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Chapter 10

Reliable Messages and
Connection Establishment

Butler W. Lampson

10.1 Introduction

Given an unreliable network, we would like to reliably deliver messages from a
sender to a receiver. This is the function of the transport layer of the ISO seven-
layer cake. It uses the network layer, which provides unreliable message deli-
very, as a channel for communication between the sender and the receiver.

Ideally we would like to ensure that

• messages are delivered in the order they are sent,

• every message sent is delivered exactly once, and

• an acknowledgement is returned for each delivered message.

Unfortunately, it’s expensive to achieve the second and third goals in spite of
crashes and an unreliable network. In particular, it’s not possible to achieve them
without making some change to stable state (state that survives a crash) every
time a message is received. Why? When we receive a message after a crash, we
have to be able to tell whether it has already been delivered. But if delivering the
message doesn’t change any state that survives the crash, then we can’t tell.

So if we want a cheap deliver operation which doesn’t require writing stable
state, we have to choose between delivering some messages more than once and
losing some messages entirely when the receiver crashes. If the effect of a mes-
sage is idempotent, of course, then duplications are harmless and we will choose
the first alternative. But this is rare, and the latter choice is usually the lesser of
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two evils. It is called ‘at-most-once’ message delivery. Usually the sender also
wants an acknowledgement that the message has been delivered, or in case the
receiver crashes, an indication that it might have been lost. At-most-once mes-
sages with acknowledgements are called ‘reliable’ messages.

There are various ways to implement reliable messages. An implementation is
called a ‘protocol’, and we will look at several of them. All are based on the idea
of tagging a message with an identifier and transmitting it repeatedly to over-
come the unreliability of the channel. The receiver keeps a stock of good identifi-
ers that it has never accepted before; when it sees a message tagged with a good
identifier, it accepts it, delivers it, and removes that identifier from the good set.
Otherwise, the receiver just discards the message, perhaps after acknowledging
it. In order for the sender to be sure that its message will be delivered rather than
discarded, it must tag the message with a good identifer.

What makes the implementations tricky is that we expect to lose some state
when there is a crash. In particular, the receiver will be keeping track of at least
some of its good identifiers in volatile variables, so these identifiers will become
bad at the crash. But the sender doesn’t know about the crash, so it will go on
using the bad identifiers and thus send messages that the receiver will reject. Dif-
ferent protocols use different methods to keep the sender and the receiver more
or less in sync about what identifiers to use.

In practice reliable messages are most often implemented in the form of ‘con-
nections’. The idea is that a connection is ‘established’, any amount of informa-
tion is sent on the connection, and then the connection is ‘closed’. You can think
of this as the sending of a single large message, or as sending the first message
using one of the protocols we discuss, and then sending later messages with in-
creasing sequence numbers. Usually connections are full-duplex, so that either
end can send independently, and it is often cheaper to establish both directions at
the same time. We ignore all these complications in order to concentrate on the
essential logic of the protocols.

What we mean by a crash is not simply a failure and restart of a node. In prac-
tice, protocols for reliable messages have limits, called ‘timeouts’, on the length of
time for which they will wait to deliver a message or get an ack. We model the
expiration of a timeout as a crash: the protocol abandons its normal operation
and reports failure, even though in general it’s possible that the message in fact
has been or will be delivered.

We begin by writing a careful specification S for reliable messages. Then we
present a ‘lower-level’ spec D in which the non-determinism associated with los-
ing messages when there is a crash is moved to a place that is more convenient
for implementations. We explain why D implements S but don’t give a proof,
since that requires techniques beyond the scope of this chapter. With this ground-
work, we present a generic protocol G and a proof that it implements D. Then we
describe two protocols that are used in practice, the handshake protocol H and
the clock-based protocol C, and show how both implement G. Finally, we explain
how to modify our protocols to work with finite sets of message identifiers, and
summarize our results.
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The goals of this chapter are to:

• Give a simple, clear, and precise specification of reliable message delivery
in the presence of crashes.

• Explain the standard handshake protocol for reliable messages that is used
in TCP, ISO TP4, and many other widespread communication systems, as
well as a newer clock-based protocol.

• Show that both protocols can be best understood as special cases of a sim-
pler, more general protocol for using identifiers to tag messages and
acknowledgements for reliable delivery.

• Use the method of abstraction functions and invariants to help in under-
standing these three subtle concurrent and fault-tolerant algorithms, and in
the process present all the hard parts of correctness proofs for all of them.

• Take advantage of the generic protocol to simplify the analysis and the
arguments.

10.1.1 Methods

We use the definition of ‘implements’ and the abstraction function proof method
explained in Chapter 3. Here is a brief summary of this material.

Suppose that X and Y are state machines with named transitions called actions;
think of X as a specification and Y as an implementation. We partition the actions
of X and Y into external and internal actions. A behavior of a machine M is a se-
quence of actions that M can take starting in an initial state, and an external behav-
ior of M is the subsequence of a behavior that contains only the external actions.
We say Y implements X iff every external behavior of Y is an external behavior of
X.1 This expresses the idea that what it means for Y to implement X is that from
the outside you don’t see Y doing anything that X couldn’t do.

The set of all external behaviors is a rather complicated object and difficult to
reason about. Fortunately, there is a general method for proving that Y imple-
ments X without reasoning explicitly about behaviors in each case. It works as
follows. First, define an abstraction function f from the state of Y to the state of X.
Then show that Y simulates X:

1. f maps an initial state of Y to an initial state of X.

2. For each Y-action and each reachable state y there is a sequence of X-actions
(perhaps empty) that is the same externally, such that the following dia-
gram commutes.

                                                
1 Actually this definition only deals with the implementation of safety properties. Roughly

speaking, a safety property is an assertion that nothing bad happens; it is a generalization of the
notion of partial correctness for sequential programs. A system that does nothing implements any
safety property. Specifications may also include liveness properties, which roughly assert that
something good eventually happens; these generalize the notion of termination for sequential
programs. A full treatment of liveness is beyond the scope of this chapter, but we do explain
informally why the protocols make progress.
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A sequence of X-actions is the same externally as a Y-action if they are the same
after all internal actions are discarded. So if the Y-action is internal, all the X-
actions must be internal (perhaps none at all). If the Y-action is external, all the X-
actions must be internal except one, which must be the same as the Y-action.

A straightforward induction shows that Y implements X: For any Y-behavior
we can construct an X-behavior that is the same externally, by using (2) to map
each Y-action into a sequence of X-actions that is the same externally. Then the
sequence of X-actions will be the same externally as the original sequence of Y-
actions.

In order to prove that Y simulates X we usually need to know what the reach-
able states of Y are, because it won’t be true that every action of Y from an arbi-
trary state of Y simulates a sequence of X-actions; in fact, the abstraction function
might not even be defined on an arbitrary state of Y. The most convenient way to
characterize the reachable states of Y is by an invariant, a predicate that is true of
every reachable state. Often it’s helpful to write the invariant as a conjunction,
and to call each conjunct an invariant. It’s common to need a stronger invariant
than the simulation requires; the extra strength is a stronger induction hypothesis
that makes it possible to establish what the simulation does require.

So the structure of a proof goes like this:

• Establish invariants to characterize the reachable states, by showing that
each action maintains the invariants.

• Define an abstraction function.

• Establish the simulation, by showing that each Y-action simulates a se-
quence of X-actions that is the same externally.

