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ABSTRACT
We present an algorithm Dash to check if a program P
satisfies a safety property ϕ. The unique feature of the al-
gorithm is that it uses only test generation operations, and
it refines and maintains a sound program abstraction as a
consequence of failed test generation operations. Thus, each
iteration of the algorithm is inexpensive, and can be imple-
mented without any global may-alias information. In par-
ticular, we introduce a new refinement operator WPα that
uses only the alias information obtained by executing a test
to refine abstractions in a sound manner. We present a full
exposition of the Dash algorithm, its theoretical properties,
and its implementation.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Correctness proofs, Model checking ; D.2.5 [Software
Engineering]: Testing Tools—Symbolic execution

General Terms
Testing, Verification

Keywords
Software model checking; Directed testing; Abstraction re-
finement

1. INTRODUCTION
In his 1972 Turing Lecture titled “The Humble Program-

mer” Edsger W. Dijkstra said, “Program testing is a very
effective way to show the presence of bugs, but is hopelessly
inadequate for showing their absence” [10]. While Dijkstra’s
statement holds if we consider program testing as a black-
box activity, tests can indeed be used to progressively guide
the construction of proofs if we are allowed to instrument the
program and inspect the states that a program goes through
during testing.
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Over the past few years, there has been dramatic progress
in using light-weight symbolic execution [14, 24] to do au-
tomatic test generation. In this paper, we present a new
algorithm to show that similar light-weight symbolic execu-
tion can also be used to prove that programs satisfy safety
properties.

We build on the Synergy algorithm [15], which simulta-
neously performs program testing and program abstraction.
The tests are an “underapproximation” of the program be-
havior, and the abstraction is an “overapproximation” of the
program. The goal is to either find a test that reaches an
error state (in which case we have discovered a true viola-
tion of the property), or find an abstraction that is precise
enough to show that no path in the state space of the pro-
gram can reach any error state (in which case we have proved
that the program satisfies the desired safety property). The
Synergy algorithm works by iteratively refining the tests
and the abstraction, using the abstraction to guide genera-
tion of new tests and using the tests to guide where to refine
the abstraction.

Our new algorithm, Dash, makes three significant ad-
vances over Synergy. First, Dash uses test generation not
only to guide where to perform the refinement of the ab-
straction, but also to decide how the abstraction should be
refined. Unlike the Synergy algorithm, there are no extra
theorem prover calls in the Dash algorithm to maintain the
abstraction. The theorem prover is used only to do test gen-
eration, and refinement is done as a byproduct of a failed test
generation attempt. Second, the Dash algorithm handles
programs with pointers without using any whole-program
may-alias analysis (the Synergy algorithm does not handle
programs with pointers). Dash refines the abstraction in
a sound manner using only aliasing relationships that actu-
ally arise in some test. Finally, the Dash algorithm is an
interprocedural algorithm, and it uses recursive invocations
of itself to handle procedure calls (the Synergy algorithm
does not handle procedure calls).

Current approaches to proving properties of programs with
pointers try to reason about aliasing using a conservative
whole program “may-alias” analysis (see Section 4.2 in [2],
and Section 6 in [18]). The alias analysis needs to be flow
sensitive, field sensitive, and even path sensitive, to be strong
enough to prove certain properties (see examples in Section
2), and scalable pointer analyses with these precision re-
quirements do not exist. In addition, there are situations,
such as analyzing x86 binaries directly, where global alias
information is difficult to obtain. The Dash algorithm uses
a different technique to perform refinement without using



may-alias information. We define a new operator WPα that
combines the usual weakest precondition operator [11] with
an alias set α. The alias set α is obtained during execu-
tion of the specific test that the algorithm is attempting
to extend. The predicate obtained from the WPα operator
is weaker than applying the strongest postcondition on the
test, and it is stronger than the predicate obtained by apply-
ing the usual weakest precondition operator. If the test gen-
eration fails, we show that the predicate WPα can be used
to refine the abstraction in a sound manner, without us-
ing any extra theorem prover calls (see Section 4.2.1). This
has the effect of analyzing only the alias possibilities that
actually occur during concrete executions without resorting
to a global (and necessarily imprecise) alias analysis that
reasons about all executions. Consequently, in many cases,
we can show that Dash produces abstractions that are ex-
ponentially smaller than those considered by tools such as
Slam [3] and Blast [18].

Even though Dash uses alias information from tests to
avoid explosion in the computation of WP, the idea is use-
ful in several other settings. For instance, explosion due to
aliasing even happens using other methods for refinement,
such as interpolants [17]. Thus, we believe that WPα can be
useful in other verification tools.

2. OVERVIEW
Over the past few years, several tools based on predicate

abstraction and counterexample-guided abstraction refine-
ment, such as Slam [3] and Blast [18], have been built in
order to compute proofs of programs for various properties.
The algorithms implemented in these tools have two main
bottlenecks. First, the algorithms require many expensive
calls to a theorem prover at every step, which adversely im-
pacts scalability. Second, they use global may-alias infor-
mation, which is typically imprecise and impacts the abil-
ity of these tools to prove properties that involve complex
aliasing. There has also been dramatic progress in testing
techniques like Dart and Cute using light-weight symbolic
execution [14, 24]. These testing tools focus on finding er-
rors in programs by way of explicit path model checking and
are unable to compute proofs. Our work can be viewed as
combining the successful ideas from proof-based tools like
Slam and Blast with testing-based tools like Dart and
Cute with the goal of improving scalability.
Motivating Example. We use the example program in
Figure 1 as a motivating example. An error is said to have
occurred in this program if the error() function is ever
called. The function lock(x) locks the argument x by set-
ting *x to 1; error() is called if x is already locked. The
function unlock(x) unlocks the argument x by setting *x to
0; error() is called if x is already unlocked. This pro-
gram calls lock(p1->lock) at line 14 and calls unlock(p1-

>lock) at line 20 and at line 22. Since two of these calls are
inside a do-while loop (lines 13 - 21), lock and unlock can
be called an arbitrary number of times. The NonDet() func-
tion call at line 18 models nondeterminism, and is assumed
to return either true or false arbitrarily.

