Transformation-based Framework for Record
Matching

Arvind Arasu Surajit Chaudhuri Raghav Kaushik
Microsoft Research
{arvinda, surajitc, skaush@microsoft.com

Abstract— Today's record matching infrastructure does not we do not change any token), (2) all three pairs of strings joi
allow a flexiblle way to account for synonyms such as “Robert” say by standardizingohnandJeff to J, and (3)J Jonesjoins
and "Bob” which refer to the same name, and more general forms - ;ith exactly one ofleff JonesaindJohn Joneslt is impossible
of string transformations such as abbreviations. We propose a
programmatic framework of record matching that takes such to achieve the following outputl Jonesjoins W'th .both.].eff_
user-defined string transformations as input. To the best of our Jonesand John Jonesbut the latter two do not join. This is
knowledge, this is the first proposal for such a framework. This clearly a limitation of token standardization since there a
transformational framework, while expressive, poses significan scenarios where this is desirable. O
computational challenges which we address. We empirically The ey issue illustrated in Example 1 is that equivalences
evaluate our techniques over real data. - o -

are only one form of string variations. We also have variatio
such as abbreviations that lose information. For examglesta
initial (such asJ) can be expanded in multiple way3ohn

Record matching [1] is an essential step in order to use d3i# etc.) that are clearly not equivalent.
warehouses for accurate data analysis. For example, owing twe argue that it is impractical to expect a generic simijarit
various errors in data, the customer name in a sales record Mignction to be cognizant of such domain-dependent variatio
not match exactly with the name of the same customer in tReither the matching framework has to be customizable to take
registration table. A critical component of record matchinthese variations asxplicit input In this paper, we propose
involves determining whether two strings are similar or.noa simple programmatic framework based wansformation
String similarity is typically captured via a similarity fietion rules to capture non-syntactic notions of string similarity.
that, given a pair of strings returns a number between 0 andidformally, transformation rules generate a set of newngsi
a higher value indicating a greater degree of similarityhwitfor any given string; two strings are considered similasdime
the value 1 corresponding to equality. pair of strings generated from the original strings is simil

As reviewed by Koudas, Sarawagi, and Srivastava [Ifhe following example illustrates this.
previously proposed similarity functions predominantbgdis Example 2:Consider the names in Example 1. Our trans-
on the syntactic difference between strings in measurie@ thformation rules are of the fornd — Jeff and J — John
similarity. While this is indeed an indicator of similarityyere Informally, the first rule means that an occurrenceJotan
are many cases where strings that are syntactically fat afggs replaced withJeff Under these rules) Jonesgenerates
can still represent the same real-world object. This happen three stringsJ Jones Jeff JonesandJohn JonesThe strings
a variety of settings such as street names (the street 8&khe Jeff Jonesand John Jonesdo not generate any new string
154th Aveis also known ad.acosta Dr Ein the postal area other than themselves. Therefore, the stridglonesand Jeff
corresponding to zipcod&3027), the first names of individuals Joneswould be considered similar, since they both generate
(Robert can also be referred to aob), conversion from the stringJeff Joneson the other hand, the stringeff Jones
strings to numberssecondo 2nd) and abbreviationdifternal and John Jonesvould not be considered very similar. [
Revenue Serviceeing represented dRS). The similarity between strings generated using transftona

Prior work addresses this issue primarily usioen stan- rules is captured using one of the traditional similaritpdu
dardization[1], [2]. The idea is to pre-process the input datdons such as jaccard or edit distance. Thus, our framewgork i
so that all variations of a string are converted into a caraini orthogonal to the choice of the underlying similarity fupaot
(standard) representation. Thus, for example, the inpuldco As Example 2 suggests, and as we will argue in the rest
be pre-processed so that all occurrenceBal are converted of the paper, transformation rules provide a highly expres-
to Robert However, this approach is inadequate as illustrataille framework for declaratively capturing a wide variefy o
by the following example. non-syntactic string similarity such as synonymous words o

Example 1:Suppose we have three stringeff JonesJ names, acronyms and first name initialization. To the best
Jonesand John Jonesand suppose that record matching isf our knowledge, this is the first proposal that takes such
performed using string equality. If we adopt the approadhansformations as explicit input. We show using an emaiiric
of token standardization, then there are only three passilstudy on real data that we can leverage our transformation
outcomes: (1) no two of the above strings join (for examfle, iule-based framework to significantly improve the qualify o

