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Abstract

We explore the opportunity to harness electroencephalo-
graph (EEG) signals generated during human visual pro-
cessing to enhance computer vision systems. We review the
challenging task of categorizing objects, such as faces, in
images and then describe methods that can be used to com-
bine the complementary competencies of human and ma-
chine computation to achieve improved recognition perfor-
mance. We present the results of several experiments where
brain signals, recorded from people examining images, are
used to enhance the performance of vision systems on cate-
gorization tasks. We find that significant gains in classifica-
tion accuracy can be achieved with the human-aided vision
systems.

1. Introduction

Visual category recognition remains a challenging prob-
lem. Building computer vision systems that are competent
at recognizing target categories of objects has typically re-
quired intensive human effort. In particular, people must
provide labeled data to inform classifiers about visual cat-
egories. As this labeling process is often very expensive,
recent work has focused on ways to reduce the number of la-
beled examples required to learn accurate models [3, 6, 15].
These systems aim to utilize human labeling effort in a most
efficient manner. Other solutions to the problem of obtain-
ing labels for visual categories include embedding the la-
beling task in online games [23,24], and asking users to
provide finer-grained information by selecting and labeling
specific objects within images [1].

We explore here a new form of human contribution
to computer vision systems—the sharing with the systems
of brain signals generated while people view images and
scenes. We directly measure participants’ brain signals so
as to provide information to the machine with little con-
scious effort. This approach is built on the realization that
people subconsciously process different images in different
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Figure 1. The proposed framework to train a computer vision sys-
tem with human-brain processing for visual category recognition.

ways, and that such differences are measurable by available
brain-sensing methodologies, even when the user is not ex-
plicitly trying to categorize images.

There are several advantages of developing methods that
fuse human visual information processing with traditional
computer vision techniques. First, the explicit collection of
labels for building visual categorization systems is expen-
sive as it involves a slow, deliberative process of viewing
and assessing. In contrast to the plodding process of hand
tagging images, informative brain signals, generated in re-
sponse to the viewing of images, are observed even when
images are displayed for only 40ms [9]. By exploiting the
implicit processing in the human brain with the rapid pre-
sentation of images, we can significantly speed up the label-
ing process and reduce the amount of hand-labeled train-
ing data we need to collect. Second, we can take advan-
tage of the complementary skills of computer vision and the
human visual system. Current computing algorithms and
the human visual processing perceive scenes very differ-
ently; the two modalities provide complementary informa-
tion and such complementarity can lead to enhanced clas-
sifiers. Previous work has demonstrated the power of com-
bining complementary methods and data sources in a co-
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Figure 2. Average ERP responses to viewing faces (left) and non-faces (right) for one user with the controlled images. The time series for
each channel is shown in multiple colored lines within each graph and the accompanying scalp plots show the spatial distribution of these
signals at snapshots in time. The red in these plots signifies higher activity. The N170 (at 170 ms) face specific peak is evident in the face

response but not in the non-face response.

herent manner to enhance the overall accuracy of classifi-
cation [4, 22]. Finally, studying how brain signals, gener-
ated with the viewing of visual scenes, can boost traditional
vision-based methods and highlight deficits in our computer
vision algorithms. For example, exploring the gains that
come with the addition of information drawn from human
information processing can lead to insights about aspects
of images and categories that are currently unmodeled or
poorly modeled in computer vision. This direction of re-
search promises to build a path toward introducing into our
computer vision systems the kind of robustness and flexi-
bility we associate with human vision. Techniques based
on computer vision focus on various imaging transforma-
tions and intra-class variations and are often motivated by
the specific discriminatory tasks at hand. We suspect that
human information processing is less task-specific, and that
human analysis employs richer features and feature ensem-
bles, coupled with rich contextual and semantic associations
that are unavailable to our vision algorithms.