Even though the function LockUnlock never raises any
error, proving this automatically is challenging. First, if
lock1 or lock2 alias pi->lock, the function returns without
entering the loop. However, due to the assignments in lines
4 and 7, unless one uses a path-sensitive alias analysis, it
is hard to determine the fact that inside the do-while loop

void LockUnlock(struct ProtectedInt* pi,
int* lock1, int* lock2, int x)

{
1: int do_return = 0;
2: if(pi->lock == lock1 ){
3: do_return = 1;
4: pi->lock = lock2;

}
5: else if(pi->lock == lock2) {
6: do_return = 1;
7: pi->lock = lock1;

}
//initialize all locks to be unlocked

8: *(pi->lock) = 0;
9: *lock1 = 0;
10: *lock2 = 0;

11: if( do_return ) return;
12: else {
13: do {
14: lock(pi->lock);
15: if(*lock1 ==1 || *lock2 ==1)
16: error();
17: x = *(pi->y);
18: if ( NonDet() ) {
19: (*(pi->y))++;
20: unlock(pi->lock);

}
21: } while(x != *(pi->y));

}
22: unlock(pi->lock);

}

struct ProtectedInt
{

int *lock;
int *y;

};

void lock(int *x)
{
23: if(*x != 0)
24: error();
25: *x = 1;
}

void unlock(int *x)
{
26: if(*x != 1)
27: error();
28: *x = 0;
}

Figure 1: The LockUnlock function acquires and re-
leases pi->lock in strict alternation

lock1 or lock2 do not alias pi->lock. Thus, it is challenging
to show that the error in line 16 cannot be reached. As we
show below, Dash uses alias sets that occur on concrete
tests and a new operator WPα to overcome this challenge.
Second, the do-while loop continues to execute only if the
‘then’ branch of the conditional at line 18 is entered. The
loop invariant at line 21 is that pi->lock is locked if and
only if pi->y = x. Such an invariant is needed to prove
that the lock and unlock calls do not raise error, and it
is challenging to compute the loop invariant automatically.
As we show below, Dash automatically discovers the desired
loop invariant in this case.
Dash Algorithm. The input to the Dash algorithm con-
sists of a program P with an infinite state space Σ and a
set of error states ϕ. Dash maintains two data structures.
First, it maintains the collection of previously-run tests as
a forest F . Each path in the forest F corresponds to a con-
crete execution of the program. The algorithm grows F by
adding new tests, and as soon as an error state is added
to F , a real error has been found. Second, it maintains a
finite relational abstraction Σ' of the infinite state space
Σ. The states of the abstraction, called regions, are equiv-
alence classes of concrete program states from Σ. There is
an abstract transition from region S to region S′ if there are
two concrete states s ∈ S and s′ ∈ S′ such that there is a
concrete transition from s to s′. This abstraction is initially
just the control flow graph of a program, but is gradually
be refined over time in an attempt to prove that error states
are unreachable. At all times this abstraction represents
an over-approximation of all concrete executions, so that if
there is no path from the initial region to the error region ϕ,
we can be sure that there is no path of concrete transitions
that lead from some concrete initial state to some concrete
error state and a proof of correctness has been found.



void alias(int *p, int *p1, int *p2)
{
0: if(p == p1) return;
1: if(p == p2) return;
2: *p1 = 0; *p2 = 0;
3: *p = 1;
4: if (*p1 == 1 || *p2 == 1)
5: error();
6: p = p1;
7: p = p2;

Figure 2: Simplified example to illustrate Dash.

In every iteration of the Dash algorithm, we first find
an abstract error path (a path through the abstraction Σ')
from the initial region to the error region. If no such abstract
error path exists, then a proof of correctness has been found.
If any such abstract error path exists, then we can always
find an “ordered” path τe with a prefix τ such that (1) τ
corresponds to a concrete path in F and (2) no region in τe
after the prefix τ is visited in F . Dash now tries to find a
new test which follows the ordered path τe for at least one
transition past the prefix τ .

Techniques developed for directed testing [14, 24] are used
to generate this test. Specifically, a light-weight symbolic ex-
ecution along the path τe collects constraints at every state
as functions of the inputs to the program. In programs
with pointers, the symbolic execution along τe is done in
a “pointer-aware” manner keeping track of the aliases be-
tween variables in the program. If the generated constraints
are unsatisfiable, the test generation fails. A key insight in
the Dash algorithm is that if the test generation attempt
to extend the forest F beyond the prefix τ fails, then the
alias conditions α, obtained by the symbolic execution up
to the prefix τ , can be used to refine the abstraction Σ'.
This refinement does not make any theorem prover calls,
and does not use a global alias analysis. We define a new
operator WPα to perform such a refinement. The WPα op-
erator specializes the weakest precondition operator using
only the alias conditions α that occur along the test up to
the prefix τ . Using the predicate generated by the WPα op-
erator, we can refine the region at the end of the prefix τ and
remove the abstract transition from the prefix τ along the or-
dered trace τe. This technique, which we call template-based
refinement, is described in Figure 6. The Dash algorithm
continues by choosing a new ordered error path until either
some test that reaches the error ϕ is added to F or until the
refined abstraction Σ' provides a proof of correctness that
ϕ can never be reached. Since the problem is undecidable
in general, it is possible that Dash does not terminate.
Handling aliasing. As an example in this section, we use
the simple program shown in Figure 2. This program has
three inputs p, p1 and p2, all of which are pointers to ints.
At lines 1 and 2, pointers p1 and p2 are compared with p

and the function returns if p1 or p2 alias p. Thus, the as-
signment to *p at line 5 cannot affect the values of *p1 or
*p2, and the error statement at line 6 can never be reached.
The interesting feature of this example is that p may alias
with p1 or p2 due to assignments at lines 6 and 7. Thus,
a flow-insensitive may-alias analysis will have to conserva-
tively assume that at the assignment at line 3, the variable
p may alias with p1 or p2, and consider all possible alias
combinations. However, as we describe below, Dash is able

to prove this program correct while only ever considering
the alias combination (p 6= p1 ∧ p 6= p2) that occurs along
concrete executions.

Dash first creates the initial abstraction Σ' for the pro-
gram alias that is isomorphic to its control flow graph
(shown in Figure 3(a)). We represent regions of the abstrac-
tion Σ' as “clouds” and represent states from the forest F
using “×”s in the figure. In order to save space, we do not
show regions for line numbers 6, 7 and the exit location of
the function. The abstract transitions are shown using solid
lines, and the edges of the forest F are shown using dashed
lines. Dash performs four refinements of this program as
shown in Figure 3. First, the initial forest is created by
running alias with a random test that assigns values to its
inputs p, p1 and p2, thus creating a forest Falias of concrete
states. Let us suppose that this test created values such that
p1 and p2 do not alias p. Running this test did not result in
the error location being reached (there is no × representing
a concrete state in the error region 5).

In the first iteration, Dash examines an (abstract) error
path τe = 〈0, 1, 2, 3, 4, 5〉 that leads to the error region and
the prefix τ = 〈0, 1, 2, 3, 4〉 of τe as shown in Figure 3(a).
Dash now tries to add a test to Falias that follows τe for at
least one transition beyond the prefix τ by using directed
testing [14, 24], that is, a test that covers the transition
(4, 5). It turns out that this is not possible, and therefore
Dash refines region 4 using the predicate ρ = (∗p1 = 1) ∨
(∗p2 = 1), which is computed by the weakest precondition
operator WP applied to the assume statement assume( (*p1

==1) || (*p2 == 1)).
In the second iteration, Dash examines an (abstract) error

path τe = 〈0, 1, 2, 3, 4 : ρ, 5〉 that leads to the error region.
It considers the prefix τ=〈0, 1, 2, 3〉 of τe that contains con-
crete states in the forest F , as shown in Figure 3b). Then,
it tries to add a test to Falias that covers the transition
(3, 4 : ρ). This also turns out to be not possible, so the
Dash algorithm refines region 3. If we were to do this re-
finement using the WP operator, we note that WP(*p=1,
(∗p1 = 1) ∨ (∗p2 = 1)) has to consider all possible alias
combinations between p, p1 and p2. Instead, Dash uses the
WPα operator (defined in Section 4.2.1) with respect to the
alias combination (p 6= p1 ∧ p 6= p2) that occurs along the
concrete execution of the test, and computes the predicate
η = ¬((p 6= p1 ∧ p 6= p2) ∧ ¬((∗p1 = 1) ∨ (∗p2 = 1))) as
shown in Figure 3(c). In comparison, tools like Slam [3]
and Blast [18] have to consider 4 possible aliasing condi-
tions – p= p1 or p 6= p1, and p= p2 or p 6= p2 – in order to
be sound. In two more iterations, the abstraction shown in
Figure 3(d) is obtained, and since there is no path in the
abstraction from the initial region 1 to the error region 5,
we have a proof that the program is correct.

