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An Introduction
to Voice Search

A look at the technology, the

technological challenges, and the solutions

oice search is the technology underlying many spoken dialog systems

(SDSs) that provide users with the information they request with a spo-

ken query. The information normally exists in a large database, and the

query has to be compared with a field in the database to obtain the rele-

vant information. The contents of the field, such as business or product
names, are often unstructured text. For example, directory assistance (DA) [1] is one
of the most popular voice search applications, in which users issue a spoken query
and an automated system returns the phone number and address information of a
business or an individual. Other voice search applications include music/video man-
agement [2], business and product reviews [3], stock price quotes, and conference
information systems [4], [5].

Figure 1 shows the typical architecture of a voice search system, where a user’s
utterance is first recognized with an automatic speech recognizer (ASR) that utilizes
an acoustic model (AM), pronunciation model (PM), and language model (LM). The
m-best results from the ASR are passed to a search component to obtain the n-best
semantic interpretations; i.e., a list of up to n entries in the database. The interpreta-
tions are passed to a dialog manager (DM) subsequently. The DM utilizes confidence
measures, which indicate the certainty of the interpretations, to decide how to pres-
ent the n-best results. If the system has high confidence on a few entries, it directly
presents them to the user. Otherwise, a disambiguation module is exploited to inter-
act with the user to understand what he actually needs.

VOICE SEARCH AND OTHER SPOKEN DIALOG TECHNOLOGIES

SDSs are often chronologically categorized into three generations: informational, trans-
actional, and problem solving [6], [7] (earlier command and control speech applications
in the 1980s are not considered as SDSs in this categorization). The first-generation
SDSs focus on providing users with the information they request, such as flight status
and weather information. The second-generation SDSs conduct transactions automati-
cally with users; e.g., to book air flight tickets or perform bank balance transfers. The
third-generation SDSs are often used in customer support by interacting with callers to
diagnose the problems they are experiencing with a device or a service.
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[FIG1] Voice search system architecture.

The chronological (functional) categorization of SDSs does
not necessarily imply the level of technological difficulties. Some
of the problems in informational SDSs remain the most chal-
lenging topics in spoken dialog research. To better understand
different technological challenges, SDSs can be categorized tech-
nologically into three categories: form filling, call routing, and
voice search. Form filling is the most commonly used technolo-
gy deployed in the first- and the second-generation SDSs, where
directed or mixed-initiative dialog systems are used to gather the
attribute values of an entity that users are interested in (e.g., the
originating and destination cities of a flight). In such systems,
users often have to use canned expressions within a small
domain. In a directed-dialog system, users’ utterances may con-
tain only what the system has prompted for, which is often a sin-
gle piece of semantic information; while in a mixed-initiative
system, users may volunteer more semantic information in a sin-
gle utterance—we call this type of semantic understanding high
resolution in the sense that multiple semantic constituents
(commonly called “slots”) need to be identified. The call-routing
applications remove the constraints on what users can say, so
users can speak naturally. This is accomplished at the expense of
limiting the target semantic space: the understanding of natural
language inputs is often achieved with statistical classifiers,
which map users’ inputs to a list of possible destination classes
(intents). The classifiers can hardly perform high-resolution
understanding with many slots, or scale up with a huge number
(e.g., thousands to millions) of destination classes. Voice search

applications differ from the form-filling applications in their lack
of detailed, high-resolution semantic analysis. They are similar to
call-routing applications with respect to the naturalness of user
inputs and the huge input space. However, they differ from call-
routing applications in the sense that their semantic space, or in
the terminology of call-routing systems, the inventory of the
“destination classes” is enormous—sometimes in the range of
millions of entries. Data are seldom sufficient to train a statistical
classifier. Table 1 compares the three types of technologies.

The form-filling and call-routing spoken dialog technologies
have been discussed in great detail in [8] and [9]. This article
reviews the voice search technology—we will only focus on the
search from a field of unstructured text items. The issues related
to the search of other media (e.g., audio and video search),
including recognition and indexing, is beyond the scope of this
article. We will describe the history of the voice search technolo-
gy, discuss the technological challenges, and survey the solu-
tions to these challenges.

