
A Phone-Centered Body Sensor Network Platform:
Cost, Energy Efficiency & User Interface

Lin Zhong∗† Mike Sinclair‡ Ray Bittner‡

†Dept. of Electrical & Computer Eng., Rice University, Houston, TX 77005
‡Hardware Devices Group, Microsoft Research, Redmond, WA 98052

Abstract
We have designed a Bluetooth-based body sensor net-

work platform for physiological diary applications and
have addressed its challenges in cost, energy efficiency,
and user interface. In our platform, an internet-
capable phone serves as the center and manages every
network member. We designed a Bluetooth sensor node
for general sensing devices to join the network with-
out much alteration. Since Bluetooth imposes a large
power overhead, we have taken extreme care to mini-
mize its duty cycle. We also incorporated a wrist-worn
device as the user interface. It displays information
under the instruction of the phone in an ambient fash-
ion, and enables the user to interact with the network
conveniently. By leveraging resources on the phone, we
are able to minimize the cost and energy consumption
of the sensor nodes and the wrist-worn device.

1 Introduction
We are interested in using a wireless body sensor

network (WBSN) to continuously collect physiological
information for disease diagnosis over a lifetime for ev-
eryone. This physiological diary application drove us
to design a WBSN to address new challenges in cost,
energy efficiency and user interface. Over time, the
design must become low-cost to promote user adop-
tion. It must be energy-efficient since frequent battery
changes for many sensors will deter users. Finally, it
must be able to interact with the user in an ambient,
non-interruptive fashion. This paper presents our de-
sign of a WBSN platform to meet these challenges.

We recognized that powerful mobile phones have
penetrated all walks of life and consequently made a
mobile phone the center of our WBSN platform to pro-
vide the central intelligence and to manage all network
members. This decision has impacted the platform in
the following ways. First, our platform is based on
Bluetooth due to its high availability on mobile phones,
as compared with ZigBee (IEEE 802.15.4). Bluetooth,
however, typically consumes more power and has less
support for advanced ad hoc networking features. Nev-
ertheless, we have been able to overcome these two
shortcomings in our platform. Second, members in our
WBSN may only talk with the phone directly, leading
to a simplified network. By shifting most tasks to the

∗Lin Zhong was an intern with Microsoft Research in the summer
of 2005

phone, we further reduce sensor node cost and energy
consumption. Third, members in our WBSN export
their services through application-programming inter-
faces (APIs) on the phone. The APIs hide most of the
implementation details of the sensors from users and
application developers, who only need to write code
for the phone to obtain services from the WBSN. While
the introduction of a mobile phone helps us meet the
cost and energy efficiency challenges, we introduce a
wrist-worn device, called Cache-watch, into the WBSN
to meet the user interface challenge. Under the control
of the mobile phone, it quietly displays information re-
garding the WBSN and user health. It also takes user
input to manage the WBSN. To the best of our knowl-
edge, our platform is among the first to extensively
explore the role of a mobile device and user interface
design in the context of WBSN.

The paper is organized as follows. In Section 2, we
provide a system view of the platform and address its
design. We then address its energy efficiency issues and
user interface in Sections 3 and 4, respectively. We
discuss related work in Section 5, and conclude and
outline future work in Section 6.

2 System design

2.1 System view

Our platform consists of one mobile phone, multi-
ple sensor nodes, and a Cache-watch as illustrated by
Figure 1(a). Sensor nodes and the Cache-watch com-
municate directly with the phone via Bluetooth. They
are peripherals of the phone. The platform provides
a set of APIs for applications on the phone to manage
the network, collect data from the sensors, and interact
with users via the Cache-watch. A typical application
retrieves data from sensors from time to time and put
sensors into deep sleep mode in between. Data may be
reported to an Internet server which provides an anal-
ysis, or the phone may perform its own analysis, which
is then displayed through the Cache-watch.
2.2 Hardware

The sensor node is powered by a rechargeable
60mAh coin-size Lithium-ion battery and is hosted on
a double-layer 1.3”x1.3” PCB. Figure 1(a) shows the
front view of the sensor node. Figure 1(b) shows the
back view of the sensor node board. There are only four
integrated circuit units on the board: a TI MSP430

1



Commands

Collected data

Commands

Bitmap messages

Framebuffer

User input

GPRSGPRS

Audiovox SMT5600 Smartphone Sensor nodes (front)

Cache-watch

(a) System view (b) Sensor node (back)

Network manager

Write thread
Read thread
Write thread
Read thread

Device manager

Phone GUI

Syn. protocol

……

Winsock API of Bluetooth

Out connection 
manager

Platform 
application

In connection 
manager

(c) Phone software organization

Figure 1. Phone-centered body sensor network platform

micro-controller, a KC21 Class 2 Bluetooth OEM mod-
ule [2], and two linear regulators. The first regulator
regulates the power supply to 3.3V for most of the elec-
tronics, while the second is under the control of the
MSP430 to power the Bluetooth module. The board
also has a JTAG programming interface. The Cache-
watch essentially uses the same PCB, with an attached
128 by 96 dot-matrix LCD.