We shall focus on the advantages of effectively combin-
ing information from implicit brain processing, as measured
by an electroencephalograph (EEG), to build better visual
categorization models. Specifically, our main contribution
is a method that trains computer vision algorithms by com-
bining information from machine computed visual image
features with the information measured from the brain of a
human viewing images. The overall framework is shown in
Figure 1. The core idea is to exploit the informativeness of
the brain signal to recover information about an unlabeled
set of images. Such information about the unlabeled images
can be appended to the available labeled training set, thus,
effectively increasing the corpus that can be used to train a
vision system.

Two key issues need to be addressed before we can
achieve benefits from the framework. First, the brain signals
need to be informative enough so as to be to provide useful
information about the unlabeled set. Second, the informa-
tion available in the channel should be complementary to
the information provided by the vision system. We explore
these key issues in the context of our recent work [16,21]
and show, using data from human users, that brain signals
associated with human visual processing indeed can provide
valuable information to the vision system.

Providing methods that can integrate information from
human visual processing with computer vision may be es-
pecially valuable to researchers interested in the challenges
of recognizing faces and gestures. Experiments have sug-
gested that the brain signals associated with faces are highly
informative. For example, the presentation of a human face
is commonly connected with a pronounced negative drop in
signal amplitude in certain channels approximately 170ms
following stimulus presentation [19]. The N170 drop does
not always lie exactly at 170ms because of various stimulus
presentation delays as well as physiological variance. Fig-
ure 2 shows an example of the response in one of our users
to face and non-face stimuli. A strong N170 face-specific
response is seen (left) in EEG measured after a user has
seen a face, but not when the participant is viewing images
without faces (right). The N170 face-specific response is
represented by a purple line that protrudes out the bottom
of the series slightly after 170 ms following the stimulus
presentation. Similarly, it has been noted that the responses
are significantly different for categories such as animals and
inanimate objects and there is enough discriminatory signal
to train a classifier, indicating the discriminative power that
may exist in this signal.



Figure 3. The figure shows a standardized layout for electrode
placement in a 32-electrode EEG measurement system [12], pic-
tured from the top, with nose and ears shown for orientation. The
electrodes used for analysis are marked in red.

2. Human-Aided Computing

Electroencephalography provides neurophysiological
measurement of brain activity using electrodes placed on
the surface of the scalp (see e.g. [7]). Researchers often
examine behavioral correlates in EEG signals by measur-
ing the event-related potential (ERP), which represents the
spatiotemporal shape of brain measurements in response
to a discrete sensory stimuli (e.g., flashing an image on a
screen). The spatiotemporal patterns of EEG produced in
response to stimuli can capture characteristic differences in
the way people process information [11, 13]. These differ-
ences can be recognized by predictive models constructed
from labeled training data. Consequently, the human brain
can be used as a computational processor.

As an example, an event-related potential (ERP) known
as the P300, or recognition response, indicates when the
user has detected a stimulus of interest. This signal has been
widely used in the study of brain-computer interfaces (BCI),
which aim to allow users to communicate with the exter-
nal world using brain signals alone [2, 5]. Similarly, Ger-
son and colleagues [9] exploit this P300 response in their
system for “cortically coupled computer vision”, in which
the user intentionally performs visual search on a sequence
of rapidly presented images, looking for a designated tar-
get image. The system can detect target images using the
brain response alone, in certain cases faster than is possible
with manual identification using button presses. This sys-
tem requires that participants have an explicit intention to
search for a single target or category of targets, and thus to
serve as “target detectors” system, rather than as detectors
for a specific category of objects. The study also did not
use computer vision algorithms to enhance the EEG-based
results.

'named for the positive amplitude change seen in certain EEG channels

roughly 300ms after stimulus presentation

While work with the P300 signal requires that users ex-
plicitly be attending to a single target class, we have re-
cently shown that it is possible to categorize a more gen-
eral set of classes by inferring cognitive processing patterns
from a larger set of ERPs [21]. This work demonstrates
high accuracies in categorizing images displayed to sub-
jects, even when the subjects are not explicitly trying to per-
form the classification task. In the rest of paper, we build
upon our initial work [21] and discuss the research in the
context of training computer vision systems for the purpose
of object categorization.