HISTORY
Early work on voice search focused on DA. Institutions on both
sides of the Atlantic deployed experimental systems during mid
to late 1990s. The early studies focused mainly on residential
DA [10]-[12], and speech recognition was the major topic of
research—as long as personal names get correctly recognized,
the search can be a simple database lookup. As a result, the dia-
log strategies centered on limiting the scope (hence perplexity)
of the target listing space for ASR and the confidence measures
mostly relied on features from the ASR. Related work includes
enterprise-level auto-attendant (also known as name dialing)
services from Phonetic Systems (acquired by ScanSoft, then
merged with Nuance), AT&T [13], IBM [14], and Microsoft [15].
While automating residential DA is important in reducing the
operational cost, it is only a small portion (19%) of the total
received calls compared to the 61% of business DA calls [12].
Therefore, there have been increasing interests in business DA
recently, with the commercial deployments from Tellme
(acquired by Microsoft), Jingle Networks, AT&T, Google,
Verizon, and Cingular (merged with AT&T Wireless), and an
experimental system from Microsoft [1]. Because the level of
linguistic variance is much higher in business DA queries, spo-
ken language understanding (SLU)/search aiming at correctly
interpreting a user’s intent becomes an important research
topic. The linguistic variance increases the ambiguity and
uncertainty in the interpretation of a user’s intent. As a result,
dialog research focuses on the disambiguation strategy as
well as the confi-
dence measures that

[TABLE 1] COMPARING FORM-FILLING, CALL-ROUTING, AND VOICE SEARCH TECHNOLOGIES.

USER INPUT UTTERANCES

NATURALNESS INPUT SPACE
FORM FILLING/DIRECTED DIALOG LOwW SMALL
FORM FILLING/MIXED-INITIATIVE LOW-MEDIUM SMALL
CALL ROUTING HIGH LARGE
VOICE SEARCH MEDIUM-HIGH LARGE

look into features

TARGET SEMANTIC from different system
REPRESENTATION components to accu-
RESOLUTION SEMANTIC SPACE

rately predict the

LOW SMALL

HIGH SMALL end-to-end perform-
LOW SMALL . .
Lo MEDIUM-LARGE ance of interpreting

a spoken query.
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Other voice search applications include the stock quote
system from Tellme and a product/business rating system
from Microsoft [3]. Separate efforts have been made on con-
ference information systems by Carnegie Mellon University
[4] and by the collaboration among AT&T, ICSI, Edinburgh
University, and Speech Village [5], where users can request
information about thousands of papers published through
conferences. In entertainment, Daimler is investigating digi-
tal music management in automobiles [2]. Like the business
DA applications, all these new voice search applications call
for research activities in search/SLU and dialog management
in addition to speech recognition.

With the broad adoption of mobile devices and the availabili-
ty of wireless access to the Internet, many companies are active-
ly engaged in the space of voice search on mobile or in-car
devices [2], [16]. New research challenges include multimodal
[graphical user interface (GUI) with touch screen and speech]
user interfaces [2], [16] and efficient and scalable client-server
architectures.

TECHNOLOGICAL CHALLENGES

Voice search poses new challenges to the spoken dialog technol-

ogy in the following areas.
B Speech Recognition: The state-of-the-art ASR systems
have high error rates on voice search tasks. The vocabulary
size of a voice search system can be much larger than a typi-
cal form-filling or a call-routing application, sometimes
reaching millions of lexical entries. Many lexical entries in
international individual/business names are out of vocabulary
and lack reliable pronunciation information. Calls are often
made from different noisy environments. In addition, the
constraints from language models are often weaker than
other ASR tasks—the perplexity of a language model is often
high (e.g., 400-500 bits for business DA) for voice search.
m Spoken Language Understanding/Search: One big
problem in SLU is the enormous semantic space—a DA
system can easily contain hundreds of thousands (if not
millions) of listings in a city. There is also a high level of
linguistic variance in the input space. For example, users
might not use the official name of a business in a DA or
business rating system. They would typically say, for
instance, Sears instead of the listed official name, Sears
Roebuck & Co. In addition, the SLU/search component
must be robust to ASR errors.
®m Dialog Management: The difficulties in ASR and SLU
cause much confusion and uncertainty. The dialog manager
has to effectively narrow down the scope of what a user may
say to reduce the confusability and uncertainty. Search
results often contain multiple entries. Disambiguation strate-
gy is crucial in obtaining sufficient information for the cor-
rect understanding of users’ intents with as few dialog turns
as possible. Confidence measures are important for the dialog
manager to take an appropriate action with each of the
hypothesized interpretations, such that the dialog can recover
gracefully from ASR and SLU errors.

m Feedback Loop: No systems can be perfectly built at the
initial deployment. Dialog system tuning is often performed
painstakingly by spoken dialog experts, starting from error
analysis from the logged interaction data to find the flaws in
dialog and prompt design, grammar coverage, system
implementation, etc. An interesting research topic is the
automatic or semi-automatic discovery and remedy of
design/implementation flaws.

The grand challenge in voice search application is robust-
ness. The CSELT’s study on Telecom Italia’s DA system [12]
showed that even though the automation rate was 92% in a lab-
oratory study, the actual field trial automation rate was only
30% due to unexpected behavior of novice SDS users and envi-
ronment noise.