The reader might wonder at this point as to how a sound
proof can be obtained by considering only the alias combi-
nation possible to drive (p 6=p1 ∧ p 6=p2) at line 3. The only
reachable alias configuration at region 3 is (p 6=p1 ∧ p 6=p2),
and such a test falls inside the region 3 : ¬η. The other three
alias combinations (1) (p 6=p1∧p=!p2), (2) (p=!p1∧p 6=!p2),
(3) (p=!p1∧p=!p2), are grouped inside a single region 3 : η.
However, since 3 : η is not reachable by any concrete test,
there is no need to separately enumerate these three un-
reachable alias combinations (If indeed one of these aliases
were reachable, Dash would be able to drive a test into 3 : η
which might result in the region being partitioned further).
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Figure 3: Abstraction computed by Dash on the ex-
ample program from Figure 1.

void foo(int *p, int *p1, int *p2, ... , int *pn)
{
0: if(p == p1) return;
1: if(p == p2) return;

...

...
if(p == pn) return;

2: *p1 = 0; *p2=0; ...; *pn = 0
3: if (*p1==1 || ... || *pn==1)
4: error();
5: p = p1;

p = p2;
...
p = pn;

}

Figure 4: Aliasing example with n pointers

Thus, WPα enables Dash to partition the alias space so as
to group all the unreachable alias configurations into a small
number of regions without having to enumerate them indi-
vidually.

Moreover, it can be shown that there is an exponential
blow-up in the predicates computed by Slam for the class
of programs defined by the program shown in Figure 4 pa-
rameterized by n (we have verified this by running Slam
and measuring run times as a function of n, as seen in Fig-
ure 13), whereas Dash does not encounter this blowup since
it uses alias information from tests to reason only about the
alias combinations that actually happen.
Handling loops. Consider again the example from Fig-
ure 1. Similar to our explanation above, Dash can show
that the error at line 16 can never be reached while only con-
sidering the alias possibility (lock1 6= pi → lock) ∧ (lock2 6=
pi → lock) inside the while loop. However, proving that the
calls to lock at line 14 and the calls to unlock at lines 20

and 22 do not ever raise errors requires computing the loop
invariant at line 21 that pi->lock is locked if and only if pi-
>y = x. The detailed explanation of how Dash computes
this invariant automatically is tedious, and requires walk-
ing through several iterations of the algorithm. For brevity,
we give a higher level sketch of how the invariant is com-
puted. At first, Dash considers an abstract error trace that

reaches the error at line 24 inside the lock method called
at line 14. Since it is possible to get concrete tests up until
the conditional at line 23, the frontier for this error trace
is at line 23. Dash attempts to extend this test case to
line 24 and discovers that such a test case cannot be gen-
erated. Thus, it computes WP of the conditional at line
23 and generates the predicate (∗x = 0). As this predicate
is propagated back into the call site at line 14 it becomes
(∗(pi → lock) = 0). In a subsequent iteration, this predicate
is propagated back across the while loop using WP(assume(x
!= *(pi->y)), (∗(pi → lock) = 0)), resulting in the predi-
cate (x 6= ∗(pi → y)∧ ∗(pi → lock) = 0). After propagating
this predicate throughout the loop body, Dash is able to
establish that the only paths that re-enter the loop are from
the region (x 6= ∗(pi → y) ∧ ∗(pi → lock) = 0) at line
21. Thus, the program abstraction allows Dash to deter-
mine the desired loop invariant and establish that there is
no path in the abstraction from the initial region to any
error region. In contrast, testing tools like Dart or Cute
must handle paths one by one, and hence they are forced to
explore only a finite number of paths through loops. Such
tools are unable to prove examples such as Figure 1 correct.

Verification tools such as Slam and Blast on one hand,
and testing tools such as Dart and Cute on the other hand,
have complementary strengths. Verification tools are able to
use abstractions to handle loops, but suffer due to impreci-
sion in alias analysis. In contrast, testing tools are able to
use precise alias information in specific paths, but are unable
to handle loops. Dash is able to combine the advantages of
these two families of tools.
Interprocedural Property Checking. For programs with
several procedures, we describe a modular approach to gen-
eralize Dash. First, the notion of forests and abstractions
can be easily extended to programs with multiple procedures
by maintaining a separate forest FP and a separate abstrac-
tion Σ'P for every procedure P . The only case in the Dash
algorithm that needs to be generalized is when the frontier
we are trying to extend happens to be a procedure call-
return edge (S, S′). In such a case, Dash simply invokes
itself recursively on the called procedure by appropriately
translating the constraint induced by the path τ (the prefix
of the abstract error path τe) into appropriate initial states
of the called procedure and translating the predicate on the
target region S′ into appropriate error states of the called
procedure.

An example illustrating how the Dash algorithm works
interprocedurally can be found in [5].

3. RELATED WORK
Several papers have predicted that testing and verifica-

tion can be combined in deep ways [13, 16]. Yorsh, Ball
and Sagiv have proposed an approach that involves both
abstraction and testing [26]. Their approach examines ab-
stract counterexamples and fabricates new concrete states
along them as a heuristic to increase the coverage of testing.
They can also detect when the current program abstraction
is a proof. Unlike Dash, they do not have a refinement algo-
rithm. Kroening, Groce and Clarke describe a technique to
perform abstraction refinement using concrete program ex-
ecution [19]. Their refinement algorithm is based on partial
program simulation using SAT solvers. In contrast, Dash
uses tests to choose the frontiers of abstract counterexam-
ples, and tries to either extend or refine each frontier with ex-



actly one theorem prover call. The Synergy algorithm [15]
also combines testing and abstraction refinement based ver-
ification algorithms in a novel way. Synergy uses tests to
decide where to refine the abstraction and makes theorem
prover calls to maintain the abstraction. We have compared
Dash with Synergy in Section 1.

Verification tools such as Slam employ an interprocedu-
ral dataflow engine to analyze programs with multiple pro-
cedures. This involves computing abstract summaries for
every procedure in the program. Recently, interprocedural
extensions to testing tools have been proposed [12, 20]. The
extension to Dart [12] computes concrete summaries (tests)
for every procedure in the program. Dash is a modular in-
terprocedural analysis algorithm that combines testing and
abstraction. Intuitively, Dash analyzes called functions us-
ing path-sensitive information from the caller, and the result
of this analysis is fed back to the caller in the form of both
concrete as well as abstract summaries (though we do not
describe them as summaries in the description of the algo-
rithm). Dash currently does not reuse summaries computed
in one context in a different context. We plan to address this
in future work.