3. Visual Category Recognition with Implicit
Brain Processing

Automatic visual category recognition is a hard problem
and humans typically perform better than the best avail-
able computational algorithms. Our hypothesis is that per-
formance of computer vision system can be improved by
observing implicit brain processing and obtaining and ex-
ploring the nature of complementary information that is not
available to traditional computer vision algorithms.

Before moving on, we need to determine(1) if the EEG
signals contain enough information about the classification
task at hand and (2) if the information derived from brain
signals is complementary to state-of-the-art computer vi-
sion methods for object categorization. To answer these
questions, we analyze and discuss three different setups
which in turn provide theoretical and empirical analysis.

3.1. Setup 1: Only EEG

We first explore a complementary system referred to as
human-aided computing [21], in which the user is passively
viewing images while performing a distracter task that does
not consist of explicitly labeling or recognizing the images.
The distracter task serves only to capture visual attention
and cognitive processing. The participants were not told of
the classification task and were not explicitly trying to per-
form a classification implicit brain processing. In this study,
the participants viewed images categorized by whether the
images contained an animal, a human face, or inanimate ob-
jects while performing a distracter task. The distractor task
was counting of images that contained butterflies in them.
The data set consisted of a training set of 60 images per
class shown to each of the subjects only once, whereas the
test set consisted of 20 images per class presented 10 times
each to the subject in a block randomized fashion. Images
were flashed for 150ms at about 500ms apart and EEG re-
sponses were recorded at 2 kHz from 32 channels from 14
users who wearing a cap of electrodes placed in the 10-20
standard electrode layout [12]. Figure 3 shows the configu-
ration of the electrodes on the scalp. For processing details,
see [21].
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Figure 4. Relatively high accuracies for classification across mul-
tiple categories of images. Such accuracies are achieved with re-
peated presentations of images. This result was reported in [21].

The results (see Figure 4 from [21]) showed that pas-
sive EEG responses can be used to label images with one
of three category labels, namely human faces, animals, and
inanimate objects, with an average accuracy of 55.3%, us-
ing only a single presentation of an image. Furthermore, we
observed that the accuracy could be boosted by using mul-
tiple presentations to one or multiple users. With up to ten
presentations, the average labeling accuracy can be raised to
73.5%. Analysis of two-way classification further showed
that the system was effective in recognizing faces. In par-
ticular with just a single presentation, the system was able
to classify face versus inanimate objects and face versus an-
imals at a 75.3% and 71.6% accuracy respectively. The sys-
tem also demonstrated better than chance recognition per-
formance of 65.0% for animals versus inanimate objects,
which was a more difficult classification task. Further, we
found that these accuracies increase significantly as more
repetitions are added, rising to 91.2%, 84.8%, and 74.1%
for the two-way classifications with 10 presentations of the
test images to the participant.

This work highlighted the discriminatory information
present in the EEG signal and demonstrated that human
brain computation could in principle be used as a new
modality for extracting features from images for use in an
object recognition system. The results also highlighted the
feasibility of harnessing signals in an implicit manner, po-
tentially in-stream with background, ongoing activities, as
valuable information was derived from participants who
were not trying to perform classification. However, a key
question remained about the value of using human brain
signals in a complementary-computing solution for vision.
We did not know if EEG signals provide complementary in-
formation that could extend the abilities of state of the art
computer vision algorithms for object categorization-versus
providing redundant information. Thus, we set out to ex-

plore the relationship of information from brain signals and
current computer vision capabilities.

3.2. Setup 2: EEG + Computer Vision

The second experimental setup consisted of a combined
system [16] aimed at answering the question about the
value of the information gained via access to EEG signals.
Specifically, we sought to explore methods for combining
information from EEG responses with the state-of-the-art
vision algorithms for object recognition. If the combina-
tion of system performed better than either of the individ-
ual modalities, there would be strong reasons to believe that
EEG signal contains information that can be useful to the
traditional computer vision algorithms.