TECHNOLOGY REVIEW

This section reviews the technology that addresses the chal-
lenges to voice search applications. Not surprisingly, much of
the technology is developed with DA systems because they are
the most popular voice search applications so far. However, the
technology is often applicable to other applications as well. For
example, the product/business rating systems [3] directly used
the technology developed in a DA application [1].

SPEECH RECOGNITION

A detailed error analysis for proper name recognition was
reported in an auto-attendant system [14]. Figure 2 shows
the distribution of different causes of errors. Besides 35% of
normal recognition errors, 31% were noise related and 22%
were pronunciation related. Many of the calls were made in a
noisy environment over different noise channels. Therefore,
noise robustness is crucial to improve the ASR accuracy. On
the other hand, there were many foreign names that are dif-
ficult to pronounce in an auto-attendant/DA system. In fact,
pronunciation is a pervasive problem that poses challenge in
many other voice search applications too. For example, users
may specify Petit Bonheur by Salvatore Adamo in a music
search. Hence, pronunciation modeling is another impor-
tant topic in ASR for voice search. In addition, better
acoustic and language models are always important to
reduce the ASR error rate.

m Noise Related
m Normal ASR
Pronunciation

B Spelling/Chopped
Speech

[FIG2] ASR error analysis for a voice search application.

IEEE SIGNAL PROCESSING MAGAZINE [31

MAY 2008



ACOUSTIC MODELING

IBM’s auto-attendant system applied speaker clustering in its
acoustic model [14]. Simple human Markov models (HMMs) that
have one Gaussian per context-independent phone state were
trained first for each speaker. Then the vectors of the means of
these models were clustered with the A-means algorithm. For
each test utterance, the cluster model that yielded the highest
likelihood was selected. In doing so, different channel and noise
conditions can be more precisely
modeled by different cluster models,
so noise-related problems are allevi-
ated. In addition to speaker cluster-
ing, speaker adaptation is effective
to bring the performance of a speak-
er-independent system closer to that
of a speaker-dependent system.
Unlike normal speaker adaptation,
the adaptation in [14] was massive
in the sense that the adaptation data were obtained from a pool of
recent callers rather than a single speaker. The massive adaptation
is helpful due to the fact that a caller often calls the same set of
individuals, and that a caller may try a name repeatedly when a
recognition error occurs. While massive adaptation is helpful to
bring down the error rate for frequent callers, unsupervised utter-
ance adaptation aims at improving the accuracy from an
unknown speaker. In this adaptation scheme, the test utterance
itself was used for adaptation with a two-pass decoding. In the
first pass, a speaker-independent system or the system after mas-
sive adaptation was used to obtain the automatic transcript. Then
a forward-backward algorithm was applied to obtain the adapta-
tion statistics. After adapting the acoustic models using the col-
lected statistics, the caller’s utterance was decoded in a second
pass with the adapted model—this second pass may adversely
increase the latency of a voice search system. Overall, with all
these acoustic model enhancements and an unsupervised deriva-
tion of pronunciations (to be described below), a 28% error reduc-
tion was observed.

PRONUNCIATION MODELING

One approach to an improved pronunciation model is via aug-
menting the dictionary with pronunciation variants. Data-
driven algorithms are commonly applied, which typically
include four steps: generating phonetic transcriptions with a
recognizer, aligning the auto transcriptions with manually cre-
ated canonical pronunciations, deriving rules mapping from
canonical pronunciations to the variants, and pruning the rules.
One limitation of this approach is that the canonical reference
pronunciations must be available.

The IBM auto-attendant system [14] adopted an
acoustics-only-based pronunciation generation approach
[17]. The advantage of this approach is that no canonical
pronunciation is required. This makes it more practical in
voice search applications since many words do not exist in a
pronunciation dictionary. With this approach, a trellis of
subphone units was constructed from an utterance. The

SPOKEN DIALOG SYSTEMS ARE
OFTEN CHRONOLOGICALLY
CATEGORIZED INTO THREE

GENERATIONS: INFORMATIONAL,
TRANSACTIONAL, AND
PROBLEM SOLVING.

transition probabilities in the trellis were derived by weight-
ing the transition probabilities of all the context-dependent
realizations of the subphone units in an HMM acoustic
model. A Viterbi search was performed to obtain the best
subphone sequences from the trellis and a pronunciation
was subsequently derived from the sequence. Experiments in
[14] showed a 17% relative error reduction when the test set
and training set had overlapping unseen words.