This method works only with actions and does not require any reasoning about
behaviors. Furthermore, it deals with each action independently. Only the
invariants connect the actions. So if we change (or add) an action of Y, we only
need to verify that the new action maintains the invariants and simulates a se-
quence of X-actions that is the same externally. We exploit this remarkable fact in
Section 10.9 to extend our protocols so that they use finite, rather than infinite,
sets of identifiers.

In what follows we give abstraction functions and invariants for each protocol.
The actual proofs that the invariants hold and that each Y-action simulates a suit-
able sequence of X-actions are routine, so we give proofs only for a few sample
actions.

f(y)

y y’

f(y’)

Y-action

X-actions

f f
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10.1.2 Types and Notation

We use a type M for the messages being delivered. We assume nothing about M.
All the protocols except S and D use a type I of identifiers for messages. In

general we assume only that Is can be compared for equality; C assumes a total
ordering. If x is a multiset whose elements have a first I component, we write
ids(x) for the multiset of Is that appear first in the elements of x.

We write 〈...〉 for a sequence with the indicated elements and + for concatena-
tion of sequences. We view a sequence as a multiset in the obvious way. We write
x = (y, *) to mean that x is a pair whose first component is y and whose second
component can be anything, and similarly for x = (*, y).

We define an action by giving its name, a guard that must be true for the action
to occur, and an effect described by a set of assignments to state variables. We
encode parameters by defining a whole family of actions with related names; for
instance, get(m) is a different action for each possible m. Actions are atomic; each
action completes before the next one is started.

To express concurrency we introduce more actions. Some of these actions may
be internal, that is, they may not involve any interaction with the client of the
protocol. Internal actions usually make the state machine non-deterministic, since
they can happen whenever their guards are satisfied, not just when there is an
interaction with the environment. We mark external actions with *s, two for an
input action and one for an output action. Actions without *s are internal.

It’s convenient to present the sender actions on the left and the receiver actions
on the right. Some actions are not so easy to categorize, and we usually put them
on the left.

10.2 The Specification S

The specification S for reliable messages is a slight extension of the spec for a FIFO
queue. Figure 10.1 shows the external actions and some examples of its transi-
tions. The basic state of S is the FIFO queue q of messages, with put(m) and get(m)
actions. In addition, the status variable records whether the most recently sent
message has been delivered. The sender can use getAck(a) to get this information;
after that it may be forgotten by setting status to lost, so that the sender doesn’t
have to remember it forever. Both sender and receiver can crash and recover. In
the absence of crashes, every message put is delivered by get in the same order
and is positively acknowledged. If there is a crash, any message still in the queue
may be lost at any time between the crash and the recovery, and its ack may be
lost as well.

The getAck(a) action reports on the message most recently put, as follows. If
there has been no crash since it was put there are two possibilities:

• the message is still in q and getAck cannot occur;

• the message was delivered by get(m) and getAck(OK) occurs.

If there have been crashes, there are two additional possibilities:
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• the message was lost and getAck(lost) occurs;

• the message was delivered or is still in q but getAck(lost) occurs anyway.

The ack makes the most sense when the sender alternates put(m) and getAck(a)
actions. Note that what is being acknowledged is delivery of the message to the
client, not its receipt by some part of the implementation, so this is an end-to-end
ack. In other words, the get should be thought of as including client processing of
the message, and the ack might include some result returned by the client such as
the result of a remote procedure call. This could be expressed precisely by adding
an ack action for the client. We won’t do that because it would clutter up the pre-
sentation without improving our understanding of how reliable messages work.

To define S we introduce the types A (for acknowledgement) with values in
{OK, lost} and Status with values in {OK, lost, ?}. Table 10.1 gives the state and
actions of S. Note that it says nothing about channels; they are part of the imple-
mentation and have nothing to do with the spec.

Why do we have both crash and recover actions, as opposed to just a crash
action? A spec which only allows messages to be lost at the time of a crash is not
implemented by a protocol like C in which the sender accepts a message with put
and sends it without verifying that the receiver is running normally. In this case
the message is lost even though it wasn’t in the system at the time of the crash.
This is why we have a separate recoverr action which allows the receiver to de-
clare the point after a crash when messages are again guaranteed not to be lost.
There seems to be no need for a recovers action, but we have one for symmetry.

A spec which only allows messages to be lost at the time of a recover is not
implemented by any protocol that can have two messages in the network at the
same time, because after a crashs and before the following recovers it’s possible for
the second message in the network to be delivered, which means that the first
one must be lost to preserve the FIFO property.

status = ?

R
e
c
e
i
v
e
r

S
e
n
d
e
r crash

lose(B)
lose(D)

recover

put(m)

getAck(a)
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Figure 10.1.  Some states and transitions for S
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The simplest spec which covers both these cases can lose a message at any time
between a crash and its following recover, and we have adopted this alternative.

10.3 The Delayed-Decision Specification D

Next we introduce an implementation of S, called the delayed-decision specifica-
tion D, that is more non-deterministic about when messages are lost. The reason
for D is to simplify the proofs of the protocols: with more freedom in D, it’s easier
to prove that a protocol simulates D than to prove that it simulates S. A typical
protocol transmits messages from the sender to the receiver over some kind of
channel which can lose messages; to compensate for these losses, the sender
retransmits. If the sender crashes with a message in the channel it stops retrans-
mitting, but whether the receiver gets the message depends on whether the
channel loses it. This may not be decided until after the sender has recovered. So
the protocol doesn’t decide whether the message is lost until after the sender has
recovered. D has this freedom, but S does not.

D is the same as S except that the decisions about which messages to lose at
recovery, and whether to lose the ack, are made by asynchronous drop actions
that can occur after recovery. Each message in q, as well as the status variable, is
augmented by an extra component of type Mark which is normally + but may be-
come # between crash and recovery because of a mark action. At any time an
unmark action can change a mark from # back to +, a message marked # can be
lost by drop, or a status marked # can be set to lost by drop. Figure 10.2 gives an
example of the transitions of D; the + marks are omitted.

Sender Receiver
Name Guard Effect Name Guard Effect

**put(m) recs = false append m to q,
status := ?

*get(m) recr = false,
m is first on q

remove head of q,
if q = empty and status = ?
then status := OK

*getAck(a) recs = false,
status = a

optionally
  status := lost

**crashs recs := true **crashr recr := true
*recovers recs recs := false *recoverr recr recr := false
lose recs or recr      delete some element from q;

     if it’s the last then status := lost,
or status := lost

q : sequence[M] := 〈 〉
status : Status := lost
recs : Boolean := false  (rec is short for ‘recovering’)
recr : Boolean := false

Table 10.1.  State and actions of S
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Figure 10.2.  Some states and transitions of
D

Sender Receiver
Name Guard Effect Name Guard

**put(m) recs = false append (m, +)  to q,
status := (?, +)

*get(m) recr = false,
(m, *) first on 

*getAck(a) recs = false,
status = (a, *)

    status  := (a, +)
or status := (lost, +)

**crashs recs := true **crashr
*recovers recs recs := false *recoverr recr
mark recs or recr for some element

 of q or for status,
     mark := #

unmark

drop delete an element of q with mark = #;
   if it was the last element, status := (lost

or if status = (*, #), status := (lost, +)

q : sequence[(M, Mark)] := 〈 〉
status : (Status, Mark) := (lost, +)
recs : Boolean := false
recr : Boolean := false

Table 10.2.  State and actions of D
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To define D we introduce the type Mark which has values in the set {+, #}.
Table 10.2 gives the state and actions of D.

10.3.1 Proof that D Implements S

We do not give this proof, since to do it using abstraction functions we would
have to introduce ‘prophecy variables’, also known as ‘multi-valued mappings’
or ‘backward simulations’ (Abadi and Lamport [1991], Lynch and Vaandrager
[1993]). If you work out some examples, however, you will probably see why the
two specs S and D have the same external behavior.