Several methods for doing refinement have been proposed,
including backward propagation from error states [6], for-
ward propagation from initial states [3], and using inter-
polants [17]. In all these cases, a theorem prover call is
required at every step of the trace to refine the abstrac-
tion, and a global may-alias analysis is needed to maintain
the refined abstraction. In addition, several theorem prover
calls are used to maintain the abstraction after doing the
refinement. In contrast, Dash is built primarily around test
generation. In the event of a failed test generation, Dash
has enough information to know that the frontier between
the regions covered by tests and the regions not covered by
tests is a suitable refinement point without having to do
any further theorem prover calls. As we show in Theorem 1,
Section 4.2.1, we can use the operator WPα to compute a re-
finement at the frontier that is guaranteed to make progress
without making any extra theorem prover calls and without
using any global may-alias information. Thus, every itera-
tion of Dash is considerably more efficient; its efficiency is
comparable to that of test generation tools such as Cute
and Dart. The price we pay is that Dash may have to per-
form more iterations, since the discovered predicate is lazily
propagated backward one step at a time through only those
regions which are discovered to be relevant; therefore, sev-
eral iterations of Dash are comparable to a single iteration
of a tool like Slam. However, as our empirical results show,
this tradeoff works very well in practice.

An alternative way to handle aliasing is to model memory
as an array, all pointers as indexes into the array, and use
the theory of arrays to handle case analysis for aliasing in
the theorem prover. This approach is followed by verifica-
tion tools that are based in verification condition generation
such as Esc [9], and Boogie [4]. While the theory of arrays
is a useful way to handle aliasing for modular local reason-
ing, our approach is more useful for global reasoning. In
order to perform modular local reasoning, one would need
other structural ways of constraining the aliases in a pro-
gram such as ownership models or frame conditions. Since
Dash deals with existing C programs or x86 binaries, which
have been developed without any constraints on aliasing,
such structural ways of constraining aliases are not possible.

Namjoshi and Kurshan [21] have proposed doing refine-
ments without using theorem provers, using the weakest pre-
condition operator. However, their scheme does not use tests
to identify the point where refinement needs to be done. Un-
like Dash, their work does not handle pointers or aliasing.

Thomas Ball has suggested the idea of using forward sym-
bolic simulation for pointers together with weakest precon-
dition computation to reduce the number of aliasing predi-
cates generated by Slam [25]. The idea of WPα is related
in that it uses alias information from tests to reduce the ex-
plosion in the number of cases to be considered for weakest
precondition computation. However, the design of WPα is
unique to Dash in the sense that we can prove Theorem 1
only if WPα is applied at the frontier, after a failed test case
generation attempt.

4. ALGORITHM
We will consider C programs and assume that they have

been transformed to a simple intermediate form where: (a)
all statements are labeled with a program location, (b) all
expressions are side-effect free and do not contain multi-
ple dereferences of pointers (e.g., (∗)k>1p), (c) intraproce-
dural control flow is modeled with if (e) goto l state-
ments, where e is an expression and l is a program location,
(d) all assignments are of the form *m = e, where m is a
memory location and e is an expression and (e) all func-
tion calls (call-by-value function calls) are of the form *m =

f(x1,x2,...,xn), where m is a memory location.
Though our presentation considers only pointer derefer-

ences of the form *p, our implementation also supports structs
with fields, and pointers to structs with dereferences of the
form p->f.
Syntax. Let Stmts be the set of valid statements in the sim-
ple intermediate form. Formally, a program P is given by a
tuple of procedures 〈P0, P1, . . . , Pn〉, where each component
procedure Pi = 〈Ni, Li, Ei, n0

i , λi, Vi〉 is defined by the fol-
lowing: (1) A finite set Ni of nodes, each uniquely identified
by a program location from the finite set Li of program lo-
cations. (2) A set of control flow edges Ei ⊆ Ni×Ni. (3) A
special start node n0

i ∈Ni which represents the procedure’s
entry location. (4) A labeling λi : Ei → Stmts, that labels
each edge with a statement in the program. If λi(e) is a
function call, then we will refer to the edge e as a call-return
edge. We will denote the set of all call-return edges in Ei by
CallRet(Ei). (5) A set Vi of variables (consisting of parame-
ters, local variables and global variables) that are visible to
the procedure Pi. We will assume that all lvalues and ex-
pressions are of type either pointer or integer. Additionally,
Vi will contain a special variable pci which takes values from
Li.

We assume that P0 is the main procedure, and this is
where the execution of the program P begins.
Semantics. It suffices to consider only the data state of a
procedure P = 〈N,L,E, n0, λ, V 〉 for our purpose. Let Σ
be the (possibly infinite) state space of P , defined as the
set of all valuations to the variables in V . Every statement

op∈Stmts defines a state transition relation
op→: Σ×Σ, and

this naturally induces a transition relation→ : Σ×Σ for the
procedure P . Let σI ⊆ Σ denote the set of initial states of

P . We use
∗→ to denote the reflexive and transitive closure

of the transition relation →. A property ϕ ⊆ Σ is a set of
bad states that we do not want the program to reach. An



Dash(P = 〈Σ, σI ,→〉, ϕ)
Returns:
(“fail”, t), where t is an error trace of P reaching ϕ; or
(“pass”, Σ'), where Σ' is a proof that P cannot reach ϕ.

1: Σ' :=
⋃
l∈L{{(pc, v) ∈ Σ | pc = l}}

2: σI' := {S ∈ Σ' | pc(S) is the initial pc}
3: →' := {(S, S′) ∈ Σ'×Σ' | Edge(S, S′) ∈ E}
4: P' := 〈Σ', σI',→'〉
5: F := Test(P )
6: loop
7: if ϕ ∩ F 6= ∅ then
8: choose s ∈ ϕ ∩ F
9: t := TestForWitness(s)
10: return (“fail”, t)
11: end if
12: τ := GetAbstractTrace(P', ϕ)
13: if τ = ε then
14: return (“pass”, Σ')
15: else
16: τo := GetOrderedAbstractTrace(τ, F )
17: 〈t, ρ〉 := ExtendFrontier(τo, F, P )
18: if ρ = true then
19: F := AddTestToForest(t, F )
20: else
21: let S0, S1, . . . , Sn = τo and
22: (k−1, k) = Frontier(τo) in
23: Σ' := (Σ' \ {Sk−1}) ∪
24: {Sk−1 ∧ ρ, Sk−1 ∧ ¬ρ}
25: →' := (→' \ {(S, Sk−1) | S ∈ Parents(Sk−1)})
26: \{(Sk−1, S) | S∈(Children(Sk−1))}
27: →' := →' ∪ {(S, Sk−1 ∧ ρ) | S ∈ Parents(Sk−1)}∪
28: {(S, Sk−1 ∧ ¬ρ) | S ∈ Parents(Sk−1)}∪
29: {(Sk−1 ∧ ρ, S) | S∈(Children(Sk−1))}∪
30: {(Sk−1 ∧ ¬ρ, S) |S∈(Children(Sk−1) \ {Sk})}
31: end if
32: end if
33: end loop

Figure 5: The Dash algorithm.

instance of the property checking problem is a pair (P,ϕ).
The answer to (P,ϕ) is “fail” if there is some initial state

s ∈ σI and some error state s′ ∈ ϕ such that s
∗→ s′, and

“pass” otherwise.
Our objective is to produce certificates for both “fail” and

“pass” answers. A certificate for “fail” is an error trace, that
is, a finite sequence s0, s1, . . . , sn of states such that: (1)
s0∈σI , (2) si→si+1 for 0≤ i<n, and (3) sn ∈ ϕ.