Trade-offs often have to be made
in adding pronunciation variants to
a dictionary. The additional pro-
nunciations, on the one hand,
make the word models match the
actual acoustic signal more precise-
ly; on the other hand, they give rise
to a large number of highly confus-
able word models. Instead of aug-
menting an existing pronunciation
dictionary with variants, a pronunciation distortion model was
introduced in [18] to rescore the n-best hypotheses generated
from a first recognition pass. The distortion model incorporates
the “knowledge source” about the common distortions observed
in a specific spoken language. For example, only insertions were
considered in the distortion model for French in [18] because it
is frequently observed that silence segments are often inserted
between certain pairs of consonants like [m][n], and a schwa is
often inserted after a consonant at the end of an utterance.
Formally, let A and W denote the acoustic signal and text of a
caller’s utterance, and t,, a phone sequence that may be distort-
ed from the canonical pronunciation of W. Then a hypothesis
W can be selected from the first-pass n-best recognitions
according to the following decision rule:

W= argmax p (W |A)
w
= argmax ) p(W, 7ul4)
W

~ argmax p (W, ty|A)
W,t,

~ arv%maxp (Tw)p (Altw)p (W Tw).
T

w

The last approximation in the equation includes an application
of the Bayes’ rule and an assumption of independency between A
and W given 7. The prior of a distorted phone sequence, 7,
can be written in terms of the canonical pronunciation of ¥,
nw, and §,, the difference between 7, and ny: p(tw) =
P (Mw 8w) = P (Swlnw)p (Nw) and 8. In theory, p (8, [1) can be
estimated from data. In [18], a uniform distribution over all
plausible insertions was used instead for p (8y|ny) due to the
lack of data. p (4|ty) in the decision rule can be obtained from
the acoustic model with all possible alignments between A and
7. Since only insertion is considered in [18], p (W |zy) was
obtained by multiplying the probabilities of all successful inser-
tions. Experiment results showed that the rescoring had
improved the one-best accuracy from 50% to 59.8%.
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LANGUAGE MODELING

Early DA systems compiled directory entries into a finite-state
grammar as the language model for ASR. This rule-based lan-
guage model does not scale up well with directory size due to
increased perplexity. It was found that the ASR accuracy
decreases linearly with logarithmic increases in directory size
[10]. On the other hand, it was noticed that the distribution of
the requested listings followed the Zipf’s law: 10% (20%) of call
volumes were covered by only 245
(870) listings. So in [10], [19], a
semi-automated DA system was
built that only covered the fre-
quently requested listings and
relayed the remaining requests to
human operators.

One problem of the rule-based
LMs constructed from database
listings is their poor coverage.
Callers seldom say a business name exactly as it appears in the
database—just consider the earlier example of Sears Roebuck &
Co. versus Sears. It was mentioned in [20] that variant expres-
sions for business names could be semi-automatically derived
from data. Although it did not report how this was achieved. A
straightforward method would compare a caller’s utterance (e.g.,
Kung-Ho Chinese Restaurant) with the actual listing released to
the caller (e.g., Kung-Ho Cuisine of China) by operators and
learn that “Chinese restaurant” is a synonym of “cuisine of
China.” This synonym rule-based approach is usually expensive;
the rule coverage is highly restricted by the data available, and
the rules may be over-generalized without careful crafting.

The problem was tackled without using the data from callers
in [21]. A method was proposed to automatically construct a
finite-state signature LM from a business directory database
alone, which would accept different query variants. Here a sig-
nature is a subsequence of the words in a listing that uniquely
identifies the listing. For example, with the listings “3-L Hair
World on North 3rd Street” and “Suzie’s Hair World on Main
Street,” “3-L,” “Hair 3rd,” and “Hair Main” are signatures
because they occur in only one listing. On the contrary, the sub-
sequences “Hair World” and “World on” are not signatures
because they appear in both listings. Based on the signatures, a
finite state transducer can be constructed as follows (the exam-
ple is taken from [21]):

< S >:=3-L Hair World? On? North? 3rd ? Street? : 1 |

3-L Hair? World? On? North 3rd ? Street? : 1 |

3-L Hair? World on? North? 3rd ? Street? : 1 |

3-L? Hair World? On? North 3rd ? Street? : 1 |

Suzie’s? Hair World? On? Main Street? : 2 |

Suzie’s Hair World? On? Main? Street? :2 |

Suzie’s Hair? World on? Main? Street? :2 |

Suzie’s? Hair? World on? Main Street? :2
where each entry in the grammar corresponds to a signature.
The terms in a signature are obligatory whereas the terms in a
listing but not in the signature are optional (marked by “?”). The

@

numbers after “” is the semantic output from the transducer

THE VOCABULARY SIZE OF A VOICE
SEARCH SYSTEM CAN BE MUCH
LARGER THAN A TYPICAL
FORM-FILLING OR A CALL-ROUTING
APPLICATION, SOMETIMES REACHING
MILLIONS OF LEXICAL ENTRIES.

that represents the ID of a listing in the database. In doing so,
every utterance matched by a rule can be uniquely associated
with a listing. Because the nonessential words are optional, this
makes the grammar more robust to utterances that omit these
words. When the directory becomes larger, an entry may bear no
signature because each of its subsequences can be a subse-
quence of another entry. This problem was handled with confu-
sion sets in [21].