I. INTRODUCTION

record matching. « linkage-based functiond 6], [17], [18], [19] that exploit

As part of our empirical study, we also consider the ease the relationship among attributes to measure the simyilarit
of specifying transformation rules. We argue using two rep- between records (such as joining two papers based on the
resentative data cleaning domains, addresses and academiccorresponding sets of authors).

publications, that there often exist rich sources of domain Qyr main contribution is to the class of core functions which
knowledge that can be leveraged to semi-automaticallyeleriye enrich with a table of user-specified transformations: Ou
a large number of useful transformation rules. These ir&ludyoal is to be domain-independent. The limitations of theecor
for example, data published by USPS [3] for address&gnctions in the absence of transformations have already be
manually curated sites such as Wikipedia [4] and DBLP [Skiiscussed in Section I. Extensions of these core functiame h
While the transformational framework is expressive, it alsgeen studied that attempt to account for equivalences leetwe
introduces Signiﬁcant Computational Cha”enges. A funeiam Strings that are Syntactica”y far apart_ Affine edit d|$mtﬂ_2]1
tal operation in record matching isimilarity join, which [9]is a variant of classic edit distance that allows for peefi
identiﬁes a.” paiI‘S Of Strings (I’eCOI‘dS) that are S|m||ah.eT based abbreviationi:()rp as a short-form OCorporatior)_
naive approach suggested by our semantics is to geneldifivever, these extensions only account for special cases
all derived strings using transformation rules and compuigch as prefix-based abbreviations. For instance, affine edi
similarity join over the derived strings. However, this apich distance does not account for equivalences of first names and
is not efficient since the number of derived StringS could tﬁreet aliases. These Specia| cases are |mp||c|t In csjnb’ar
very large, as illustrated by the following example. approach takes transformation rules as explicit input. a-c
Example 3:Consider the citation: pare the record matching quality of our approach empiscall

N Koudas, S Sarawagi, D Srivastava. Record link- against these approaches [12]. Our technique complements

age: Similarity Measures and Algorithms. Proceed- machine-learning based approaches that use examplesrio lea

ings of the 2006 ACM SIGMOD International Con- the best combination of core functions.

ference. Chicago, IL, USA. Algorithms that perform linkage-based record match-
Suppose that we consider the set of ru{é6 — Nick, S — ing [16], [17] work iteratively jointly deducing equivaleas
Sunitg D — Divesh SIGMOD — Special Interest Group on among various attributes (e.g., papers, authors) and tiseng
Management of DataACM — Association for Computing equivalences derived in the current iteration in the nesdait
Machinery IL — lllinois}. The number of strings generatedion. In principle, it is possible to seed these algorithmthw
by this citation under these rules 2§ = 64. O an initial set of equivalences that are user-defined. Howyeve
We address the computational challenges thus posed by tiis is inadequate since not all string variations corraspmo
framework. We present general techniques applicable toequivalences as shown in Example 1. Further, these algwith
large subset of common similarity functions, and some speodel equivalences only at the attribute level, not at tiin
cializations optimized for set-based similarity funcsosuch attribute level. For instance, the fact tHabbertis the same
as jaccard similarity and its variants. Our experimentallts asBobis not used to deduce thRibbert Joness the same as
suggest that our new techniques provide at least one or t®0ob JonesSuch a deduction is one of our contributions and
orders of magnitude performance improvements over theenathius our techniques can be used to complement linkage-based
approach. algorithms.

Il. RELATED WORK Ill. STRING TRANSFORMATIONS

Record matching has been a thriving area of databasens noted in Section I, string matching is a critical compo-
research surveyed in [1] and [2]. Substantial portions & thhent of record matching and is the focus of this paper. We
work have focused on designing suitable similarity funusio model strings as a sequence tokenswhere each token is
Some of these functions are domain-specific, such as the Jé”@smaller) string. We assume the existence of procedures
distance [6] and Jaro Winkler distance [7] for person namegat convert a string into a token sequence and vice versa.
and funCtionS Used by tOO|S SUCh as Tr|”|um [8] for addrSSSQA given String may be tokenized for instance by Sp“tung |t
However, by and large, the focus of prior research has beengyyed on delimiters such as white spaces. By this method, the
domain-independent similarity functions. These can bedi§o stringInternal Revenue Serviée converted to the sequence of
classified into: tokens <Internal,RevenugService-. Henceforth, we use the