The sensor node is designed to be a general analog
signal capturing device. It can measure up to 10 analog
channels with the 12-bit ADCs internal to the MSP430.
2.3 Software

Peripherals: Unlike many wireless sensor nodes,
ours do not require an OS because the introduction
of a phone significantly reduces their complexity. Soft-
ware on the sensor node is developed in C and compiled
into 4KB of MSP430 firmware, running in an interrupt-
driven mode. Most of the time, the MSP430 is in
a power-saving mode with an active timer. It wakes
up to execute the corresponding handler upon an in-
terrupt. The UART interrupt handler implements an
application-layer protocol, called the SYN protocol, to
talk with the phone as we will discuss in Section 2.4.
The Cache-watch software is different from that of sen-
sor nodes only in that it implements display updates
and capacitance measurements in the timer interrupt
handler. Its UART interrupt handler also implements
a different subset of the SYN protocol.

Phone: An Audiovox SMT5600 smartphone with
Windows Mobile 2003 SE is used in our prototype.
Since the phone fulfills most of the network function-
ality, its software is quite complicated and is imple-
mented as middleware with Visual C++. The software
architecture of the phone is illustrated by Figure 1(c).
The software has a user interface for users to register
and remove peripherals and to specify parameters for
the WBSN. The phone controls its peripherals and ex-
changes data with them through the SYN protocol via
Windows socket APIs for Bluetooth.

The software, network manager, first creates two
threads to manage outgoing and incoming connections.
It is the phone’s interface between the platform and its
user, and the interface between the platform and any
application using it. It determines when the phone will

connect to a peripheral based on user settings, history,
and application requests. It also exports the collected
sensor data to interested applications.

The out-connection manager creates and maintains
two threads for each registered peripheral, one for read-
ing and the other for writing. The two threads for a
peripheral device are collectively referred as its device
manager. The out-connection manager also provides
power management for Bluetooth on the phone accord-
ing to the communication schedule and exchanges data
with device managers. The device manager is in charge
of managing the corresponding Bluetooth socket con-
nection according to the schedule.
2.4 Network

Since our platform is built with standard Bluetooth
modules, we must utilize the available parameters from
the Bluetooth protocol stack for the SYN protocol.
The protocol consists of six types of commands. Three
commands are specific to the Cache-watch. They will
be detailed in Section 4. INSTRUCTION commands
are used by the phone to request data from sensor
nodes; SENSOR DATA commands are used by sensor
nodes to send data to the phone; POWER commands
are used by the phone to instruct a peripheral to power
off its Bluetooth module for a certain period of time.
This is the basis of the energy-saving scheduled com-
munication mechanism as will be addressed next.
3 Design for energy efficiency
3.1 Energy profile

Most of the time, the phone is in STANDBY mode.
It consumes about 20mW when Bluetooth is disabled,
and 21mW when Bluetooth is enabled in PENDING
mode with default parameters from Windows Mobile.
When transferring data at 115Kbps the phone con-
sumes about 440mW . It is worth noting that when the
SIM card is removed, the phone consumes only about
4mW in STANDBY mode. Therefore, the power over-
head from Bluetooth in STANDBY mode is minimal as
compared with that from staying on the cellular net-
work. During these power measurements the phone
display was powered off. For peripherals, however, the
KC21 Bluetooth module dominates power consump-
tion. While non-Bluetooth components consume less

2



than 1mW in total, the KC21 module consumes more
than 8mW even in SNIFF mode. When it is in PEND-
ING mode, seeking a connection with the default set-
tings, it consumes about 74mW Pending Power, or PP .
It consumes about 160mW when transferring data at
115Kbps. Not surprisingly, we give a higher priority to
peripherals in Bluetooth energy optimization.
3.2 Energy optimization

Bluetooth imposes the most power overhead for
WBSN activities. Since we do not have access to
the KC21 Bluetooth stack firmware, we rely on tun-
ing high-level Bluetooth parameters, which makes our
techniques applicable to most commercial-off-the-shelf
(COTS) Bluetooth modules and complementary to
most other low-power Bluetooth techniques.