10.4 Channels

All our protocols use the same channel abstraction to transfer information
between the sender and the receiver. We use the name ‘packet’ for the messages
sent over a channel, to distinguish them from reliable messages. A channel can
freely drop and reorder packets, and it can duplicate a packet any finite number
of times when it’s sent;2 the only thing it isn’t allowed to do is deliver a packet
that wasn’t sent. The reason for using such a weak specification is to ensure that
the reliable message protocol will work over any bit-moving mechanism that
happens to be available. With a stronger channel spec, for instance one that
doesn’t reorder packets, it’s possible to have somewhat simpler or more efficient
implementations.

There are two channels sr and rs, one from sender to receiver and one from re-
ceiver to sender, each a multiset of packets initially empty. The nature of a packet
varies from one protocol to another. Table 10.3 gives the channel actions.

Protocols interact with the channels through the external actions send(...) and
rcv(...) which have the same names in the channel and in the protocol. One of
these actions occurs if both its pre-conditions are true, and the effect is both the
effects. This always makes sense because the states are disjoint.

                                                
2 You might think it would be more natural and closer to the actual implementation of a channel

to allow a packet already in the channel to be duplicated. Unfortunately, if a packet can be
duplicated any number of times it’s possible that a protocol like H (see section 10.8) will not make
any progress.

Name Guard Effect Name Guard Effect
**sendsr(p) add some number

of copies of p to sr
**sendrs(p) add some number

of copies of p to rs
*rcvsr(p) p ∈ sr remove one p

from sr
rcvrs(p) p ∈ rs remove one p

from rs
losesr(p) p ∈ sr remove one p

from sr
losers(p) p ∈ rs remove one p

from rs

Table 10.3.  Actions of the channels
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10.5 The Generic Protocol G

The generic protocol G generalizes two practical protocols described later, H and
C; in other words, both of them implement G. This protocol can’t be
implemented directly because it has some ‘magic’ actions that use state from both
sender and receiver. But both real protocols implement these actions, each in its
own way.

The basic idea is derived from the simplest possible distributed implementa-
tion of S, which we call the stable protocol SB. In SB all the state is stable (that is,
nothing is lost when there is a crash), and each end keeps a set gs or gr of good
identifiers, that is, identifiers that have not yet been used. Initially gs ⊆ gr, and the
protocol maintains this as an invariant. To send a message the sender chooses a
good identifier i from gs, attaches i to the message, moves i from gs to a lasts
variable, and repeatedly sends the message. When the receiver gets a message
with a good identifier it accepts the message, moves the identifier from gr to a
lastr variable, and returns an ack packet for the identifier after the message has
been delivered by get. When the receiver gets a message with an identifier that
isn’t good, it returns a positive ack if the identifier equals lastr and the message
has been delivered. The sender waits to receive an ack for lasts before doing
getAck(OK). There are never any negative acks, since nothing is ever lost.

This protocol satisfies the requirements of S; indeed, it does better since it
never loses anything.

1. It provides at-most-once delivery because the sender never uses the same
identifier for more than one message, and the receiver accepts an identifier
and its message only once.

2. It provides FIFO ordering because at most one message is in transit at a time.

3. It delivers all the messages because the sender’s good set is a subset of the
receiver’s.

4. It acks every message because the sender keeps retransmitting until it gets
the ack.

The SB protocol is widely used in practice, under names that resemble ‘queu-
ing system’. It isn’t used to establish connections because the cost of a stable
storage write for each message is too great.

In G we have the same structure of good sets and last variables. However, they
are not stable in G  because we have to update them for every message, and we
don’t want to do a stable write for every message. Instead, there are operations to
grow and shrink the good sets; these operations maintain the invariant gs ⊆ gr as
long as there is no receiver crash. When there is a crash, messages and acks can
be lost, but S and D allow this.  Figure 10.3 shows the state and some possible
transitions of G in simplified form. The names in outline font are state variables
of D, and the corresponding values are the values of the abstraction function in
that state.
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Figure 10.4 shows the state of G, the most important actions, and the S-shaped
flow of information. The new variables in the figure are the complement of the
used variables in the code. The heavy lines show the flow of a new identifier from
the receiver to the sender, back to the receiver along with the message, and then
back again to the sender along with the acknowledgement.

G also satisfies the requirements of S, but not quite in the same way as SB.

1. At-most-once delivery is the same as in SB.

2. The sender may send a message after a crash without checking that a
previous outstanding message has actually been received. Thus more than
one message can be in transit at a time, so there must be a total ordering on
the identifiers in transit to maintain FIFO ordering of the messages. In G this
ordering is defined by the order in which the sender chooses identifiers.

3. Complete delivery is the same as in SB as long as there is no receiver crash.
When the receiver crashes gs ⊆ gr may cease to hold, with the effect that
messages that the sender handles during the receiver crash may be assigned
identifiers that are not in gr and hence may be lost. The protocol ensures
that this can’t happen to messages whose put happens after the receiver has
recovered. When the sender crashes, it stops retransmitting the current
message, which may be lost as a result.

4. As in SB, the sender keeps retransmitting until it gets an ack, but since mes-
sages can be lost, there must be negative as well as positive acks. When the
receiver sees a message with an identifier that is not in gr and not equal to
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Figure 10.3.  Some states and transitions of G
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lastr it optionally returns a negative ack. There is no point in doing this for a
message with i < lastr because the sender only cares about the ack for lasts,
and the protocol maintains the invariant lastr ≤ lasts. If i > lastr, however, the
receiver must sometimes send a negative ack in response so that the sender
can find out that the message may have been lost.

G is organized into a set of implementable actions that also appear, with very
minor variations, in both H and C, plus the magic grow, shrink, and cleanup
actions that are simulated quite differently in H and in C.

When there are no crashes, the sender and receiver each go through a cycle of
modes, the sender perhaps one mode ahead. In one cycle one message is sent and
acknowledged. For the sender, the modes are idle, [needI], send; for the receiver,
they are idle and ack. An agent that is not idle is busy. The bracketed mode is
‘internal’: it’s possible to advance to the next mode without receiving another
message. The modes are not explicit state variables, but instead are derived from
the values of the msg and last variables, as follows:

modes = idle iff  msg = nil moder = idle iff  lastr = nil
modes = needI iff  msg ≠ nil and lasts = nil
modes = send iff  msg ≠ nil and lasts ≠ nil moder = ack iff  lastr ≠ nil

To define G we introduce the types:

I, an infinite set of identifiers.
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Figure 10.4.  State, main actions, and information
flow of G
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P (packet), a pair (I, M or A).

The sender sends (I, M) packets to the receiver, which sends (I, A) packets
back. The I is there to identify the packet for the destination. We define a partial
order on I by the rule that i < i’ iff i precedes i’ in the sequence useds.

The G we give is a somewhat simplified version, because the actions are not as
atomic as they should be. In particular, some actions have two external inter-
actions, sometimes one with a channel and one with the client, sometimes two
with channels. However, the simplified version differs from one with the proper
atomicity only in unimportant details. The appendix gives a version of G with all
the fussy details in place. We don’t give these details for the C and H protocols
that follow, but content ourselves with the simplified versions in order to empha-
size the important features of the protocols.

Figure 10.5 is a more detailed version of Figure 10.4, which shows all the
actions and the flow of information between the sender and the receiver. State
variables are given in bold, and the black guards on the transitions give the pre-
conditions. The mark variable can be # when the receiver has recovered since a
message was put; it reflects the fact that the message may be dropped.

