application note describes the use of an MSP430 microcontroller 

to implement a capacitive touch slider [1].  The mean zero value is established in a 

somewhat similar way, but the method employed does not attempt to track the 

dynamic range of the capacitance values.  Also, the methods discussed only work for 

a 1D capacitive sensor strip, rather than creating a 2D pad. 

The most complete reference for capacitive sensing that we are aware of is a book 

by Baxter [2].  That book details a large number of circuits and measurement 

techniques and is a very good reference. 

A relaxation oscillator based capacitive measurement circuit has been proposed by 

van der Goes, et. al., [7], and is believed to be at the heart of many commercial 

capacitive sensing devices.  By using the capacitance of interest to vary the frequency 

of an oscillator, frequency measurements allow detection of changes in capacitance of 

less than 100aF.  While the sensitivity of that method is startling, a custom ASIC was 

needed to realize it.  We have found our method to have sufficient sensitivity for 

practical use as an input device, while still using an off the shelf microcontroller. 

In [4], a technique is discussed for measuring small capacitances where the small 

capacitance to be measured is repeatedly charged and then switched in parallel with a 

larger capacitor of known value.  The number of switches needed to charge the large 

capacitor gives the size of the smaller capacitor.  The added circuit complexity of that 

method would add to the overall cost of the solution as compared to the RC method 

proposed in this paper, both in terms of components and pins on the microcontroller. 
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