The rationale behind the signa-
ture grammar is that any term in
an entry is droppable as long as the
drop does not cause the confusion
with another entry. While this is
very practical in reducing the
search ambiguity, it may be risky
in modeling human language—
speakers are very likely to drop
terms that would lead to ambigui-
ty. For example, they often say Calabria instead of Calabria
Restaurant even though the former may cause confusion with
“Calabria Electric” and “Calabria Jack J Do.”

Another approach to improved robustness is via statistical
n-gram models [1], [19]. An n-gram model is more robust because
it does not require a user’s utterance to match a rule exactly,
because it provides a statistical framework for fair comparison
between different hypotheses, and because it has well-studied
smoothing algorithms to estimate the likelihood of unseen events
more accurately. Ideally, a statistical n-gram model should be built
from the transcripts of real calls, which demonstrate not only the
different ways callers refer to businesses but also the probability of
each such ways. Unfortunately, it is not realistic to collect enough
calls to provide a good coverage for a large listing set, especially
during the early stage of development. An interpolated LM was
proposed to estimate the n-gram probability in [1]:
p(w) = Ap:(w) + (1 — AM)p;(w), where p; (w) is the LM built
using the transcripts of real calls, p; (w) is the LM built using a
listing database, and A is the interpolation weight, which was
tuned with a cross-validation set collected under real usage sce-
nario. Here p; (w) can be constructed from data straightforwardly.
Building p;(w), on the other hand, takes more considerations
because the database entries may not reflect the actual ways that
callers refer to them. A statistical variation model was introduced
to account for the common differences between database listings
and the actual callers’ queries. The model was based on the ration-
ale similar to that of the signature model; namely, callers are more
likely to say the words that distinguish one listing from others.
However, instead of making risky binary decisions, it modeled the
importance of a word statistically according to its discriminative
capability and its positions in a listing (based on the observations
that callers are more likely to say the initial words in a listing).
Here, the discriminative capability of a word was determined by its
inverse document frequency, and a position importance weight
wli 0 < wlf < 1) was associated to each word position. A word was
droppable with a probability inversely proportional to its impor-
tance. In addition, the model took into account the business
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category information for smoothing—each word had a probability
to transition to category words (e.g., “restaurant”). The transition
probability correlated to the importance and the category-indica-
tion capability (a mutual-information-based measure) of a word.
Furthermore, an efficient interpolation with a large vocabulary
background LM [22] had provided additional robustness. The
internal investigation in Microsoft has revealed that the statistical
language model, together with the vector space model for listing
search, has greatly outperformed the signature-based approach—
at the same precision level, the recall has been almost doubled.

SPOKEN LANGUAGE
UNDERSTANDING/SEARCH
The task of SLU is to map a user’s
utterance to the corresponding
semantics. In voice search, the
semantics is the intended entry
in a database. Hence, the SLU
becomes a search problem.

In early voice search appli-
cations like residential DA, SLU
is not an issue, since there is not much expressional vari-
ance in saying a person’s name. Search is basically a data-
base lookup, with careful considerations of initials, titles,
and homophones. If a finite-state-based LM is used for ASR,
each rule is uniquely associated with a listing or a confu-
sion set. There is no need of a separate search component
either. However, due to the deficiency of the finite-state-
based LMs in modeling the actual human language, n-gram

P(WGE)

& General English

Start < End

& Listing /

[FIG3] HMMs for listing search.

LMs are often adopted in advanced voice search applica-
tions. In such cases recognitions are no longer associated
with a specific database listing. Hence, a separate search
step is necessary. Here robustness is again a crucial issue—
the search algorithm should be robust to not only linguistic
variance but also recognition errors. Statistical models were
proposed for solutions.

BBN adopted a channel model for listing search [19].
Given a locality C (DA dialogs often start by asking users
for the city and state information; see the “Dialog
Management” section for details) and a query Q recognized

DISAMBIGUATION STRATEGY IS
CRUCIAL IN OBTAINING SUFFICIENT
INFORMATION FOR THE CORRECT
UNDERSTANDING OF USERS'
INTENTS WITH AS FEW DIALOG
TURNS AS POSSIBLE.

from a user’s utterance, it looks for the listing L according
to the following decision rule:

L = argmaxp(L|C, Q)
[
= argrlnaxp(C, QIL)p(L)
~ argrlnaxp (CILHQIL)p L).