Table 10.4 gives the state and actions of G. The magic parts, that is, those that
touch non-local state, are boxed. The conjunct ¬ recs has been omitted from the
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guards of all the sender actions except recovers, and likewise for ¬ recr and the
receiver actions.

In addition to meeting the spec S, this protocol has some other important
properties:

• It makes progress: regardless of prior crashes, provided both ends stay up
and the channels don’t always lose messages, then if there’s a message to
send it is eventually sent, and otherwise both parties eventually become
idle, the sender because it gets an ack, the receiver because eventually
cleanup makes mode = idle. Progress depends on doing enough grow actions,
and in particular on completing the sequence growr(i), grows(i), choose(i).

Name Guard Effect Name Guard Effect
**put(m) msg = nil,

gs ⊆ gr or recr  

msg := m,

mark := +  

choose(i) msg ≠ nil,
lasts = nil,
i ∈ gs

gs –:={j | j ≤ i},
lasts := i,
useds +:= 〈i〉

*get(m) exists i such
that rcvsr(i,m),
i ∈ gr

gr –:={j | j ≤ i},
lastr := i,
sendrs(i, OK)

send lasts ≠ nil sendsr(lasts, msg)
*getAck(a) rcvrs(lasts, a) lasts := nil,

msg := nil
sendAck exists i such

that rcvsr(i, *),
i ∉ gr

optionally sendrs
(i, if i = lastr
then OK else lost)

**crashs recs := true **crashr recr := true
*recovers recs lasts := nil,

msg := nil,
recs := false

*recoverr recr,
usedr ⊇
  gs ∪ useds

lastr := nil,
mark := #,
recr := false

shrinks(i) gs –:= {i} shrinkr(i) i ∉ gs, i ≠ lasts

or mark = #
gr –:= {i}

grows(i) i ∉ useds,
i ∈ gr or recr

gs +:= {i} growr(i) i ∉ usedr gr +:= {i},
usedr +:= {i}

grow-
useds(i)

i ∉ useds ∪ gs,
i ∈ usedr or recr

useds +:= {i} cleanup lastr ≠ lasts lastr := nil

unmark gs ⊆ gr, lasts ∈
gr ∪  {lastr,nil}

mark := +

useds : sequence[I] := 〈 〉 (stable) usedr : set[I] := { } (stable)
gs : set[I] := { } gr : set[I] := { }
lasts : I or nil := nil lastr : I or nil := nil
msg : M or nil := nil mark : Mark := #
recs : Boolean := false recr : Boolean := false

Table 10.4.  State and actions of G
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• It’s not necessary to do a stable storage operation for each message. Instead,
the cost of a stable storage operation can be amortized over as many mes-
sages as you like. G has only two stable variables: useds and usedr. Different
implementations of G handle useds differently. To reduce the number of
stable updates to usedr, refine G to divide usedr into the union of a stable
usedr-s and a volatile usedr-v. Move a set of Is from usedr-s to usedr-v with a
single stable update. The usedr-v becomes empty in recoverr; simulate this
with growr(i) followed immediately by shrinkr(i) for every i in usedr-v.

• The only state required for an idle agent is the stable variable used. All the
other (volatile) state is the same at the end of a message transmission as at
the beginning. The sender forgets its state in getAck, the receiver in cleanup,
and both in recover. The shrink actions make it possible for both parties to
forget the good sets. This is important because agents may need to com-
municate with many other agents between crashes, and it isn’t practical to
require that an agent maintain some state for everyone with whom it has
ever communicated.

• An idle sender doesn’t send any packets. An idle receiver doesn’t send any
packets unless it receives one, because it sends an acknowledgement only in
response to a packet. This is important because the channel resources
shouldn’t be wasted.

We have constructed G with as much non-determinism as possible in order to
make it easy to prove that different practical protocols implement G. We could
have simplified it, for instance by eliminating unmark, but then it would be more
difficult to construct an abstraction function from some other protocol to G, since
the abstraction function would have to account for the fact that after a recoverr the
mark variable is # until the next put. With unmark, an implementation of G is free
to set mark back to + whenever the guard is true.

10.5.1 Abstraction Function to D

The abstraction function is an essential tool for proving that the protocol
implements the spec. But it is also an important aid to understanding what is
going on. By studying what happens to the value of the abstraction function
during each action of G, we can learn what the actions are doing and why they
work.

Definitions

cur-q = {(msg, mark)} if msg ≠ nil and (lasts = nil or lasts ∈ gr)
{ } otherwise

inflightsr = {(i, m) ∈ ids(sr) | i ∈ gr and i ≠ lasts},
sorted by i to make a sequence

old-q = the sequence of (M, Mark)’s gotten by turning
each (i, m) in inflightsr into (m, #)

inflightrs = {lasts} if (lasts, OK) ∈ rs and lasts ≠ lastr
{ } otherwise.
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Note that the inflights exclude elements that might still be retransmitted as well as
elements that are not of interest to the destination. This is so the abstraction func-
tion can pair them with the # mark.

Abstraction function

q old-q + cur-q
status (?, mark) if cur-q ≠ { } (a)

(OK, +) if modes = send and lasts = lastr (b)
(OK, #) if modes = send and lasts ∈ inflightrs (c)
(lost, +) if modes = send (d)

and lasts ∉ (gr ∪ {lastr} ∪ inflightrs)
(lost, +) if modes = idle (e)

recs/r recs/r

The cases of status are exhaustive. Note that we do not want (msg, +) in q if modes
= send and lastss ∉ gr, because in this case msg has been delivered or lost.

We see that G simulates the q of D using old-q + cur-q, and that old-q is the left-
over messages in the channel that are still good but haven’t been delivered, while
cur-q is the message the sender is currently working on, as long as its identifier is
not yet assigned or still good. Similarly, status has a different value for each step
in the delivery process: still sending the message (a), normal ack (b), ack after a
receiver crash (c), lost ack (d), or delivered ack (e).

10.5.2 Invariants

Like the abstraction function, the invariants are both essential to the proof and an
important aid to understanding. They express a great deal of information about
how the protocol is supposed to work. It’s especially instructive to see how the
parts of the state that have to do with crashes (recs/r and mark) affect them.

The first few invariants establish some simple facts about the used sets and
their relation to other variables. (G2) reflects that fact that identifers move from gs
to useds one by one, (G3) the fact that unless the receiver is recovering, identifiers
must enter usedr before they can appear anywhere else (G4) the fact that they
must enter useds before they can appear in last variables or channels.

If msg = nil then lasts = nil (G1)

gs ∩ useds = { } (G2a)

All elements of useds are distinct. (G2b)

usedr ⊇ gr (G3a)

If ¬ recr then usedr ⊇ gs ∪ useds (G3b)

useds ⊇ {lasts, lastr} – {nil} ∪ ids(sr) ∪ ids(rs) (G4)

The next invariants deal with the flow of identifiers during delivery. (G5) says
that each identifier tags at most one message. (G6) says that if all is well, gs and
lasts are such that a message will be delivered and acknowledged properly. (G7)
says that an identifier for a message being acknowledged can’t be good.
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{m | (i = lasts and m = msg) or (i, m) ∈ sr} has 0 or 1 elements (G5)

If mark = + and ¬ recs and ¬ recr then gs ⊆ gr and lasts ∈ gr ∪ {lastr, nil} (G6)

gr ∩ ({lastr} ∪ ids(rs)) = { } (G7)

Finally, some facts about the identifier lasts for the message the sender is trying
to deliver. It comes later in the identifier ordering than any other identifier in sr
(G8a). If it’s been delivered and is getting a positive ack, then neither it nor any
other identifier in sr is in gr, but they are all in usedr (G8b). If it’s getting a nega-
tive ack then it won’t get a later positive one (G8c).