A certificate for “pass” is a finite-indexed partition Σ' of
the state space Σ which proves the absence of error traces.
We refer to the equivalence classes of the partition Σ' as
regions. The partition Σ' induces an abstract procedure
P' = 〈Σ', σI',→'〉, where σI' = {S ∈ Σ' | S ∩ σI 6= ∅}
is the set of regions that contain initial states, and S→'S′
for S, S′ ∈ Σ' if there exist two states s ∈ S and s′ ∈ S′
such that s→ s′. We allow for the possibility that S→'S′
when there do not exist states s ∈ S and s′ ∈ S′ such that
s→ s′.

Let ϕ' = {S ∈ Σ' | S ∩ ϕ 6= ∅} denote the regions
in Σ' that intersect with ϕ. An abstract error trace is a
sequence S0, S1, . . . , Sn of regions such that: (1) S0 ∈ σI',
(2) Si→'Si+1 for all 0≤ i<n, and (3) Sn ∈ ϕ'.

The finite-indexed partition Σ' is a proof that the proce-
dure P cannot reach the error ϕ if there is no abstract error
trace in P'.

4.1 The Dash Algorithm
We will first assume that the program P= 〈P 〉 has one

procedure P , and discuss how we handle programs with mul-
tiple procedures in Section 4.4. The algorithm Dash shown

in Figure 5 takes the property checking instance (P,ϕ) as
input and can have three possible outcomes:

(1) It may output “fail” together with a test t that certifies
that P can reach ϕ.

(2) It may output “pass” together with a proof Σ' that cer-
tifies that P cannot reach ϕ.

(3) It may not terminate.

Dash maintains two data structures: (1) a finite forest F
of states where for every state s ∈ F , either s 6∈ σI and
parent(s)∈F is a concrete predecessor of s (parent(s)→s),
or s∈σI and parent(s)=ε, and (2) a finite-indexed partition
Σ' of the state space Σ of P .
The regions of Σ' are defined by pc values and predicates
over program variables. Let pc(S) denote the program lo-
cation associated with region S, and let Edge(S, S′) be a
function that returns the control flow edge e∈E that con-
nects regions S and S′. Initially (lines 1–4), there is exactly
one region for every pc in the procedure P ; therefore, the
abstract procedure P' is initially isomorphic to the control
flow graph of the procedure P . The function Test (line 5)
tests the procedure P using test inputs for P , and returns
the reachable concrete states of P in the form of a forest F
(which is empty if no test inputs for P are available). The
test inputs for P may come from previous runs of the al-
gorithm, from external test suites, or from automatic test
generation tools.

In each iteration of the main loop, the algorithm either
expands the forest F to include more reachable states (with
the hope that this expansion will help produce a “fail” an-
swer), or refines the partition Σ' (with the hope that this
refinement will help produce a “pass” answer). The algo-
rithm locates a path from an initial region to the error
region through the abstract procedure, and then discovers
the boundary (the frontier) along this path between regions
which are known to be reachable and a region which is not
known to be reachable. Directed test generation, similar in
spirit to Cute [24], is then used to expand the forest F with
a test that crosses this frontier. If such a test cannot be cre-
ated, we refine the partition Σ' at this “explored”side of the
frontier. Thus, abstract error traces are used to direct test
generation, and the non-existence of certain kinds of tests is
used to guide the refinement of P'.

Every iteration of Dash first checks for the existence of a
test reaching the error (line 7). If there is such a test, then
ϕ∩F 6=∅, so the algorithm chooses a state s∈ϕ∩F and calls
the auxiliary function TestForWitness to compute a concrete
test that reaches the error. TestForWitness (line 9) uses the
parent relation to generate an error trace – it starts with a
concrete state s and successively looks up the parent until
it finds a concrete state s0 (a root of F ) that belongs to an
initial region. TestForWitness(s) returns the state sequence
s0, s1, . . . , sn such that sn=s and si→si+1 for all 0 ≤ i < n.

If no test to the error exists in the forest F , the algo-
rithm calls GetAbstractTrace (line 12) to find an abstract
error trace τ through the abstract graph. If no such trace
exists, then the current partition Σ' is a proof that P can-
not reach any state in ϕ, and GetAbstractTrace returns τ=ε.
Otherwise, GetAbstractTrace returns the abstract trace τ =
S0, S1, . . . , Sn such that Sn=ϕ. The next step is to convert
this trace into an ordered abstract trace. An abstract trace
S0, S1, . . . , Sn is ordered if the following two conditions hold:



Figure 6: Refinement split performed by Dash at the
frontier.

ExtendFrontier(τ , F , P )
Returns:
〈t, true〉, if the frontier can be extended; or
〈ε, ρ〉, if the frontier cannot be ex-
tended.

1: (k−1, k) := Frontier(τ)
2: 〈φ1,S, φ2〉 := ExecuteSymbolic(τ, F, P )
3: t := IsSAT(φ1,S, φ2, P )
4: if t = ε then
5: ρ := RefinePred(S, τ)
6: else
7: ρ := true
8: end if
9: return 〈t, ρ〉

Figure 7: The auxiliary function ExtendFrontier.

(1) There exists a frontier (k−1, k)
def
= Frontier(S0, S1, . . . , Sn)

such that (a) 0 ≤ k ≤ n, and (b) Si ∩ F = ∅ for all
k ≤ i ≤ n, and (c) Sj ∩ F 6= ∅ for all 0 ≤ j < k.

(2) There exists a state s ∈ Sk−1 ∩ F such that
Si = Region(parentk−1−i(s)) for all 0 ≤ i < k, where
the abstraction function Region maps each state s ∈ Σ
to the region S ∈ Σ' with s ∈ S.

We note that whenever there is an abstract error trace, then
there must exist an ordered abstract error trace. The auxil-
iary function GetOrderedAbstractTrace (line 16) converts an
arbitrary abstract trace τ into an ordered abstract trace τo.
This works by finding the last region in the abstract trace
that intersects with the forest F , which we call Sf . The
algorithm picks a state in this intersection and follows the
parent relation back to an initial state. This leads to a con-
crete trace s0, s1, . . . , sk−1 that corresponds to an abstract
trace S0, S1, . . . Sk−1 where Sk−1 = Sf . By splicing together
this abstract trace and the portion of the abstract error trace
from Sf to Sn, we obtain an ordered abstract error trace.
It is crucial that the ordered abstract error trace follows a
concrete trace up to the frontier, as this ensures that it is a
feasible trace up to that point.