We focus on computer vision algorithms that operate
on the Pyramid Match Kernel (PMK) method [10]. Ob-
ject categorization using PMK is based on analyzing sets
of local features. The approach is overall tolerant to
partial occlusions, object pose variation, and illumination
changes [10, 17, 25,26]. In our system, the information
from the vision features and EEG are combined in a Ker-
nel alignment framework. Specifically, we fuse information
from EEG and the computer vision channel via consider-
ing a linear combination of kernels: K = ZZ o; K;; here,
K, denote kernels computed either in EEG space or using
PMK. Thus, the goal of fusion algorithm is to find appro-
priate weights «; so that the final kernel is aligned with the
available data. Consequently, the algorithm sets a higher
value for the parameter «; if there is a lot of discriminatory
information in kernel K, otherwise a low weight is set. For
details please refer to [16].

We found that the combined method showed significant
gains over individual modalities for a battery of experi-
ments. In particular, for studies with the same data used
in the first experimental setup, we found that a combined
strategy yielded superior performance. Figure 5 shows that
significant gains are obtained by combining the EEG sig-
nals with computer vision features. The combination with
single presentations outperforms each individual channel
with an accuracy of 86.67% on the 3-way classification
task. This performance is further improved to 91.67% when
test images are presented multiple times. Although the vi-
sion features consistently outperform the EEG features, the
combination performs better than either, suggesting that the
EEG signals and the base computer vision analysis comple-
ment one another. Furthermore, the analysis of the feature
weights «; discovered by the combination algorithm high-
light the complementary nature of the information provided
by the human and computer vision modalities. Specifically,
we look at relative weights defined as v(PMK) = %
and v(EEG) = 1 — y(PMK). Figure 6 highlights these
relatives weights averaged over 100 different runs for var-
ious amounts of training data. We can see that the vision
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Figure 5. Performance of different modalities on the test set as the
number of labeled examples are varied for a single presentation to
the subject. The combined classification based on EEG and PMK
significantly outperform the individual modalities. Presenting the
same image multiple times to the subject and voting among those
classification outcomes further improves the accuracy. The error
bars represent standard deviation (reproduced from [16]).

modality has higher discriminative power overall, but that
the weight of the EEG modality is highly significant and
leads to significant gains in accuracy. Also, the relative con-
tribution of EEG signal increases with data suggesting that
bigger gains can be expected with increasing amounts of hu-
man training data. Overall, results from this setup suggest
that indeed the EEG information contains complementary
information that can be used to train the computer vision
system. In the next section we describe such a strategy.

3.3. Setup 3: Training Vision Systems with EEG

With a third experimental setup, we explored whether it
is possible to improve individual vision algorithms with the
help of human computation. We explored how computer vi-
sion systems can use the complementary information avail-
able in the EEG signal via harnessing sets of previously un-
labeled examples. Specifically, the training data for a vision
system can be expanded by first showing unlabeled exam-
ples to humans and then analyzing the observed EEG signal
to recover label information. The idea is described graphi-
cally in Figure 1. Intuitively, we can think of the proposed
approach as a way of increasing the available training data
for a vision algorithm by bootstrapping off the information
available through EEG.

We note that techniques such as semi-supervised and un-
supervised machine learning have been previously used to
exploit information from unlabeled data. The experiments
in this paper are performed in a supervised learning setting
only for simplicity; extension to semi-supervised and unsu-
pervised technique is feasible but is not explored here.
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Figure 6. Comparison of relatives weights of the different modal-
ities as we vary the number of labeled examples per class. The
error bars represent represent standard deviation.