If lasts ≠ nil then

ids(sr) ≤ lasts (G8a)

and if lasts = lastr or (lasts,OK) ∈ rs then ({lasts} ∪ ids(sr)) ∩ gr = { } (G8b)
and ({lasts} ∪ ids(sr)) ⊆ usedr

and if (lasts, lost) ∈ ids(rs) then lasts ≠ lastr (G8c)

10.5.3 Proof that G Implements D

This requires showing that every action of G simulates some sequence of actions
of D which is the same externally. Since G has quite a few actions, the proof is
somewhat tedious. A few examples give the flavor.

—recovers: Mark msg and drop it unless it moves to old-q; mark and drop status.

—get(m): For the change to q, first drop everything in old-q less than i. Then m is
first on q since either i is the smallest I in old-q, or i = lasts and old-q is empty by
(G8a). So D’s get(m) does the rest of what G’s does. Everything in old-q + cur-q
that was ≤ i is gone, so the corresponding M’s are gone from q as required.

We do status by the abstraction function’s cases on its old value. D says it
should change to (OK, x) iff q becomes empty and it was (?, x). In cases (c-e) status
isn’t (?, x) and it doesn’t change. In case (b) the guard i ∈ gr of get is false by
(G8b). In case (a) either i = lasts or not. If not, then cur-q remains unchanged by
(G8a), so status does also and q remains non-empty. If so, then cur-q and q both
become empty and status changes to case (b). Simulate this by umarking status if
necessary; then D’s get(m) does the rest.

—getAck(a): The q is unchanged because lasts = i ∈ ids(rs), so lasts ∉ gr by (G7) and
hence cur-q is empty, so changing msg to nil keeps it empty. Because old-q doesn’t
change, q doesn’t either. We end up with status = (lost, +) according to case (e), as
required by D. Finally, we must show that a agrees with the old value of status.
We do this by the cases of status as we did for get:

(a) Impossible, because it requires lasts ∈ gr, but we know lasts ∈ ids(rs), which
excludes lasts ∈ gr by (G7).

(b) In this case lasts = lastr, so (G8c) ensures a ≠ lost, so a = OK.

(c) If a = OK we are fine. If a = lost drop status first.

(d) Since lasts ∉ inflightrs, only (lasts, lost) ∈ rs is possible, so a = lost.
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(e) Impossible because lasts ≠ nil.

—shrinkr: If recr then msg may be lost from q; simulate this by marking and drop-
ping it, and likewise for status. If mark = # then msg may be lost from q, but it is
marked, so simulate this by dropping it, and likewise for status. Otherwise the
precondition ensures that lasts ∈ gr doesn’t change, so cur-q and status don’t.
Inflightsr, and hence old-q, can lose an element; simulate this by dropping the cor-
responding element of q, which is possible since it is marked #.

10.6 How C and H Implement G

We now proceed to give two practical protocols, the clock-based protocol C and
the handshake protocol H. Each implements G, but they handle the good sets
quite differently.

In C the good sets are maintained using time; to make this possible the sender
and receiver clocks must be roughly synchronized, and there must be an upper
bound on the time required to transmit a packet. The sender’s current time times
is the only member of gs; if the sender has already used times then gs is empty.
The receiver accepts any message with an identifier in the range (timer – 2ε – δ,
timer + 2ε), where ε is the maximum clock skew from real time and δ the maxi-
mum packet transmission time, as long as it hasn’t already accepted a message
with a later identifier.

In H the sender asks the receiver for a good identifier; the receiver’s obligation
is to keep the identifier good until it crashes or receives the message, or learns
from the sender that the identifier will never be equal to lasts.

We begin by giving the abstraction functions from C and H to G, and a sketch
of how each implements the magic actions of G, to help the reader in comparing
the protocols. Careful study of these should make it clear exactly how each proto-
col implements G’s magic actions in a properly distributed fashion.

Then for each protocol we give a figure that shows the flow of packets, follow-
ed by a formal description of the state and the actions. The portion of the figures
that shows messages being sent and acks returned is exactly the same as the bot-
tom half of Figure 10.4 for G; all three protocols handle messages and acks
identically. They differ in how the sender obtains good identifiers, shown in the
top of the figures, and in how the receiver cleans up its state. In the figures for C
and H we show the abstraction function to G in outline font.

Note that G allows either good set to grow or shrink by any number of Is
through repeated grow or shrink actions as long as the invariants gs ⊆ gr and lasts
∈ gr ∪ {lastr} are maintained in the absence of crashes. For C the increase actions
simulate occurrences of several growr and shrinkr actions, one for each i in the set
defined in the table. Likewise rcvrs(js, i) in H may simulate several shrinks actions.
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Abstraction functions to G

G C H
useds {i | 0 ≤ i < times} ∪ {sent} – {nil} useds (history)
usedr {i | 0 ≤ i < low} usedr

gs {times} – {sent} {i | (js, i) ∈ rs}
gr {i  | low < i and i < high} {ir} – {nil}

mark # if lasts ∈ gr and deadline = nil
+ otherwise

# if modes = needI and gs ⊄ gr
+ otherwise

msg, lasts/r, and recs/r are the same in G, C, and H

sr sr the (I, M) messages in sr
rs rs the (I, A) messages in rs

Sketch of implementations

G C H
grows(i) tick(i) sendrs(js, i)
shrinks(i) tick(i’), i ∈ {times} – {sent} losers(js, i) if the last copy is lost

or rcvrs(js, i’), for each i ∈ gs – {i’}

growr(i) increase-high(i’), for each
  i ∈ {i | high < i < i’}

mode = idle and rcvsr(needI, *)

shrinkr(i) increase-low(i’), for each
  i ∈ {i | low < i ≤ i’}

rcvsr(ir, done)

cleanup cleanup rcvsr(lastr, done)

10.7 The Clock-Based Protocol C

This protocol is due to Liskov, Shrira, and Wroclawski [1991]. Figure 10.6 shows
the state and the flow of information. Compare it with Figure 10.4 for G, and note
that there is no flow of new identifiers from receiver to sender. In C the passage
of time supplies the sender with new identifiers, and is also allows the receiver to
clean up its state.

The idea behind C is to use loosely synchronized clocks to provide the identifi-
ers for messages. The sender uses its current time for the next identifier. The
receiver keeps track of low, the biggest clock value for which it has accepted a
message: bigger values than this are good. The receiver also keeps a stable bound
high on the biggest value it will accept, chosen to be larger than the receiver’s
clock plus the maximum clock skew. After a crash the receiver sets low := high;
this ensures that no messages are accepted twice.
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The sender’s clock advances, which ensures that it will get new identifiers and
also ensures that it will eventually get past low and start sending messages that
will be accepted after a receiver crash.

It’s also possible for the receiver to advance low spontaneously (by increase-low)
if it hasn’t received a message for a long time, as long as low stays smaller than
the current time – 2ε – δ, where ε is the maximum clock skew from real time and
δ is the maximum packet transmission time. This is good because it gives the
receiver a chance to run several copies of the protocol (one for each of several
senders), and make the values of low the same for all the idle senders. Then the
receiver only needs to keep track of a single low for all the idle senders, plus one
for each active sender. Together with C’s cleanup action this ensures that the
receiver needs no storage for idle senders.