The algorithm now calls the function ExtendFrontier (line
17). The function ExtendFrontier, shown in Figure 7, is the
only function in the Dash algorithm that uses a theorem
prover. It takes an ordered trace τo, forest F , and procedure
P as inputs and returns a pair 〈t, ρ〉, where t is a test and ρ
is a predicate. They can take the following values:

• 〈t, true〉, when t is a test that extends the frontier. The
test t is then added to the forest F by AddTestToForest
(line 19), which runs an instrumented version of the
program to obtain the trace of concrete states that are
added to F .

• 〈ε, ρ〉, when no test that extends the frontier is possi-
ble. In this case, ρ is a suitable refinement predicate

ExecuteSymbolic(τ , F , P )
Returns: 〈φ1,S, φ2〉.
1: (k−1, k) := Frontier(τ = 〈S0, S1, . . . , Sn〉)
2: S := [v 7→ v0 | ∗v ∈ inputs(P )]
3: φ1 := SymbolicEval(S0,S)
4: φ2 := true
5: i := 0
6: while i 6= k−1 do
7: op := λ(Edge(Si, Si+1))
8: match(op)
9: case(∗m = e):
10: S := S+[SymbolicEval(m,S) 7→SymbolicEval(e,S)]
11: case(if e goto l):
12: φ1 := φ1 ∧ SymbolicEval(e,S)
13: i := i+ 1
14: φ1 := φ1 ∧ SymbolicEval(Si,S)
15: end while
16: op := λ(Edge(Sk−1, Sk))
17: match(op)
18: case(∗m = e):
19: φ2 := φ2∧
20: ∗(SymbolicEval(m,S)) = SymbolicEval(e,S)
21: S′ := S + [SymbolicEval(m,S) 7→ SymbolicEval(e,S)]
22: case(if e goto l):
23: φ2 := φ2 ∧ SymbolicEval(e,S)
24: S′ := S
25: φ2 := φ2 ∧ SymbolicEval(Sk,S′)
26: return 〈φ1,S, φ2〉

Figure 8: The auxiliary function ExecuteSymbolic.

that is used to used to refine the partition Σ' at the
frontier (lines 21–30), resulting in a split of region Sk−1

(as shown in Figure 6) that eliminates the spurious ab-
stract error trace τo.

The function ExecuteSymbolic, which is called at line 2
of ExtendFrontier, performs symbolic execution on τ using
techniques inspired by Cute [24]. Let τ = 〈S0, S1, . . . , Sn〉,
and let (k− 1, k) = Frontier(τ). ExecuteSymbolic returns
〈φ1,S, φ2〉, where φ1 and S are respectively the path con-
straint and symbolic memory map obtained by performing
symbolic execution on the abstract trace 〈S0, S1, . . . , Sk−1〉,
and φ2 is the result of performing symbolic execution on the
abstract trace 〈Sk−1, Sk〉 (not including the region Sk−1)
starting with the symbolic memory map S . ExecuteSym-
bolic is described in Figure 8. It first initializes the symbolic
memory map S with v 7→ v0 for every input variable ∗v in
the program, where v0 is the initial symbolic value for ∗v
(line 2 in Figure 8) and performs symbolic execution in or-
der to compute φ1 and φ2. The function SymbolicEval(e,S)
evaluates the expression e with respect to values from the
symbolic memory S.

ExtendFrontier calls the function IsSAT (line 3 in Figure 7)
that checks whether µ=φ1∧S∧φ2 is satisfiable1 by making
a call to a theorem prover. If µ is satisfiable, IsSAT uses
the satisfying assignment/model to generate a test t for P
that extends the frontier, otherwise it sets t= ε. If it is not
possible to extend the frontier (that is, t = ε as shown in
line 4), then ExtendFrontier calls RefinePred (line 5) which
returns a predicate ρ that is a suitable candidate for refining
Σ' at Sk−1 according to the template in Figure 6. It is useful
to note that RefinePred makes no theorem prover calls in
order to compute ρ.

4.2 Suitable Predicates
If we cannot drive a test past the frontier, then RefinePred

1Every entry in S is looked upon as an equality predicate
here.



RefinePred(S, τ)
Returns: a suitable predicate ρ.

1: (k−1, k) := Frontier(τ = 〈S0, S1, . . . , Sm〉)
2: op := λ(Edge(Sk−1, Sk))
3: α := Aliases(S, op, Sk)
4: return WPα(op, Sk)

Figure 9: Computing suitable predicates.

should return a predicate that is “good” in some sense. We
seek a predicate ρ that is suitable to perform a refinement as
shown in Figure 6. We require such a predicate ρ, to satisfy
the two conditions formally stated below.

Definition 1 (Suitable predicate). Let τ be an abstract
error trace and let (S, S′) be its frontier. A predicate ρ is said
to be suitable with respect to τ if: (1) all possible concrete
states obtained by executing τ up to the frontier belong to
the region (S ∧¬ρ), and (2) there is no transition from any
state in (S ∧ ¬ρ) to a state in S′.

A refinement in the style of Figure 6 makes progress in the
sense that it eliminates the current abstract trace S0, S1, . . . ,
Sk−1, Sk. This is because every state that can be reached
by S0, S1, . . . , Sk−1 needs to be in the region (Sk−1∧¬ρ) and
there is no abstract transition from the region (Sk−1∧¬ρ)
to Sk, by the above definition. We call this template-based
refinement since it is done without any calls to a theorem
prover after computing a suitable predicate. Next, we de-
scribe how the auxiliary function RefinePred computes a suit-
able predicate.

4.2.1 Computing Suitable Predicates
For a statement op∈Stmts and a predicate φ, let WP(op, φ)

denote the weakest precondition [11] of φ with respect to
statement op. WP(op, φ) is defined as the weakest predicate
whose truth before op implies the truth of φ after op exe-
cutes. The weakest precondition WP(x = e, φ) is the predi-
cate obtained by replacing all occurrences of x in φ (denoted
φ[e/x]). For example, WP(x = x+1, x < 1) = (x+1)< 1 =
(x< 0). However, in the case of pointers, WP(op, φ) is not
necessarily φ[e/x]. For example, WP(x = x + 1, ∗p+∗q < 1)
is not ∗p + ∗q < 1, if either ∗p or ∗q or both alias x. In
order to handle this, if the predicate φ mentions k loca-
tions2 (say y1, y2, . . . , yk), then WP(x = e, φ) would have 2k

disjuncts, with each disjunct corresponding to one possi-
ble alias condition of the k locations with x [2]. There-
fore, WP(x = x + 1, ∗p+ ∗q < 1) has 4 disjuncts as follows:
(&x=p∧&x=q∧2x<−1)∨ (&x 6=p∧&x=q∧∗p+x< 0)∨
(&x=p∧&x 6=q∧x+∗q< 0)∨(&x 6=p∧&x 6=q∧∗p+∗q< 1).
Typically, a whole-program may-alias analysis is used to im-
prove the precision (that is, prune the number of disjuncts)
of the weakest precondition and the outcome of this anal-
ysis largely influences the performance of tools like Slam.
However, as motivated by the example in Figure 2, impreci-
sions in a whole-program may-alias analysis are ineffective
in pruning the disjuncts. Dash takes an alternate approach.
It considers only the aliasing α that can happen along the
current abstract trace, and computes the weakest precondi-
tion specialized to that aliasing condition, as shown by the
function RefinePred in Figure 9.