Scheduled communication: In our WBSN, the
phone schedules its data exchange with each periph-
eral. If the connection were maintained, the peripheral
would consume at least 8mW , which is the Bluetooth
power consumption in SNIFF mode and will lead to an
unacceptably short battery lifetime. If, on the other
hand, the phone schedules the next communication
with the peripheral after each exchange, both parties
will know when the next connection will be required,
and a lower power state can be used. Fortunately, phys-
iological information only requires sampling once ev-
ery several tens of seconds for the purpose of disease
diagnosis in the worst case. Such a long communica-
tion interval makes it possible to power Bluetooth off
for sensor nodes between samples and re-establish the
connection before the next communication. The en-
ergy consumed during the active Bluetooth connection
period is the overhead of WBSN activities, and this is
our focus of energy optimization. Figure 2(a) shows the
power trace for the connection period of a sensor node
with default manufacturer Bluetooth setting. The sen-
sor’s Bluetooth module remains in PENDING mode for
about 150ms before it discovers the phone’s Bluetooth
module and establishes a connection. The overall sen-
sor node energy cost for establishing a connection from
the powered-off state will be about 0.11Joule. This
overhead is justifiable if the communication interval is
longer than 15 seconds. We must note that the time the
peripheral’s Bluetooth module spends in the PEND-
ING mode before establishing a connection, TP , de-
pends on not only the peripheral’s but also the phone
module’s Bluetooth settings. In this experiment, both
parties use the default manufacturer settings. To mini-
mize TP for peripherals, the phone’s Bluetooth module
is actually powered up one second earlier.

Bluetooth parameter tuning: In PENDING
mode, a Bluetooth module conducts paging/page scan-
ning periodically. Increasing in the paging/page scan-
ning duty cycle reduces TP but raises PP , power con-
sumption in the PENDING mode. We have observed
that the energy consumed in the PENDING mode de-
creases as the duty cycle increases.

Protocol optimization: Let us continue examin-
ing Figure 2(a). After the connection is established, the

KC21 Bluetooth module remains connected for more
than one second before receiving the first command
from the phone. This delay costs more than half of the
sensor energy consumption after a connection is estab-
lished. We are currently investigating the cause.

After receiving the INSTRUCTION command, the
sensor node samples the data and sends it to the phone.
Then, it waits to receive the POWER command from
the phone to schedule the next communication. It pow-
ers off the Bluetooth module immediately after that.
By allowing commands to be queued in the sensor, we
are able to reduce the rounds of conversation and thus
the energy spent in waiting. For example, when a sen-
sor node and the phone are connected, the phone sends
the INSTRUCTION and POWER commands first and
then waits to get data from the sensor. The sensor will
power off its Bluetooth module immediately after send-
ing the data. Queuing commands in the sensor reduces
the Bluetooth energy overhead by 8%.

Figure 2(b) shows the average power consumption
of a sensor node with different communication inter-
vals. As the communication interval is increased from
15 seconds to 5 minutes, the average power consump-
tion deceases from 20mW to 2mW .

4 User interface design
Very few WBSN designs have considered the user in-

terface, which is, however, critical to our intended ap-
plications. First, the user may wish to see their physio-
logical data at any time, which should be as convenient
as checking the time. Second, the user may wish to con-
trol certain sensor nodes, e.g., to adjust the sampling
frequency, which should be as convenient as adjusting
the watch time as well. Therefore, we have created a
new version of the Cache-watch, as illustrated in Fig-
ure 1(a). An older version of the Cache-watch was
described in [7, 8]. We next describe the new version.
4.1 Services

The new Cache-watch provides similar services as
the old one. For the active service, it stays connected
with the phone, which updates the Cache-watch dis-
play in real-time via Bluetooth as directed by user in-
put. The active service enables the user to interact
with the phone and thus the whole WBSN from the
wrist. It is implemented using the FRAMEBUFFER
and WATCH INPUT commands. The Cache-watch
uses a WATCH INPUT command to send user in-
put to the phone; the phone uses a FRAMEBUFFER
command to update the Cache-watch display frame-
buffer. This simplifies the Cache-watch design signif-
icantly while leveraging the computing capacity and
programmability of the phone.

For the passive service, the Cache-watch talks with
the phone by scheduled communication in a way similar
to the sensor nodes. When they are connected, the
phone can send the Cache-watch bitmap messages, e.g.,
a text message in its bitmap format with a MESSAGE
command. The Cache-watch can store 20 messages and
display them according to their meta data, which are

3



0

0.1

0.2

0.3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (ms)

P
o

w
er

 (
W

)

BT powered off

BT powered up

BT PENDING

Establishing connection

Connected

Rcv. INSTRUCTION cmd.