» core functionsthat are based on the syntactic differterm string to refer to a sequence of tokens and the term

ence between two records, such as edit distance afbstringto refer to a (contiguous) subsequence of tokens.

its variations [9], jaccard similarity, tf-idf based cosin)

similarity [10], functions based on language models froft- Transformation Rules

information retrieval and for example Hidden Markov A transformation rule consists of a pair

Models [11] (context, Production) where Production is of the form
« Mmachine-learningpased approaches that use positive aritls — rhs. Each of context, lhs, rhs is a string. The

negative examples to identify a combination of coreequencéhs cannot be empty, buths can be. A production

functions [12], [13], [14], [15], and without a corresponding context is called context-free

transformation and we use the production itself to denotée th Example 8: Suppose that the similarity predicate is equal-

rule. ity. The string SW 154th Ave Florida 3302i& equal to the
Example 4:Some example transformation rules are: stringLacosta Dr E, FL 33027nder the transformationd-L
« IL — llinois — Florida, (33027, SW 154th Ave> Lacosta Dr B}. This
« ACM — Association for Computing Machinery happens since both of the above strings generate the same
« (33027, SW 154th Ave> Lacosta Dr B string Lacosta Dr E, Florida 33027 O

Following from the above discussion, we can assign a
similarity score to two strings given a similarity functigh
and a set of transformatiors. The similarity between strings
s1 and so under 7 is defined to be the maximum similarity
8?3 measured by) among all pairss; and s, respectively
generated by; and s, using7 . With this definition, adding
transformations can only increase the similarity between t
strings.

Notice that the above definition as stated does not penalize

the application of a transformation rule for computing simi
larity. For instance, for the rules of Example 7, the sinifijar
of both pairs ABCDEABCDBand ABCDEAX
Z) is the same for any similarity function, although the first
pair contains exactly identical strings, while the seconé«d
not. We can imagine scenarios where penalizing or costiag th
application of transformation rules is useful, and this ban
ndone in several ways. One example is simply counting the
rgumber of rules applied. We can incorporate costs simply
by taking as input a budget on the total cost of rules to
restrict the number of strings generated by a given string.
his methodology is independent of the underlying simari
function. Of course, this is not the only way to incorporate
costs—we could for example aggregate the rule application
costs with the final similarity value returned. We defer a
detailed study of these alternatives to future work.

The first two rules are context-free, while the third is cabte
sensitive. O

We now describe how a stringcan be transformed given a
set of transformation rule$. The transformations are driven
by the productions. The context is used to identify a set
productions that are applicable toLet P(s) denote all pro-
ductions wherecontext is a substring ofs (thus, all context-
free transformations are included®\(s)). The productions in
P(s) can be used to transforgn A productionP = lhs — rhs
in P(s) can be applied ta if lhs is a substring ofs; the
result of applying the production is the strisg obtained by
replacing the substring matchirifys with rhs.

Example 5:We can use the transformatior33027, SW
154th Ave— Lacosta Dr B to go from the stringSW 154th
Ave, Miramar FL 3302%o Lacosta Dr E, Miramar FL 33027
However, the stringSW 154th Ave, Miramar Fldoes not
derive any new string since the context is not a substri
(I
We can apply any number of productionsfis) one after an-
other. However, a token that is generated as a result of prod
tion application cannot participate in a subsequent priboloc
We provide the rationale for this restriction in Section-ll
Briefly, without this restriction, the transformation framork
becomes intractable.

Example 6:We can use the productioDrive — Dr to
generate the string.acosta Dr E from the stringLacosta
Drive E. However, we cannot further convdracosta Dr E
to Lacosta Doctor Eusing the productior — Doctor. O One question that arises from our framework is how we can
The set of stringsgeneratedby s is the set of all strings obtain transformations. We now discuss various ways ofgloin
obtained by applying zero or more productions7gs) to this.

s. First, we may obtain transformations through specialized

Example 7:To illustrate a more complex example, wdables that are readily available for various domains. We
consider the set of productionsB (C — X), (C D — Y), illustrate with the following examples.