2A location is either a variable, a structure field access from
a location, or a dereference of a location.

Dash-Main(P, ϕ)
Returns:
(“fail”, t), where t is an error trace of P reaching ϕ; or
(“pass”, Σ'), where Σ' is a proof that P cannot reach ϕ.

1: let 〈P0, P1, . . . , Pn〉 = P in

2: Dash(P0 = 〈Σ0, σ
I
0 ,→0〉, ϕ)

Figure 10: The Dash algorithm for programs with
multiple procedures.

We first define the projection of the weakest precondition
with respect to alias condition α as follows:

WP↓α(op, φ)) = α ∧WP(op, φ)

It is important to note that the α computed by the auxil-
iary function Aliases(S, op, Sk) consists of only those alias-
ing conditions in S that hold between locations that occur
in op and Sk. For efficiency, WP↓α (op, φ)) can be com-
puted by only considering the possibility α. For example, if
α = (&x 6=p ∧&x=q) we have that

WP↓α (x = x + 1, ∗p+∗q < 1) = (&x 6=p∧&x=q∧∗p+x< 0)

The refinement predicate computed by RefinePred is

WPα(op, φ2)
def
= ¬(α ∧ ¬WP↓α(op, φ2))

Next, we show that such a predicate satisfies the conditions
for a suitable predicate.

Theorem 1. The predicate WPα(op, φ2) computed by the
auxiliary function RefinePred is a suitable predicate.

Proof: We omit the proof in the interest of brevity. Details
of the proof are given in [5].

We note that while WP or interpolants [17] are other possible
choices for a suitable predicate for the refinement shown in
Figure 6, the predicate computed by both these techniques
contain an exponential number of disjuncts in the presence
of aliasing. Thus, the use of WPα avoids an exponential
number of disjuncts when compared to other approaches
that use WP such as [15] and [21]. Though we consider
only WP, we believe that a similar optimization to reduce
the number of aliasing possibilities using tests can also be
done with interpolants.

4.3 Soundness and Complexity
Dash is sound in the sense that if Dash terminates on

(P,ϕ), then either of the following is true: (1) if Dash re-
turns (“pass”, Σ'), then Σ' is a proof that P cannot reach ϕ,
and (2) if Dash returns (“fail”, t), then t is a test for P that
violates ϕ. However, there is no guarantee that Dash will
terminate (this is a shortcoming of all tools that use coun-
terexample driven refinement, such as Slam and Blast).

Though we cannot bound the number of iterations of Dash
we can bound the number of theorem prover calls made in
each iteration. During a Dash iteration, a test generation
entails one theorem prover call (call to IsSat in line 3 of the
auxiliary function ExtendFrontier). If a test that extends the
frontier is not possible, then generating a suitable predicate
for refinement does not involve a theorem prover call.



Program Lines Property Slam Dash
Iters TP-calls Time(secs) Iters TP-calls Time(secs)

bluetooth-correct 700 SpinLock - - - 553 553 27.90
floppy-correct 6500 InterlockedQueuedIrps * * * 726 726 14.56
floppy-correct 6500 SpinLock * * * 826 826 14.17
floppy-buggy 6500 SpinLock * * * 493 493 8.90
serial-buggy 10380 SpinLock * * * 982 982 16.95
serial-correct 10380 SpinLock * * * 2297 2297 48.66
bluetooth-correct 700 CancelSpinLock 5 1183 4.26 275 275 2.15
bluetooth-buggy 700 CancelSpinLock 5 1413 5.69 171 171 1.59
bluetooth-buggy 700 SpinLock 6 2453 8.1 171 171 1.69
diskperf-correct 2365 CancelSpinLock 2 15 1.76 123 123 1.95
diskperf-buggy 2365 CancelSpinLock 3 92 2.55 3 3 1.21
diskperf-correct 2365 MarkIrpPending 5 278 2.35 318 318 3.15
diskperf-buggy 2365 MarkIrpPendnig 5 440 2.35 2 2 1.22
floppy-correct 6500 CancelSpinLock 3 2851 7.81 538 538 5.41
floppy-buggy 6500 CancelSpinLock 3 2490 7.19 91 91 1.61
floppy-buggy 6500 InterlockedQueuedIrps 7 6688 24.84 1147 1147 17.21
floppy-correct 6500 MarkIrpPending 4 2513 11.84 568 568 5.68
floppy-buggy 6500 MarkIrpPending 3 2506 10.95 110 110 1.98

Table 1: Comparison of Slam with Dash. “*” indicates timeout after 30 minutes, and “-” indicates that the
tool gave up due aliasing issues.

4.4 Handling Programs with Procedures
We will assume without loss of generality that the prop-

erty ϕ that we wish to check is only associated with the
main procedure P0 in the program P. Therefore, Dash-
Main(P=〈P0, P1, . . . , Pn〉, ϕ) (shown in Figure 10) calls the
function Dash from Figure 5 on the property checking in-
stance (P0, ϕ). As in the single procedure case, we maintain
a forest F and an abstraction P' for every procedure P in
the program. The interprocedural analysis differs from the
intraprocedural algorithm described earlier only in the defi-
nition of the auxiliary function ExtendFrontier. The modified
version of ExtendFrontier is shown in Figure 11. Informally,
the interprocedural algorithm works by recursively invoking
Dash whenever the standard algorithm dictates that the
frontier must be extended across a call-return edge of the
graph. The results of recursive call, combined with infor-
mation from the calling context tell us whether or not there
exists a test that can extend the frontier. If this is not pos-
sible, then the proof returned by the recursive Dash call is
used to compute a suitable predicate.

Specifically, the auxiliary function ExtendFrontier makes a
call to Dash at frontiers that correspond to call-return edges.
ExtendFrontier first calls the auxiliary function GetWholeAb-
stractTrace (line 1). GetWholeAbstractTrace takes an ordered
abstract error trace τ = 〈S0, S1, . . . , Sn〉 and forest F as in-
put, and returns an “expanded” whole abstract error trace
τw. Essentially, τw is the abstract trace τ with all call-return
edges up to its frontier replaced with the abstract trace tra-
versed in the called function (and this works in a recursive
manner), so that it is really a trace of every abstract program
point through which the test passed. If Edge(Si, Si+1) is a
call-return edge that occurs before the frontier, GetWholeAb-
stractTrace runs a test t (obtained from the concrete wit-
ness in Si) on the called procedure GetProc(e) and replaces
Edge(Si, Si+1) with the sequence of regions corresponding
to the test t.

The function ExecuteSymbolic (line 3) performs symbolic
execution on the whole abstract error trace τw as described
in Figure 8. If the frontier corresponds to a call-return
edge (line 5) with a call to procedure Q = 〈Σ, σI ,→〉, Ex-
tendFrontier calls Dash on the property checking instance
(〈Σ, σ ∧φ,→〉,¬φ′). The predicate φ corresponds to the

ExtendFrontier(τ , F , P )
Returns:
(t, true), if the frontier can be extended; or
(ε, ρ), if the frontier cannot be extended.