If the assumptions about clock skew and maximum packet transmission time
are violated, C still provides at-most-once delivery, but it may lose messages
(because low is advanced too soon or the sender’s clock is later than high) or ac-
knowledgements (because cleanup happens too soon).

Modes, types, packets, and the pattern of messages are the same as in G, except
that the I set has a total ordering. The deadline variable expresses the assumption
about maximum packet delivery time: real time doesn’t advance (by progress)
past the deadline for delivering a packet. In a real implementation, of course,
there will be some other properties of the channel from which the constraint im-
posed by deadline can be deduced. These are usually probabilistic; we deal with
this by declaring a crash whenever the channel fails to meet its deadline.

choose(i)
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Figure 10.6.  The flow of information in C
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Name Guard Effect Name Guard Effect
**put(m) msg = nil msg := m
choose(i) msg ≠ nil,

lasts = nil,
i=times, i≠sent

sent := i, lasts := i,
deadline := now+δ

*get(m) exists i such
that rcvsr(i, m),
i ∈ (low..high)

low := i, lastr := i,
deadline := nil,
sendrs(i, OK)

send lasts ≠ nil sendsr(lasts, msg)

*getAck(a) rcvrs(lasts, a) lasts := nil,
msg := nil

sendAck exists i such
 that rcvsr(i, *),
i ∉ (low..high)

low := max(low, i),
sendrs(i, if i = lastr
then OK else lost )
if i = lasts
then deadline := nil

**crashs recs := true,
deadline:= nil

**crashr recr := true,
deadline:= nil

*recovers recs lasts := nil,
msg := nil,
recs := false

*recoverr recr,
high < timer
           – 2ε

lastr := nil,
low := high,
high := timer

             + 2ε + β,
recr := false

increase-
low(i)

low < i ≤ timer
          – 2ε – δ

low := i

increase-
high(i)

high < i ≤ timer
          + 2ε + β

high := i

cleanup sent ≠ times sent := nil cleanup lastr < timer
          – 2ε – 2δ

lastr := nil

tick(i) times < i,
|now – i| < ε

times := i tick(i) timer < i,
|now – i| < ε,
i + 2ε < high
  or recr

timer := i

progress(i) now < i, |i – times/r| < ε,
i < deadline or deadline=nil

now := i

times : I := 0 (stable) timer : I := 0 (stable)
sent : I or nil := nil low : I := 0

high : I := β (stable)
lasts : I or nil := nil lastr : I or nil := nil
msg : M or nil := nil
recs : Boolean := false recr : Boolean:= false

        deadline : I or nil := nil
        now       : I            := 0

Table 10.5.  State and actions of C. Actions below the thick line
handle the passage of time.
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Table 10.5 gives the state and actions of C. The conjunct ¬ recs has been omitted
from the guards of all the sender actions except recovers, and likewise for ¬ recr
and the receiver actions.

Note that like G, this version of C sends an ack only in response to a message.
This is unlike H, which has continuous transmission of the ack and pays the price
of a done message to stop it. Another possibility is to make timing assumptions
about rs and time out the ack; some assumptions are needed anyway to make
cleanup possible. This would be less practical but more like H.

Note that times and timer differ from real time (now) by at most ε, and hence
times and timer can differ from each other by as much as 2ε. Note also that the
deadline is enforced by the progress action, which doesn't allow real time to ad-
vance past the deadline unless someone is recovering. Both crashs and crashr
cancel the deadline.

About the parameters of C

The protocol is parameterized by three constants:

• δ = maximum time to deliver a packet

• β = amount beyond timer + 2ε to increase high

• ε = maximum of |now – timer/s|
These parameters must satisfy two constraints:

• δ > ε so that modes = send implies lasts < deadline.

• β > 0 so increase-high can be enabled. Aside from this constraint the choice of
β is just a tradeoff between the frequency of stable storage writes (at least
one every β, so a bigger β means fewer writes) and the delay imposed on
recoverr to ensure that messages put after recoverr don’t get dropped (as
much as 4ε + β, because high can be as big as timer + 2ε + β at the time of the
crash because of (e), and timer – 2ε has to get past this via tickr before
recoverr can happen, so a bigger β means a longer delay).

10.7.1 Invariants

Mostly these are facts about the ordering of various time variables; a lot of x ≠ nil
conjuncts have been omitted. Nothing being sent is later than times (C1). Nothing
being acknowledged is later than low, which is no later than high, which in turn is
big enough (C2). Nothing being sent or acknowledged is later than lasts (C3). The
sender’s time is later than low, hence good unless equal to sent (C4).

lasts ≤ times (C1)

lastr ≤ low ≤ high (C2a)

ids(rs) ≤ low (C2b)

If ¬ recr then timer + 2ε ≤ high (C2c)

ids(sr) ≤ lasts (C3a)

lastr ≤ lasts (C3b)
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{i | (i, OK) ∈ rs} ≤ lasts (C3c)

low ≤ times (C4)
low < times if lasts ≠ times

If a message is being sent but hasn’t been delivered, and there hasn’t been a
crash, then deadline gives the deadline for delivering the packet containing the
message (based on the maximum time for a packet that is being retransmitted to
get through sr), and it isn’t too late for it to be accepted (C5).

If deadline ≠ nil then

now < lasts + ε + δ (C5a)

low < lasts (C5b)

An identifier getting a positive ack is no later than low, hence no longer good
(C6). If it’s getting a negative ack, it must be later than the last one accepted (C7).

If (lasts, OK) ∈ rs then lasts ≤ low (C6)

If (lasts, lost) ∈ rs then lastr < lasts (C7)

10.8 The Handshake Protocol H

This is the standard protocol for setting up network connections, used in TCP,
ISO TP-4, and many other transport protocols. It is usually called three-way
handshake, because only three packets are needed to get the data delivered, but
five packets are required to get it acknowledged and all the state cleaned up
(Belsnes [1976]).

As in the generic protocol, when there are no crashes the sender and receiver
each go through a cycle of modes, the sender perhaps one ahead. For the sender,
the modes are idle, needI, send; for the receiver, they are idle, accept, and ack. In one
cycle one message is sent and acknowledged by sending three packets from
sender to receiver and two from receiver to sender, for a total of five packets.
Table 10.6 summarizes the modes and the packets that are sent.

The modes are derived from the values of the state variables j and last:
modes = idle iff  js = lasts = nil moder = idle iff jr = lastr = nil
modes = needI iff  js ≠ nil moder = accept iff jr ≠ nil
modes = send iff  lasts ≠ nil moder = ack iff lastr ≠ nil

Figure 10.7 shows the state, the flow of identifiers from the receiver to the
sender at the top, and the flow of done information back to the receiver at the
bottom so that it can clean up. These are sandwiched between the standard ex-
change of message and ack, which is the same as in G (see Figure 10.4).

Intuitively, the reason there are five packets is that:

• One round-trip (two packets) is needed for the sender to get from the
receiver an I (namely ir) that both know has not been used.

• One round-trip (two packets) is then needed to send and ack the message.
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• A final done packet from the sender informs the receiver that the sender has
gotten the ack. The receiver needs this information in order to stop retrans-
mitting the ack and discard its state. If the receiver discards its “I got the
message” state before it knows that the sender got the ack, then if the
channel loses the ack the sender won’t be able to find out that the message
was actually received, even though there was no crash. This is contrary to
the spec S. The done packet itself needs no ack, because the sender will also
send it when idle and hence can become idle as soon as it sees the ack.

We introduce a new type:

J, an infinite set of identifiers that can be compared for equality.