In [19], the prior distribution p (L) and the locality distribution
p (C|L) were estimated from training data. The training data were
the transcripts of real users’ utter-
ances augmented with database
listings. The query distributions
p(Q |L) were modeled with a two-
state HMM illustrated by Figure 3.
In this model, a word w in Q is gen-
erated from either the general
English (GE) state or the state cor-
responding to a listing 7, which is a
value of the random variable L.
With this model, p(QIL) = [[eq(@0p WIGE) + a1p wIL)).
Here the transition weights a( and a; were tied across the
HMMs for all values of L. The transition and emission probabili-
ties were estimated from training data. This model is robust
due to the inclusion of the GE state, which captures filler
phrases like I need the number of or ASR errors. The combina-
tion of real user data and the database listings facilitates high
accuracy on frequently requested listings and simultaneously
enables broad coverage of less frequently requested listings.

Microsoft Research applied a term frequency-inverse docu-
ment frequency (TF-IDF) weighted vector space model (VSM)
for business listing and product name search. The VSM is widely
used for informational retrieval (IR). The standard VSM has
been enhanced for voice search in [1]. The first enhancement
regards the duplicate words in listings and queries. In tradition-
al IR, documents and queries are generally long. The term fre-
quency resembles the true distribution underlying a
document/query. Listings and queries in voice search, on the
other hand, are short in general, so the surface term frequency
may not be a reliable estimate of the true underlying distribu-
tion. A small noise is more likely to bring different search
results. For example, the query Big 5, intended for “Big 5
Sporting Goods,” results in the listing “5 star 5”—the additional
“5” in the listing brings it closer to the query. Since the term
frequency is not reliable for search among short listings, each
term gets a unit count in voice search. A duplicate word is treat-
ed as a different term; e.g., by replacing the second “5” in the
example with 5_2nd. This effectively adds another dimension to
the vector space. Since the IDF of this new dimension is much
higher, it plays a more important role in query matching. A
query without duplicate words like “Big 5” will have a larger
angle from a listing with duplicate words. The angle will be sig-
nificantly reduced if the query does contain the second term. So
“5 5” will match “5 star 5” better. The second enhancement to
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the standard VSM is about the use of category information.
Callers often voluntarily provide category information (like
restaurant, hospital, etc.) in their queries. These category words
can be identified according to the mutual information between
them and the categories in a database. If category information is
detected in a user’s query, the category information about a list-
ing in the database can be appended to the listing’s vector so it
can be compared with the query’s category. Or the category
information of a query and a listing can be compared in a sepa-
rate step. With this enhancement, the VSM would rank the list-
ing “Calabria Ristorante Italiano”
higher than “Calabria Electric”
for the query Calabria Restau-
rant. The third enhancement
aims at the robustness to ASR
errors. Instead of using word uni-
grams or bigrams as terms, char-
acter n-gram unigrams or
bigrams were used as terms to
construct the vectors. The ration-
ale is that the acoustically confusable words may have shared
subword units. For example, the listing “Lime Wire” is rewritten
as a sequence of character 4-grams—3$Lim Lime ime_ me_W
e_Wi _Wir Wire ire$, where “$” indicates the start and the end
of the listing and “_” indicates separation of words. If a caller’s
query Lime Wire is incorrectly recognized as Dime Wired, there
is no word overlapping but still much character n-gram overlap-
ping between the ASR output and the intended listing.

DIALOG MANAGEMENT
Figure 4 shows the common dialog strategy in voice search
applications. The dialog starts with prompting a user for the
category information about the item they are looking for to
narrow down the downstream LM and search spaces. The cat-
egory can be the city/state information in a DA system [1]; the
business/product separation (national
business, local business, or product) in
a voice rating system [3], or a “search-
by” attribute of the music metadata
(e.g., title, album, genre, artist, etc.) in
a music search dialog system [2]. A cat-
egory-specific LM is subsequently used
to recognize the user’s query contain-
ing the listing information, and the
search component looks for the list-
ing in a category-specific database. If
multiple listings are found, a disam-
biguation subdialog is engaged; other-
wise the dialog system either directly
sends the user the listing information
or asks for user confirmation if the
confidence score is low.

Many voice search applications use
their own task-specific dialog strategies.
For example, based on the finding that

DB for the
Category

THE RATIONALE BEHIND THE
SIGNATURE GRAMMAR IS THAT
ANY TERM IN AN ENTRY IS DROPPABLE
AS LONG AS THE DROP DOES NOT
CAUSE THE CONFUSION WITH
ANOTHER ENTRY.

the accuracy on spelled names is much higher than that on spo-
ken names, the residential DA in [23] exploited a multistage dia-
log strategy to improve the accuracy of proper name recognition.
A listing was identified by first recognizing its spelling from a
caller. The spelling word graph greatly reduced the listing space
for subsequent recognition of names and addresses.