(DE —Z), (XZ— U)as applied to the strinf BC D E 1) ys Addresses:The United States Postal Service

C. Generating Transformations

Note that overlapping portions of this string match diffare (USPS) [3] publishes extensive information about the
rules. Each such match derives a different string. The set of {oymat of US addresses, which can be used to get
strings that are generatedff BCDEAXDEABYE transformation rules for address strings. The published
ABCZAXZ. 0 information contains a comprehensive list of alternate

representations of common strings suclstisetandst,

B. String Similarity and NE and North East It also contains a list of about

We now discuss how we extend the notion of string sim- 176,000 street aliases. Our example in Section | (the
ilarity in the presence of transformation rules. A simifari street name&SW 154th Avés also known ad.acosta Dr
function f and a threshold < 6 < 1 together define a E in the postal area corresponding to zipcdiz027)
similarity predicate(f,0) that is satisfied by stringés;, s2) was drawn from this table. This set of aliases holds for
if f(s1,82) > 6. a given zipcode which constitutes the context.

Given a set of transformation rulés, two stringss; and 2) Academic PublicationsThe DBLP site [5] provides
so satisfy a similarity predicaté f,0) under 7 if there are a list of conferences and their abbreviations, which
stringss} ands), respectively generated by ands, using7 can be used to derive transformation rules via screen-

such thatf (s}, s) > 6. scraping. We can also use the list of authors in DBLP

to get transformation rules corresponding to first naménPUT: RelationsR, S, 7, similarity function f and threshold
abbreviations such as those illustrated in Example 2.| - Let relationsEzpandR and Ezpands be initialized

3) There are also several useful online resources such as, F;?gfhidglgesfﬁgcg\\ﬁ% string”’ generated by under7

www. acr onynfi nder. com which contains exten- and add(r, ') to EzpandR
sive lists of abbreviations, and Wikipedia [4]. 3. For eachs € S, find every strings’ generated by under7
Second, transformations can be programmatically gereerate and add(s, s') to EzpandS

ge|4' Perform a similarity join onEzpandR and ExpandS
to find tuples(r,r’, s, s’) such thatf(r’,s’) > 0
5. Output all distinct pairgr, s) from the

For example, we can generate rules that connect the inte|
and textual representation of numbers sucBsthandTwenty-

Fifth. tuples(r,7’, s, s") returned by step 4.
Third, the set of transformation rules need not be expjicit
specified, but could be specified implicitly using regular ex Fig. 1. Baseline Similarity Join

pressions. For example, the regular expresstumal Route

\d+ — RR \d+ conceptually specifies an infinite set of

transformation rules of the forrRural Routei — RR7, for pairs of records that are similar. In practice, the recortchra
i=1,2,.... We can apply such transformation rules to deriviag is implemented in two different settings. Thedexing
strings using standard techniques from regular expressigstting is where one of the input relations is given in adeanc

matching. The idea is to pre-process this relation to create an indéshwh
We use transformation rules obtained as described abovesinhen used at query time to take an input string and look up
our experiments in Section V. all records that are similar to it. Th@in setting is where

both the input relations are given and the goal is to find pairs

_) of records that are similar. In this paper, we focus on the
We now relate our method of applying productions to formain setiing noting that our techniques are also applicable
grammars [20]. The goal of this is two-fold. It illustratdset indexing.

principle behind our method, and also shows why we do nOtthe formal similarity join problem can be stated as follows:
permit a token that is generated as a result of productigfen two input relationsk and S, a relation7 containing
application from participating in a subsequent production yansformations and a similarity threshdidfind all pairs of
Suppose we assign one terminal for each distinct tdke"étrings(r, s),r € R,s € S whose similarity undef” is greater
and a non-terminal; corresponding td. Given strings, let 506 equal ta. There are two components to this problem.
N(s) denote the sequence of nor_l-termlnals correspondmgr_tﬂst, for each string ink and S, we need to find the set
the sequence of tokens i Consider the formal grammar ¢ matchingtransformations, i.e. transformations where both
defined using the following rules: the context and lhs are substrings. Second, we use the set of

D. Relationship to Formal Grammars

1) Start — N(s) _ _ matched productions to perform the similarity join. We now
2) N(lhs) — rhs for each productiorhs — rhs in P(s). describe the details of each of these components. We focus
3) N; —t for each tokert. on context-free transformations. Extending the techrsqure-

It is easy to see that the set of strings that can be obtaioed frsented here to handle context is straightforward.
s as stated above is equivalent to the set of strings generated
by the above formal grammar. A. Finding Matching Transformations

Suppose that we allowed tokens generated as a result o
production application to participate in subsequent petidas
any number of times by changing the above grammar

replace rules of the formV(ihs) — rhs with N(lhs) — i)is o substring ofy, then! is a prefix of some suffix of.