The sender and receiver send packets to each other. An I or J in the first com-
ponent is there to identify the packet for the destination. Some packets also have
an I or J as the second component, but it does not identify anything; rather it is
being communicated to the destination for later use. The (i, a) and (i, done)
packets are both often called ’close’ packets in the literature.

                                                
3 (i, lost) is a negative acknowledgement; it means that one of two things has happened:

— The receiver has forgotten about i because it has learned that the sender has gotten a positive
ack for i, but then the receiver has gotten a duplicate (i, m), to which it responds with the
negative ack, which the sender will ignore.

— The receiver has crashed since it assigned i, and i’s message may have been delivered to get or
may have been lost.

4 (i, OK) is a positive acknowledgement; it means i’s message was delivered to get.

     Sender Receiver
mode send advance on packet advance on send mode
idle see idle

below
put,
to needI

(i, lost) when
(i, m) arrives3

idle

needI (needI, js)
repeatedly

(needI, j)
→

(needI, j) arrives,
to accept

(js, i) arrives,
to send

(j, i)
←

(jr, ir)
repeatedly

accept

send (lasts, m)
repeatedly

(i, m)
→

(ir, m) arrives,
to ack
(ir, done) arrives,
to idle

(lasts, a ) arrives,
to idle

(i, a)
←

(lastr, OK)
repeatedly4

ack

idle (i, done) when
(i, a) arrives

(i, done)
→

(lastr, done) arrives,
to idle

needI
or
send

(i, done) when
(j ≠ js, i) or (i, OK) arrives,
to force receiver to idle

Table 10.6.  Exchange of messages in H
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The H protocol has the same progress and efficiency properties as G, and in
addition, although the protocol as given does assume an infinite supply of Is, it
does not assume anything about clocks.

It’s necessary for a busy agent to send something repeatedly, because the other
end might be idle and therefore not sending anything that would get the busy
agent back to idle. An agent also has a set of expected packets, and it wants to
receive one of these in order to advance normally to the next mode. To ensure
that the protocol is self-stabilizing after a crash, both ends respond to an unex-
pected packet containing the identifier i by sending an acknowledgement: (i, lost)
or (i, done). Whenever the receiver gets done for its current I, it becomes idle.
Once the receiver is idle, the sender advances normally until it too becomes idle.

Table 10.7 gives the state and actions of H. The conjunct ¬ recs has been omitted
from the guards of all the sender actions except recovers, and likewise for ¬ recr
and the receiver actions.

10.8.1 Invariants

Recall that ids(c) is {i | (i, *) ∈ c}. We also define jds(c) = {j | (j, *) ∈ c or (*, j) ∈ c}.
Most of H’s invariants are boring facts about the progress of I’s and J’s from

used sets through i/js/r to lasts/r. We need the history variables useds and seen to
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Figure 10.7.  The flow of information in H
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express some of them. (H6) says that there’s at most one J (from a needI packet)
that gets assigned a given I. (H8) says that as long as the sender is still in mode
needI, nothing involving ir has made it into the channels.

j-used ⊇ {js, jr} – {nil} ∪ jds(sr) ∪ jds(rs) (H1)

usedr ⊇ {ir, lastr} – {nil} ∪ useds ∪ {i | (*, i) ∈ rs} ∪ ids(sr) ∪ ids(rs) (H2)

useds ⊇ {lasts, lastr} – {nil} ∪ ids(sr) ∪ ids(rs) (H3)

If (i, done) ∈ sr then i ≠ lasts (H4)

If ir ≠ nil then (jr, ir) ∈ seen (H5)

Name Guard Effect Name Guard Effect
**put(m) msg = nil, msg := m,

exists j such
that j ∉ j-used

js := j,
j-used +:=  {j}

requestI js ≠ nil,
lasts = nil

sendsr(needI, js) assignI(j,i) rcvsr(needI, j),
ir = lastr = nil,
i ∉ usedr

jr := j, ir := i,
usedr +:= i,
seen +:= {(j, i)}

choose(i) lasts = nil,
rcvrs(js, i)

js := nil, lasts := i,
useds +:= 〈i〉

sendI jr ≠ nil sendrs(jr, ir)

send lasts ≠ nil sendsr(lasts, msg) *get(m) exists i such
that rcvsr(i, m),
i = ir

jr := ir := nil,
lastr := i,
sendrs(i, OK)

sendAck lastr ≠ nil sendrs(lastr, OK)

*getAck(a) rcvrs(lasts, a) if a = OK then
sendsr(lasts, done)
msg := lasts := nil

bounce exists i such
that rcvsr(i, *),
i ≠ ir, i ≠ lastr

sendrs(i, lost )

bounce
(j, i)

     rcvrs(j, i),
     j ≠ js, i ≠ lasts
or rcvrs(i, OK)

sendsr(i, done) cleanup(i) rcvsr(i, done),
i = ir or i = lastr

jr := ir := nil,
lastr := nil

**crashs recs := true **crashr recr := true
*recovers recs msg := nil,

js := lasts := nil,
recs := false

*recoverr recr jr := ir := nil,
lastr := nil,
recr := false

grow-
j-used(j)

j-used +:= {j} grow-
used(i)

usedr +:= {i}

useds : sequence[I] := 〈 〉 (history) usedr : set[I] := { } (stable)
j-used : set[J] := { }   (stable) seen : set[(J, I)] := { } (history)
js : J or nil := nil jr : J or nil := nil
msg : M or nil := nil ir : I or nil := nil
lasts : I or nil := nil lastr : I or nil := nil
recs : Boolean := false recr : Boolean := false

Table 10.7.  State and actions of H. Heavy black lines outline
additions to G
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If (j, i) ∈ seen and (j’, i) ∈ seen then j = j’ (H6)

If (j, i) ∈ rs then (j, i) ∈ seen (H7)

If js = jr ≠ nil then (ir, *) ∉ sr and (ir, done) ∉ rs (H8)

10.8.2 Progress

We consider first what happens without failures, and then how the protocol re-
covers from failures.

If neither partner fails, then both advance in sync through the cycle of modes.
The only thing that derails progress is for some party to change mode without
advancing through the full cycle of modes that transmits a message. This can
only happen when the receiver is in accept mode and gets (ir, done), as you can
see from Table 10.6. This can only happen if the sender got a packet containing ir.
But if the receiver is in accept, the sender must be in needI or send, and the only
thing that’s been sent with ir is (js, ir). The sender goes to or stays in send and
doesn’t make done when it gets (js, ir) in either of these modes, so the cycling
through the modes is never disrupted as long as there’s no crash.

If either partner fails and then recovers, the other becomes idle rather than
getting stuck; in other words, the protocol is self-stabilizing. Why? When the
receiver isn’t idle it always sends something, and if that isn’t what the sender
wants, the sender responds done, which forces the receiver to become idle. When
the sender isn’t idle it’s either in needI, in which case it will eventually get what it
wants, or it’s in send and will get a negative ack and become idle. In more detail:

The receiver bails out when the sender crashes because

• the sender forgets is and js when it crashes,

• if the receiver isn’t idle, it keeps sending (jr, ir) or (lastr, OK),

• the sender responds with (ir/lastr, done) when it sees either of these, and

• the receiver ends up in idle whenever it receives this.

The sender bails out or makes progress when the receiver crashes because

• If the sender is in needI, either

—it gets (js, i ≠ ir) from the pre-crash receiver, advances to send, and bails
out as below, or

—it gets (js, ir) from the post-crash receiver and proceeds normally.