DISAMBIGUATION

Most voice search dialog systems adopt an application-specific
disambiguation strategy. In residential DA, people with the
same name are disambiguated
with their addresses [23]. In busi-
ness DA, business categories are
used for disambiguation [1]: from
the set of businesses returned by
the search component, a list of
possible categories is compiled.
For example, the query Calabria
results in multiple search results,
“Calabria Ristorante Italiano” in
category Restaurants, “Calabria Jack J Do” in Doctors and
Clinics, and “Calabria Electric” in Electric Contractors. These
categories are read to the user for selection. All the matching
business names in the selected category are subsequently read
to the user until one is selected or the list is exhausted. Similar
disambiguation strategy is used in a multimodal voice search
application [2], where multiple music titles are displayed in a
GUI for users’ selection when they belong to the same category,
or the different categories are displayed for disambiguation
first. The GUI allows users to scan the information visually,
which makes the multimodal interaction more effective.

One problem of the hard-wired disambiguation strategy is
its inefficiency with long category/entry lists in a speech-only
interface. It has been suggested that spoken dialog strategies
such as summaries are a verbal equivalent of the visual

Get Category

L LM for the
Get Listings
Ambiguous?

A

Send

Disambiguate
g Response

Confirm

f

[FIG4] Common voice search dialog strategy.
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scanning behavior that makes GUIs effective [24]. Hence,
summarization can be used when the search component
returns a large ambiguous set. Figure 5 shows an exemplar
dialog taken from [25]. Here the ambiguous listings are sum-
marized along common attributes such as price ranges and
cuisines, which guide users to
provide the most effective infor-
mation for disambiguation. In
contrast to the hard-wired dis-
ambiguation strategy, the
attributes were selected auto-
matically by using a decision-
theoretic user model and using
the association rules derived
from database subset in the dialog focus [25].

CONFIDENCE MEASURE

Confidence measures are used to determine what to do with the
search results for a spoken query. The results will be played to
callers if the confidences are high, otherwise a confirmation/dis-
ambiguation subdialog will be invoked. Confidence measures
are also used to determine when to elevate an automated service
conversation to a live agent in an early dialog stage if the confi-
dence on the key information (e.g., an individual’s last name in a
residential DA system) is too low [23].

ASR-only confidence measures were used in many early resi-
dential DA systems because search was not a significant source
of uncertainty. A well-studied confidence measure is the word or
sentence posterior probability that can be calculated from an
ASR lattice, which was shown to be more effective than some
other heuristics [26]. A sentence posterior probability obtained
from an n-best list was used in [23] for DA. Another confidence
measure originally proposed for utterance verification [27] was
applied in [20]. It is based on hypothesis testing that leads to a
measure of likelihood ratio.

In late voice search applications where statistical search is
applied for robustness, confidence measures that take into
account uncertainties from different system components are
more adequate. BBN’s DA system applied a generalized linear
model classifier to compute confidence score from a set of fea-
tures extracted from spoken queries and listings [19]. The fea-
ture set included word confidences, ASR n-best frequency, etc.

User: Tell me about restaurants in London.

System: | know of 596 restaurants in London. All price ranges are represented.
Some of the cuisine options are ltalian, British, European, and French.

User: I'm interested in Chinese food.

System: | know of 27 restaurants in London that serve Chinese cuisine. All price
ranges are represented. Some are near the Leicester Square tube station.

User: How about a cheap one?

System: | know of 14 inexpensive restaurants that serve Chinese cuisine. Some
are near the Leicester Square tube station. Some are in Soho.

[FIG5] Search results summarization for disambiguation.

IT HAS BEEN SUGGESTED THAT
SPOKEN DIALOG STRATEGIES SUCH
AS SUMMARIES ARE
A VERBAL EQUIVALENT OF
THE VISUAL SCANNING BEHAVIOR
THAT MAKES GUIS EFFECTIVE.

Among them, the two most important features were the
required and allowable word sets. Much like IBM’s signatures,
the required word set for a listing is a set of word tuples, at
least one of which must be present in a recognized query in
order to associate the listing with the query. The allowable
word set is a list of words that are
allowable in a query to be associ-
ated with the listing.

A confidence model based on
a maximum entropy classifier
was introduced for the
Microsoft Research’s experi-
mental business DA system
[28]. Unlike the required and
allowable set features in [19], it takes into consideration the
importance of words in a listing with features based on the
automatically acquired IDF statistics of the word. The classi-
fier takes multiple features drawn from the ASR, search
component and dialog manager, and the combined features
extracted from multiple components. For example, the
search-related features for a hypothesized listing L and a
recognized query Q include the VSM similarity between L
and Q; the ratio between the maximum IDF value among the
words existing in both L and Q and the maximum IDF value
among all the words in L. The combined features attempt to
model the dependency among features across different com-
ponents of voice search. One such feature is the ASR confi-
dence on the word that also exists in L and has the highest
IDF value; i.e., the ASR confidence on the word that con-
tributes the most to the search result. The effectiveness of
the features were studied with statistical significance tests,
which gave rise to several application-independent features
for confidence measures in the general voice search frame-
work [28].