N(rhs), then we are left with l.mr.estrlcted. grammars [2 nder the assumption that the relati@nfits in-memory, we
where even deciding membership is undecidable (in our S&nstruct a trie over all the distinés in 7. We then process
ting, that would mean that given two strings and a set

: .S @ ery string inR and .S and for a given string, use each of its
productions, even the problem of determining whether Olitfixes to look up the trie. For the case wh&ndoes not fit

string is_, generated by the_ other is undecidabl_g.) We thud n f memory, there exist standard external memory adaptation
to restrict the power of this grammar by requiring that td(erbf the above approach which we can leverage. The details are

generated as a result of production application partle'paétraightforward and we defer them to the full version of the

in subsequent productions only a bounded number of tim%%iper
While we set this bound to be 0 in this paper, our techniques

extend to any bound > 0.

If—'or a given input stringe in either R or S, the goal is to
find all transformations wherés is its substring. We adopt
{9ell-known techniques to address this problem. Observe tha

B. Baseline Similarity Join

IV. SIMILARITY JOIN WITH STRING TRANSFORMATIONS The semantics of computing a similarity join under trans-

In Section 11I-B, we define the notion of similarity underformations suggests the algorithm outlined in Figure 1. In
transformations (this is based on a given underlying siityla steps 2 and 3, we store the original string along with thegtri
function). Recall that the goal of record matching is to findenerated by it since we use the original strings in step 5. In

our implementation, we store an identifier with every string | INPUT. RelationsR, S, 7 and threshold)
that we use instead of the string itself. 1. For eachr € R, computeSign(r) = U;Z, sign(r:)

This is the algorithm we use when we treat the similarity ;V_hggfggsﬁsereatgsctgri;izgi‘g‘n‘(’ST)?”:} U sign(s,)
function as a blackbox. There are several similarity fuordi wheres generate,s the sdts1, ..., 5.} =t !

for which the best known implementation of a similarity join 3. Generate all candidate paifs, s) € R x S, satisfying
is via a cross-product of the input relations. In such cases,| Sign(r) N Sign(s) # ¢

step 4 above involves computing a cross-product. While this| 4. Output any candidate pajr, s) whose similarity

is an expensive step, this is not an artifact of the transétion under7"is = 0.

framework, rather a problem intrinsic to the similarity &tion
chosen.

Fig. 2. Signature-Based Algorithm using Compression

C. Similarity Join using Signatures) .)) i
of using signature schemes is to use them in step 4 in

Efficient implementations over a relational database 8yStiqre 1. This involves generating signatures for eachgtri
have been proposed for a large class of similarity functiogs EzpandR and ExpandsS. Since the number of strings gen-

such as jaccard similarity, hamming distance, cosine &yl o 5404 by each string can be large as illustrated in Example 3
and edit distance [21], [22], [23] based signature-schemes ;¢ approach can be prohibitively expensive.

We begin by reviewing the notion of signature schemes.SuppOSe that € R generates the set of strings,, . . ., 7, }
A signature-based algorithm for computing the similartinj ,\qer7 and thats € S generates the sdt;, ..., s, }. Note

between? and.S involving similarity predicate f, ¢) operates iat the above approach generates signatures for eaahd

as follows: It first generates a set sifjnaturesfor each string s;. Denote the signature generated by stringas sign (r;).

in R and S. The signatures have tlerrectnessproperty: if psarve that:

f(r,s) > 6, thenr ands share a common signature. Signature Property 1: There existi, j such thatsign(r;) N sign(s;) #
schemes have been proposed for several similarity furs:tio({; if and only if (", sign(r;)) N (U, sign(s;)) # ¢.
such as edit distance and jaccard similarity [1]. Based & thr s instead of L_generating eacsﬁ;n(m), it suffices to
pr(_)perty, _the _sig_nature-based algorithm generatazdidate generateSign(r) = ", Sign(r;) (respectivelySign(s) =
pairs by identifying all (r,s) € R x 5 such that the set | j» gy (s.)). This set can be significantly smaller since if
of signatures ofr and s overlap. Since set overlap can b&gme element appears in more than one distinct signature, it
tested using an equi-join, a DBMS is used for evaluating thigeds to be represented only once. We refer to this techaigue
step. Finally, in apost-filteringstep, it checks the similarity sjgnature compressiomwe illustrate this through an example.
join condition f(r, s) > ¢ for each candidate pair, s), and Eyample 9:Consider the citation record in Example 3. Re-
outputs those that satisfy the condition. call that the number of generated recordgfis= 64. Suppose