• If the sender is in send it keeps sending (lasts, msg),

—the receiver has lastr = nil ≠ lasts, so it responds (lasts, lost), and

—when the sender gets this it becomes idle.

An idle receiver might see an old (needI, j) with j ≠ js and go into accept with jr
≠ js, but the sender will respond to the resulting (jr, ir) packets with (ir, done),
which will force the receiver back to idle. Eventually all the old needI packets will
drain out. This is the reason that it’s necessary to prevent a channel from deliver-
ing an unbounded number of copies of a packet.
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10.9 Finite Identifiers

So far we have assumed that the identifier sets I and J are infinite. Practical proto-
cols use sets that are finite and often quite small. We can easily extend G to use
finite sets by adding a new action recycle(i) that removes an identifier from useds
and usedr so that it can be added to gr again. As we saw in Section 10.1, when we
add a new action the only change we need in the proof is to show that it main-
tains the invariants and simulates something in the spec. The latter is simple:
recycle simulates no change in the spec. The former is also simple: we put a strong
enough guard on recycle to ensure that all the invariants still hold. To find out
what this guard is we need only find all the invariants that mention useds or usedr,
since those are the only variables that recycle changes. Intuitively, the result is that
an identifier can be recycled if it doesn’t appear anywhere else in the variables or
channels.

Similar observations apply to H, with some minor complications to keep the
history variable seen up to date, and a similar recycle-j action. Table 10.8 gives the
recycle actions for G and H.

How can we implement the guards on the recycle actions? The tricky part is
ensuring that i is not still in a channel, since standard methods can ensure that it
isn’t in a variable at the other end. There are three schemes that are used in
practice:

• Use a FIFO channel. Then a simple convention ensures that if you don’t send
any i1’s after you send i2, then when you get back the ack for i2 there aren't
any i1’s left in either channel.

• Assume that packets in the channel have a maximum lifetime once they
have been sent, and wait longer than that time after you stop sending
packets containing i.

• Encrypt packets on the channel, and change the encryption key. Once the
receiver acknowledges the change it will no longer accept packets encrypt-
ed with the old key, so these packets are in effect no longer in the channel.

Name Guard Effect

recycle(i)
for G

i ∉ gs  ∪ gr ∪ {lasts, lastr}
      ∪ ids(sr) ∪ ids(rs)

useds –:= {i},
usedr –:= {i}

recycle(i)
for H

i ∉ {lasts, ir, lastr}
      ∪ {i | (*, i) ∈ rs} ∪ ids(sr) ∪ ids(rs)

useds –:= {i},
usedr –:= {i},
seen –:= {j | (j, i) ∈ seen | (j, i)}

recycle-j(j)
for H

j ∉ {js, jr} ∪ jds(sr) ∪ jds(rs) used-j –:= {j},
seen –:= {i | (j, i) ∈ seen | (j, i)}

Table 10.8.  Actions to recycle identifiers
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For C we can recycle identifiers by using time modulo some period as the
identifier, rather than unadorned time. Similar ideas apply; we omit the details.

10.10 Conclusions

We have given a precise specification S of reliable at-most-once message delivery
with acknowledgements. We have also presented precise descriptions of two
practical protocols (C and H) that implement S, and the essential elements of
proofs that they do so; the handshake protocol H is used for connection establish-
ment in most computer networking. Our proofs are organized into three levels:
we refine S first into another specification D that delays some of the decisions of S
and then into a generic implementation G, and finally we show that C and H
both implement G. Most of the work is in the proof that G implements D.

In addition to complete expositions of the protocols and their correctness, we
have also given an extended example of how to use abstraction functions and
invariants to understand and verify subtle distributed algorithms of some practi-
cal importance. The example shows that the proofs are not too difficult and that
the invariants, and especially the abstraction functions, give a great deal of in-
sight into how the implementations work and why they satisfy the specifications.
It also illustrates how to divide a complicated problem into parts that make sense
individually and can be attacked one at a time.
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Appendix

For reference we give the complete protocol for G, with every action as atomic as
it should be. This requires separating the getting and putting of messages, the
sending and receiving of packets, the sending and receiving of acks, and the
getting of acks. As a result, we have to add buffer queues bufs/r for messages at
both ends, a buffer variable ack for the ack at the sender, and a send-ack flag for
positive acks  and a buffer nack-buf for negative acks at the receiver.

The state of the full G is:

useds : sequence[I] := 〈 〉 (stable) usedr : set[I] := { } (stable)
gs : set[I] := { } gr : set[I] := { }
lasts : I or nil := nil lastr : I or nil := nil
bufs : sequence[M] := 〈 〉 bufr : sequence[M] := 〈 〉
msg : M or nil := nil mark : + or # :=  +
ack : A := lost send-ack : Boolean := false

nack-buf : sequence[I] := 〈 〉
recs : Boolean := false recr : Boolean := false

The abstraction function to D is:

q    the elements of bufr paired with +
+ old-q + cur-q
+ the elements of bufs paired with +

status  (?, +) if bufs ≠ empty
else (?, mark) if cur-q ≠ { } (a)

(?, +) if modes = send, lasts = lastr, bufr ≠ { } (b)
(OK, +) if modes = send, lasts = lastr, bufr = { } (c)
(OK, #) if modes = send and lasts ∈ inflightrs
(d)
(lost, +) if modes = send (e)

   and lasts ∉ (gr ∪ {lastr} ∪ inflightrs)
(ack, +) if modes = idle (f)

recs/r recs/r
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Name Guard   Effect Name     Guard Effect
**put(m) append m to

bufs
prepare(m) msg = nil,

m first on bufs,

gs ⊆ gr or recr

bufs:=tail (bufs),
msg := m,
mark := +

choose(i) msg ≠ nil,
lasts = nil,
i ∈ gs

gs –:= {j | j ≤ i},
lasts := i,
useds +:= 〈i〉

sendsr(i, m) i = lasts ≠ nil
m = msg

rcvsr(i, m) if i ∈ gr then append m to bufr,
  sendAck := false,
  gr –:= {j | j ≤ i}, lastr := i,
else if i ∉ gr ∪ {lastr} then
  optionally nack-buf +:= 〈i〉
else if i = lastr then sendAck :=true

*get(m) m first on bufr if bufr = 〈m〉 then
  sendAck := true,
bufr :=tail (bufr)

rcvrs(i, a) if i = lasts then
  ack := a,
  msg := nil, lasts := nil

sendrs
   (i, OK)
sendrs
   (i, lost)

i = lastr, sendAck

i first on nack-buf

optionally
   sendAck := false
nack-buf :=
   tail (nack-buf)

*getAck(a) msg = nil,
bufs = empty,
ack = a

ack := lost

**crashs recs := true **crashr recr := true
*recovers recs lasts := nil,

msg := nil, bufs := 〈 〉,
ack := lost, recs := false

*recoverr recr,
usedr ⊇
 gs ∪ useds

lastr := nil,
mark := #, bufr:=〈 〉,
nack-buf:=〈 〉, recr:=false

shrinks(i) gs –:= {i} shrinkr(i) i ∉ gs, i ≠ lasts

or mark = #

gr –:= {i}

grows(i) i ∉ used,
i ∈ gr or recr

gs +:= {i} growr(i) i ∉ usedr gr +:= {i},
used +:= {i}

grow-
useds(i)

i ∉ used ∪ gs,

i ∈ usedr or recr

used +:= {i} cleanup lastr ≠ lasts lastr := nil

unmark gs ⊆ gr, lasts ∈
   gr ∪ {lastr, nil}

mark := +

Table 10.9.  G with honest atomic actions