CLOSING THE FEEDBACK LOOP

Every SDS needs to be tuned, often through multiple iterations,
for improved performance. This involves a painstaking process
of error analysis from logged data. An automatic or semi-
automatic tuning tool is one of the most wanted items by many
dialog experts. Due to the extreme difficulty of the problem, lit-
tle work has been seen on automatic remedy for design/imple-
mentation flaws in the feedback loop.
Most research work focused on automat-
ic flaw discovery from logged data.

In [29], an unsupervised learning
algorithm was proposed to obtain the
linguistic variants of listings that were
not modeled in the Telecom Italia’s DA
system. A phone-looped model was
exploited to obtain the phonetic tran-
scriptions for the utterances that failed
the automated service and were routed
to the operators. The phonetic transcrip-
tions were clustered with a furthest
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neighbor hierarchical clustering algorithm, where two clusters
with the shortest distance were merged in iterative steps. The
distance between two clusters was defined as the furthest dis-
tance between two instance phonetic transcriptions in the clus-
ters, and the distance between two phonetic transcriptions was
obtained with the Viterbi align-
ment using the log-probability for
phone insertion, deletion, and
substitution, where the probabili-
ties were trained using a set of
field data by aligning each decod-
ed phonetic sequence with its
corresponding manual transcrip-
tion. A cluster in the hierarchy
was selected according to the fol-
lowing criteria: the number of
instances in the cluster must exceed a threshold and the disper-
sion of the cluster must be smaller than another threshold. The
central element of a selected cluster was presented to a spoken
dialog expert as a candidate variant of a business listing.

A similar algorithm was proposed in [30] to discover the
semantic intents that were not covered by an auto-attendant
SDS in Microsoft [15]. The system was originally designed to
connect a caller to a Microsoft employee with name dialing. It
was later found that in addition to name dialing an employee,
callers often ask for connections to an office, such as “security”
or “shuttle service.” To discover these uncovered intents, a
LM-based acoustic clustering algorithm was proposed. Unlike
the algorithm in [29] that clusters the 1-best phonetic tran-
scriptions, it treats the word transcription and the cluster they
belong to as hidden variables and optimizes the parameters
associated with them with respect to an objective function.
Specifically, given a fixed number of clusters, it builds a clus-
ter-specific language model p (w|c) and a cluster prior model
p(c) to maximize p(x) = . ,p(x,w, o) = Y ., pxw)
pw|c) p(c), the likelihood of the observed acoustic signal x.
In practice, recognition was decoupled from cluster training: a
task-independent large vocabulary ASR was used to obtain the
hypotheses w and their posterior probabilities. Since w and ¢
are hidden variables, the expectation maximization (EM) algo-
rithm was used to estimate the probability p (¢) and p (w|c) by
maximizing the objective function. Here the EM algorithm
took as input the hypotheses w and p (w|x) obtained from the
task-independent ASR. In [30], unigram language models were
used for p(w|c). With these cluster-specific distributions, a
Kullback-Leibler (KL)-divergence-based distance measure was
used in hierarchical clustering. The EM algorithm was subse-
quently applied for several iterations to re-estimate the model
parameters after merging two clusters. The cluster priors
obtained from the EM algorithm was used to rank the clusters
for presentation to spoken dialog experts.

SUMMARY
This article categorized spoken dialog technology into form
filling, call routing, and voice search, and reviewed the voice

CONFIDENCE MEASURES ARE USED
TO DETERMINE WHEN TO ELEVATE
AN AUTOMATED SERVICE
CONVERSATION TO A LIVE AGENT
IN AN EARLY DIALOG STAGE IF THE
CONFIDENCE ON THE KEY
INFORMATION IS TOO LOW.

search technology. The categorization was made from the
technological perspective. It is important to note that a sin-
gle SDS may apply the technology from multiple categories.
Robustness is the central issue in voice search. The technolo-
gy in acoustic modeling aims at improved robustness to envi-
ronment noise, different channel
conditions, and speaker variance;
the pronunciation research
addresses the problem of unseen
word pronunciation and pronun-
ciation variance; the language
model research focuses on lin-
guistic variance; the studies in
search give rise to improved
robustness to linguistic variance
and ASR errors; the dialog man-
agement research enables graceful recovery from confusions
and understanding errors; and the learning in the feedback
loop speeds up system tuning for more robust performance.

While tremendous achievements have been accomplished in
the past decade on voice search, large challenges remain. Many
voice search dialog systems have automation rates around or
below 50% in field trials. This provides a fertile ground and
great opportunities for future research.
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