We use the Gaussian Process (GP) framework [18] for
classification and the transfer of complementary informa-
tion from the EEG signal. Intuitively, given a kernel K, GP
framework induces a smoothness constraint implying that
two points that are similar (i.e., high kernel value) should
have same labels. Given this smoothness constraint, the
information from training data points X with labels t,
is combined in a probabilistic manner to compute a poste-
rior distribution over a class label ¢,, of an unlabeled point.
Specifically, under a zero-mean Gaussian noise model?
parameterized with variance o2 this posterior distribution
takes a very simple form and can be written as a Gaussian:
p(tu|X,tr) ~ N(ty, Sy + 0?), where:

fu = kL(Xu)T(O'zl —+ KLL)iltL
Yo = k(xu,xu) — ki (x0) (0?1 + Krr) 'k (x4)-

Here, ky,(x,,) is the vector of kernel function evaluations
with 7 training points, and K1, = {k(x;,x;)}, is the train-
ing covariance, where x;,x; are in the training set. One
of the main advantages of using the GP framework is that,
instead of receiving only a label, we get the whole poste-
rior distribution which is very useful in the setting where
we want to transfer appropriate information to the com-
puter vision system. Intuitively, using the GP framework,
we can show unlabeled images to humans and then use
the EEG signals to compute a posterior distribution over
class labels: p(t&€9|Xe¢9 t1) ~ N (%9, 5¢%9). This pos-
terior distribution also indicates the confidence of the BCI
classifier; hence, we now have the option to appropriately
weight the information before appending the training set.
This is achieved by first considering t¢9 as the label cor-
responding to the unlabeled image and then assuming that
the Gaussian noise model for this particular example has
a variance >;°9 + o2 Specifically, a test image X;.5; can
be classified by PMK based computer vision classifier as

2This method is referred to as least-squares classification in the litera-
ture (see Section 6.5 of [18]) and often demonstrates performance compet-
itive with other kernel based techniques.
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Here, again k(-) and K represent the vector of kernel func-
tion and the kernel matrix respectively, but evaluated using
the pyramid match formulation (PMK). Also, o2 is the vari-
ance parameter for the noise model corresponding to the
PMK based classifier. When the BCI classifier has low con-
fidence (large X6¢9), t<°9 will not affect the final classifica-
tion; however, in light of a confident classification, t°9 will
provide useful information to the computer vision system.
Thus, under the GP framework, we can incorporate the in-
formation provided by the BCI system in a manner that pre-
serves the estimation of uncertainty about the label. Note,
that the GP formulation is described for a binary classifica-
tion task. We extend the binary formulation to a three-class
scenario using a one-versus-all strategy. We would like to
point out that, for simplicity, we described a mathematical
expression for the case of analyzing a single unlabeled im-
age. However, the same formulation readily extends to sets
of unlabeled images.

For this experiment, we again look at the data set de-
scribed for the first experimental setup. However, here we
consider the scenario where a subset of the images has been
labeled and we explore the value of presenting the rest of the
unlabeled images to humans with boosting the recognition,
based only on the use of the computer-vision algorithm.
Thus, our aim is to train a computer-vision system with im-
plicit processing (i.e., without requiring manual annotation
of images). Figure 7 shows the accuracy of classification
for the test set as the number of images from the unlabeled
pool that are presented to users are varied (starting with
randomly selected set of ten images that were labeled and
processed). These results are reported by averaging over
1000 runs and show performance of recognition with only
the computer vision modality (i.e., for test set we have only
vision features). Different curves in the figure correspond to
different numbers of randomly selected people contributing
brain processing. We see that the accuracy of the classifica-
tion using only computer vision increases even when unla-
beled images are being presented to subjects. Furthermore,
we see significant gains with just a single human observer
and the classification accuracy also increases as we include
additional participants. As observed from the figure, this
gain in accuracy saturates with 7 humans, which suggests
that there is correlation among EEG signals collected from
different users. The experiments described in this section
demonstrate that brain computation can boost the accuracy
of a computer-vision classification system significantly.

Training Vision Algorithm with Human Computation
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Figure 7. Results demonstrating that pure vision-based classifica-
tion can benefit from human computation.