We illustrate signature schemes through an example. SyiRs set (of last names)Koudas, Sarawagi, Srivastayds a
pose the similarity function is jaccard similarity obtaihby signature generated by all the 64 generated records. This is
tokenizing the two strings into sets of tokens (for examplgot ynexpected for several common similarity functionssin
the string “Microsoft Corporation” can be tokenized to abta g gverlap on the last names of the authors in a citation is
the set{*Microsoft’, “Corporation”}) and computing the ratio jngicative of a high value of similarity. This signature dee
of the (weighted) intersection size over the (weightedponi ot pe replicated 64 times; one copy suffices.

size. One previously proposed signature scheme for conputi The gverall signature-generation step is illustrated ig- Fi
the similarity join between two relations with the predeat ;e 2.

that the jaccard similarity be above threshdldis prefix- o)
filtering [24]. We fix a global ordering over the universe®- Optimizations for Jaccard variants
of elements{1,...,m} that constitute the sets. The prefix The signature compression technique illustrated in Sec-
filter of a sets at jaccard threshold is defined to be the tion IV-C applies to any similarity function that can be
subset ofs containing the(1 — 8) | s | smallest elements supported via signature schemes. Clearly, a better kngeled
of s according to the global ordering. For example, if thef the similarity function is likely to open up even more op-
global ordering of{1,...,m} is simply the natural number portunities for improving the execution efficiency of siarity
ordering, the prefix filter o{1, 3,6, 8,9} for jaccard similarity joins. We now present optimizations that focus on jaccard
@ = 0.6 consists of the two smallest elements gfi.e., similarity (denoted/accSim) — computed by tokenizing two
{1,3}. We can show that prefix filter satisfies the correctnessrings into (multi)sets of tokens and taking the size of the
property required of signatures: tHeprefix filters of two sets intersection divided by the size of the union. We choose
with jaccard similarity> 6 have nonempty intersection. Injaccard similarity since it has been shown that supporting
practice, the ordering of elements induced by their frequenjaccard similarity efficiently leads to efficient implematibns
in the input sets (rarer elements are smaller) results ifésé of several other similarity functions [22], [24]. Furthehe
performance [23]. optimizations we describe below can be applied to any set-
We now focus on similarity functions that can be implebased similarity function that has the property that forsset
mented using signature schemes. The straightforward wafya given size, the similarity score is monotonic with the

INPUT: RelationsR, S, 7, thresholdf and semantics. In particular, the procedure outlined in FigBre
L Foar Z';S;ErggR?f the tokens returns the same (correct) resiritiependentf the clustering
Rename eaéh matching transformatiés — rhs used.
to obtain cluster (lhs) — cluster(rhs) This leaves open the question of what clustering yields the
Compute ClusteredSign(r) = U;~, sign(r:) best overall benefit. On the one hand, if we leave every token
where cluster (r) generates the sqtry, ..., rm} in its own cluster, then the resemblance among the generated
2 For ealéfl'sng ?'ecfr?]3de?$23@;;?§;35im" arly strings is ungﬁected and we get no b.enefit vx_/hatsoever. On the
3. Generate all candidate paifs, s) € R x S, satisfying other hand, if we collapse all tokens into a single clustent
ClusteredSign(r) N ClusteredSign(s) # ¢ the resemblance among generated strings is maximizedydut t
4. Output any candidate pafr, s) whose similarity number of false positives returned when we join the sigmestur
under7 is > 0. is likely to be excessively high. Based on this observatios,

define our goal so that tokens that appear on ithe side
Fig. 3. Signature-Based Algorithm with Token Clustering of the samelhs are more likely to be in the same cluster,
whereas tokens that do not appear together onrtheside
)))))) of the samelhs are less likely to be in the same cluster. We
intersection size (examples include hamming distance a&%ture this intuition by using the well-known paradigm of
trivially, set intersection.) correlation clustering [25].