1: τw=〈S0, S1, . . . , Sn〉 := GetWholeAbstractTrace(τ, F )
2: (k−1, k) := Frontier(τw)
3: 〈φ1,S, φ2〉 := ExecuteSymbolic(τw, F, P )
4: if Edge(Sk−1, Sk) ∈ CallReturn(E) then

5: let 〈Σ, σI ,→〉 = GetProc(Edge(Sk−1, Sk)) in
6: φ := InputConstraints(S)
7: φ′ := Sk[e/x]

8: 〈r,m〉 := Dash(〈Σ, σI∧φ,→〉,¬φ′)
9: if r = “fail” then
10: t := m
11: ρ := true
12: else
13: ρ := GetInitPred(m)
14: t := ε
15: end if
16: else
17: t := IsSAT(φ1,S, φ2, P )
18: if t = ε then
19: ρ := RefinePred(S, τw)
20: else
21: ρ := true
22: end if
23: end if
24: return 〈t, ρ〉

Figure 11: The auxiliary function ExtendFrontier for
interprocedural analysis.

constraints on Q’s input variables which are computed di-
rectly from the symbolic memory S (by the auxiliary func-
tion InputConstraints at line 7), and φ′ = Sk[e/x], where e
is the returned expression in Q and x is the variable in the
caller P that stores the return value. Note that because
both φ and φ′ may mention local variables with the same
names as variables in the called function, either the identi-
fiers in these predicates or the identifiers in the called func-
tion need to be varied appropriately at the point where Dash
is called recursively. While this must be done carefully so
that AddTestToForest can correctly match up concrete states
with abstract states, these details are omitted here.

If Dash(〈Σ, σ ∧ φ,→〉,¬φ′) returns (“fail”, t), then we
know that the frontier can be extended by the test t; oth-
erwise m corresponds to a proof that the frontier cannot



be extended across the frontier. Computing a WPα naively
in this event would be expensive if the called function had
several paths, but we can glean information from the way
Dash splits the initial region to get a suitable predicate.
This predicate is computed by the auxiliary function Ge-
tInitPred in line 13 which takes the proof m computed by
Dash and returns a suitable predicate ρ.

The handling of any recursive procedures falls out natu-
rally from this algorithm, without need for any sort of pro-
cedure ‘summaries.’ On one hand, if a procedures needs to
be recursively invoked in order to reach an error condition,
Dash itself will be recursively invoked, substituting appro-
priate values for concrete parameters, so that symbolic exe-
cution will eventually ’bottom out,’ in the base case of the
recursion. If, on the other, more likely hand, the recursive
execution of a procedures is not directly related to the error,
the algorithm will generate test cases that pass right though
the recursive invocations, at which point the call will be on
the near side of the frontier. The rest of the interprocedural
algorithm is identical to Dash.

5. EVALUATION
We have implemented Dash using the CIL infrastructure [22],

and the F# programming language [1]. We use the Z3 the-
orem prover [8] that can also do model generation.

The implementation of Dash is very close to the descrip-
tion in Section 4. The only notable exception is that, when
faced with an if-branch in a program, Dash will perform an
inexpensive test to see whether the WPα of a weaker pred-
icate, one that ignores the branch condition, still satisfies
the template described in Figure 6. This can be done by
evaluation, and does not require a theorem prover call. The
effect of this optimization is that we avoid getting “stuck”
in irrelevant loops. We have left the consideration of more
thorough generalization techniques for future work.

Implementing the interprocedural Dash algorithm in the
presence of pointers was non-trivial. Each invocation of the
Dash algorithm carries its own abstract graph, as well as a
logical memory map representing the state of memory when
the function was called. The top-level invocation of Dash
assumes that there is no aliasing in this map, but recursive
calls may begin with aliasing constraints introduced during
the execution of the program. When a recursive call begins,
a fresh abstraction is generated from the control flow graph
of that function and is augmented with initial and error
regions as described in Section 4.4.

We did three sets of evaluations to compare Dash and
Slam3.
Device driver benchmarks. Table 1 compares Slam and
Dash on device driver code. In the first 6 cases where Slam
either times out or gives up due to pointer aliasing, Dash is
able to prove that the program satisfies the property or find
a test that witnesses the violation very efficiently. This is
due to the fact that the refinement done by Dash using WPα
considers only the aliasing possibilites that occur along test
executions. For the floppy-correct program and SpinLock

property, the situation is similar to the simplified code snip-
pet in Figure 1 in Section 2 (the example code in Figure 1
was motivated by looking at the floppy driver code relating
to this property and simplifying it for presentation). As seen

3In order to make a fair comparison with Slam, we modified
Slam so that it also calls the theorem prover Z3.

Figure 12: Scatter plot of the relative runtimes of
Slam and Dash on 95 C programs in Slam’s regression
suite.

Figure 13: Plot illustrating the exponential time
taken by Slam on the program (parameterized by
n) in Figure 4. Dash, on the other hand, takes al-
most constant time on this class of programs.

in the table, even though Dash takes several more iterations
when compared to Slam, each iteration is very efficient, and
the overall runtime of Dash is smaller than Slam. This is
because in each iteration, Slam makes a large number of
theorem prover calls to compute the boolean program ab-
straction, whereas Dash makes exactly one theorem prover
call per iteration.
SLAM regression suite. We ran Dash on 95 C programs
in Slam’s regression suite. A scatter plot of the relative
runtimes of Slam and Dash can be seen in Figure 12. Slam
and Dash gave identical outputs (that is, pass/fail) on each
of the 95 programs. Note that the plot has Slam runtime in
a log scale, and the curve y = x is shown. Every point to the
right of the curve is a case where Dash is faster than Slam.
The total time taken by Slam for all the 95 programs (put
together) is 20 minutes. Dash finishes all the 95 programs
in 17 seconds, a speedup of 70X. With test caching enabled
(where tests are reused across runs of Dash), Dash finishes
all the 95 programs in 4 seconds, a 300-times speedup.
Microbenchmark for alias issues. Finally, we varied
the parameter n in the template program in Figure 4 and
compared the runtimes of Slam and Dash. The results
are shown in Figure 13. As explained in Section 2, Slam’s
runtime varies exponentially with n due to the fact that it
considers and rules out an exponential number of aliasing
possibilities, whereas Dash takes almost constant time.

6. CONCLUSION
We believe that light-weight approaches like Dash enable

application of proof techniques to a larger class of programs.
Our eventual goal is the following: whenever we can run a



program, instrument a program to observe states, and do
light-weight symbolic execution, we want to be able to do
proofs! We believe that Dash has all the concepts needed
to achieve this goal.

Dash handles only sequential programs, and checks only
safety properties. However, recent work has built on check-
ers like Slam to do concurrency analysis with bounded num-
ber of context switches [23], and check termination proper-
ties [7]. By improving the scalability of the core proof en-
gines (like Slam), we believe that Dash can also improve
the scalability of these tools for concurrency and termina-
tion analysis.
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