4. Discussion

We have described the evolution of our research propos-
ing over three stages of modeling and experimentation. The
efforts have led to a methodology that demonstrates how
EEG signals, even when collected during ongoing activity
of participants that is not necessarily directed at an explicit
visual-recognition task, can augment and inform the de-
velopment of machine-based object categorization systems.
We have shown high accuracies for classifying faces, an-
imate objects, and inanimate objects using this technique.
It is not surprising that our best accuracies come in distin-
guishing faces, human or otherwise, from other objects. The
human brain has been shown to have special skills at recog-
nizing faces. Early research showed that a specific part of
the brain located on the ventral surface of the temporal lobe
specializes in facial recognition [20]. This area has been
called the fusiform face area (FFA). More recent studies fur-
ther suggest that this area may actually process categorical
or even fine information about well-known objects [14]. For
example, researchers have shown activity in this area when
car experts were identifying cars and bird experts were iden-
tifying birds, but not vice versa [8]. Given that humans
are extremely facile at recognizing and distinguishing ob-
jects such as faces, even when they are not trying, and that
our best machines still struggle with this task, our approach
leverages the obvious complementarity to improve the state
of the art in automated object categorization.

One limitation in the current work is that we have not
fully explored the granularity of categories for which we
can continue to harness useful signal from the brain. This
is especially true in the current experimental paradigm, in
which the user is told nothing about the task beyond mak-
ing sure they are looking at the images displayed. For ex-
ample, we would ideally like to be able to distinguish dif-
ferent emotions or facial gestures within the general class



of faces. We might perhaps also be interested in distin-
guishing human faces from other kinds such as animals or
such variants as sketched faces and other symbolic repre-
sentations of faces. We are currently exploring implicitly
priming paradigms in order to provide our methodology
with finer classification granularity. By priming users with
the classes we are interested in discriminating, for example
“sad,” “happy,” and “surprised,” we hope to influence the
way that human subjects process the images, even without
explicitly focusing on the specific task. Success with this
would also allow us to explore a much wider range of cate-
gories than we are currently able to detect.

Along with expanding the current paradigm with implicit
priming, we are also exploring how we can sense the detec-
tion of a face, or other object, within a continuous video
stream. Our current processing methodology requires that
we know exactly the onset of the image of interest. This
is difficult to measure or infer, either in complex scenes, in
which the user can be looking at any number of objects, or
in continuous video in which the onset of the object is not
always clear. This work represents only the first few steps
towards our longer-term vision of human-aided computa-
tion, or more broadly, complementary computing, where
human and machine computation are appropriately com-
bined based on considerations of the value of the informa-
tion streams as well as the cost of efforts and availability of
humans and computing resources. Beyond building better
vision systems, we suspect that future results may lead to
new insights about the capabilities of human vision in com-
parison to the best computer vision methods.

On next steps, we seek to expand the set of objects that
we are able to classify and also to extend the framework to
analyze videos. We also aim to extend and test this sys-
tem on larger, more varied data sets. In another direction of
work, we are interested in the potential to use computations
of the expected value of information to understand the costs
and benefits of employing and sequencing different sources
and types of labeling and computing efforts, given a task at
hand. Such analyses for triaging attention and effort will
likely be important in executing on the longer-term dream
of complementary computing for visual recognition tasks.

5. Conclusion

We have presented methods for integrating human and
machine computation to enhance the accuracy of perfor-
mance on a visual recognition task. We have described how
we can combine base computation as well as labeling effort
using a soft-labeling scheme. The complementary informa-
tion from the EEG observations can be used to appropriately
analyze unlabeled data, which in turn helps the computer vi-
sion algorithm by providing a bigger corpus to train upon.
Our empirical results demonstrate that such a combination
of computer vision and human information processing can

yield significant gains in accuracy for the task of object cat-
egorization. There is much to be done in exploring oppor-
tunities with human-aided computing and complementary
computing. The results to date excite us about directions
and prospects and we expect to see a stream of interesting
future results and methods.
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