Sending SENSOR_DATA cmd.

Rcv. POWER cmd.

BT powered 
off again

(a) Power trace

0

5

10

15

20

25

0 100 200 300 400 500 600 700

Com m unication inte rval (s )

A
ve

ra
g

e 
p

o
w

er
 (

m
W

)

(b) Average sensor node power consumption

Figure 2. Sensor node power consumption

also specified by the MESSAGE command. Like the
active service, the phone generates a bitmap message,
determines where in the Cache-watch memory it should
go, and determines how it should be displayed. This
again simplifies the Cache-watch design.
4.2 Input method

Most wrist-worn devices, including the old Cache-
watch, use buttons for input. The new Cache-watch,
however, uses capacitive touch-sensing to reduce design
cost. As shown in Figure 1(a), there are two rows of
three or four metallic pads. The MSP430 uses a simple
technique to measure the capacitance of a pad and de-
termine whether the pad is being touched. It can also
tell whether a row has been swiped from one end to the
other. As a result, eight different inputs can be gen-
erated. The phone and the Cache-watch interpret the
inputs for the active and passive services, respectively.
5 Related work

It is beyond the scope of this short workshop pa-
per to conduct an exhaustive survey. Instead we have
to focus on several most related works. Most body-
sensor networks [1,5] use IEEE 802.15.4, probably due
to its popularity with ad hoc wireless sensor networks.
Leopold et al. [3] studied Bluetooth as a candidate
for ad hoc wireless sensor networks. In these stud-
ies, PDAs and mobile phones may collect data from
the sensor networks. However, they do not play as ex-
tensive a role in management and computation as they
do in our platform. As a result, sensor nodes in these
studies must still run TinyOS instead of leveraging the
resources on a mobile device to simplify their design.
Liszka et al. [4] used an internet-capable Palm Tung-
sten to collect ECG data through Bluetooth. However,
as in the studies mentioned above, the mobile device
does not play any role more complicated than simply
collecting data. Similar industrial efforts to use mobile
devices for health monitoring have also been reported.
Nevertheless, we believe that our platform is among
the first to extend the role of a mobile device and to
include a wrist-worn interface.
6 Conclusion and future work

We have presented our design of a wireless body sen-
sor network platform to tackle the challenges in cost,

energy efficiency, and user interface for physiological
diary applications. By introducing an internet-capable
phone as the network center and manager and lever-
aging its resources, we were able to simplify the sensor
node design and improve its energy efficiency drasti-
cally. We studied techniques such as scheduled com-
munication, Bluetooth parameter tuning, and protocol
optimization to further reduce Bluetooth energy con-
sumption in peripherals. We also included a Cache-
watch in the platform so that users can interact with
the network conveniently.

However, we are still in an early stage of the design
and evaluation of the platform. As we have acknowl-
edged many times in the paper, there are still prob-
lems to solve, especially to further reduce the energy
consumption of Bluetooth in peripherals. Moreover,
although our sensor node is extreme simple, the first
version of the PCB design is still sizable to facilitate
debugging. We wish to minimize its size for the next
version with a better OEM Bluetooth module and a
customized battery like that used in Eco [6].
References
[1] Imperial College, London. Body sensor network node.

http://www.doc.ic.ac.uk/vip/ubimon/bsn node/index.html,
2004.

[2] KC21 Bluetooth Class 2 OEM module.
http://www.kcwirefree.com/docs/KC21 Datasheet.pdf.

[3] M. Leopold, M. B. Dydensborg, and P. Bonnet. Blue-
tooth and sensor networks: a reality check. In Proc.
ACM SenSys, pages 103–113, 2003.

[4] K. J. Liszka et al. Keeping a beat on the heart. IEEE
Pervasive Computing, 3:42– 49, Oct.-Dec. 2004.

[5] K. Lorincz et al., “Sensor networks for emergency re-
sponse: challenges and opportunities,” IEEE Pervasive
Computing, Oct.-Dec. 2004.

[6] C. Park, J. Liu, and P. H. Chou. Eco: An ultra-
compact low-power wireless sensor node for real-time
motion monitoring. In Proc. IPSN, Apr. 2005.

[7] L. Zhong and N. K. Jha. Energy efficiency of hand-
held computer interfaces: Limits, characterization, and
practice. In Proc. USENIX/ACM MobiSys, June 2005.

[8] L. Zhong, M. Sinclair, and N. K. Jha. A personal-
area network of low-power wireless interfacing devices:
System & hardware design. In Proc. ACM Mobile HCI,
Sept. 2005.

4