A well-known signature scheme for jaccard similarity is 2) Post-ProcessingThe post-processing step of our sig-
based on the idea dbcality-sensitive hashing (LSH)Ihe g:The post-p ng P) 9-
nature based algorithm involves checking for a given pair

compressed LSH signatures corresponding to the set of : P ;
strings generated from a given input string, can be contgtruc strlngs "8 whethgr the S|mllar|ty predlcat'e under t_ra}ns-
' formations holds (this step is performed with the original,

Wlth.OUt explicitly ”?at?’“a"z'”g the set, '_I'he details .vm” un-renamed strings and transformations). The straightfat
straightforward are intricate and we defer it to the fullsien ; . e
. . : ethod of checking this condition is to actually compute all
of the paper. Before discussing the postprocessing step (St . .
. . X —strings generated by and s, compute their cross-product and
4, Figure 2), we first present a technique for further redyicin . : X .
. check exhaustively whether there is some pair satisfyirg th
the number of signatures.

. . . . similarity predicate. The question arises whether we can do
1) Token Clustering:The signature compression techniqu y P a

. .) . etter than this.

described in Section IV-C exploits the resemblance amoag t . Lo
strings generated by a given input string — the more t eUnfortungter, we show th&.lt in the wor;t case, it is NP-
resemblance, the greater the opportunities for comprress:’éard to avoid such an exhaustive check. This is formallyestat
We further enhance this resemblance by clustering all t glow.) i o
tokens. Suppose we assign a new token corresponding to eadffMma 1: The problem of computing the jaccard similarity
cluster of tokens. For a tokenlet cluster(t) denote the token PEtWeen two input strings, s given a set of transformations
corresponding to the cluster to whilis assigned. For a string 1S NP-hard.
x, let cluster(x) denote the string obtained by replacing every However, we observe in practice that a large class of trans-
tokent with cluster(t). We can see that the following propertyformations are such that both tifes andrs are single tokens
holds. (e.g.,St— Stree}. We call themsingle-tokertransformations.

Property 2: Consider two strings € R, s € S along with Interestingly, if all transformations are single-tokemen it is
the transformations that match them. The jaccard simjlarfit Possible to compute the jaccard similarity between twagsi
JaccSim (cluster(r), cluster(s)) > JaceSim(r, s). (under the transformations) in polynomial time. We achieve
Thus, the algorithm in Figure 2 could be modified as followdhis by reducing this problem to bipartite matching [26].
before finding the set of strings generated by a given string,Observe that under single-token transformations, thetteng
rename both the string and the matching transformatioftall generated strings is the same and equals the length of
according to the token clustering, generate signatures &he@ original string. Thus, maximizing the jaccard simibari
then do the post-filtering step with theeiginal (un-renamed) reduces to maximizing the size of the token-(multi)setrinte
strings. By Property 2, the renaming cannot miss out asgction. Consider a bipartite graph where we have the set of
pair of strings that satisfy the similarity predicate. Thtiés tokens fromr ands on either side. An edge is drawn between
modification is correct. We outline this in Figure 3. two tokenst,. andt, (on either side) of this graph if (1) they

The advantage yielded by this is that if there are rules wheiee equal, or (2) there is a rule — t, or (3) there is a
a single token yields a large number of alternatives — such fa#e ts — ¢, or (4) there is some such that there are rules
is the case with abbreviations where for instance the fiigain . — ¢ andt; — t. The size of the maximum matching in this
J could lead to a large number of first names beginning wigiaph can be shown to be the maximum intersection size we
J — these rules would shrink to a single rule if we clustere@le seeking.
all of these first names and the letter J. Note that while thisIn the presence of single- and multi-token transformations
is similar to token standardization discussed earliersitai we restrict the exhaustive checking to the multi-token gran
performance technique in our context and does not change themations.

70 30
60 25
4]
g 50 ml 5 20
S ©
£ 40 2 215
£ ma 3 10
=]
Z 20 u5 5 I I I
5--10
10 0 ‘ EER ‘ ‘
>10
o Mo Bl Bt ML B B Bt sl T % 8 % %2 83 3 &8 3 3
! o o o o o o o o o o
A & A & A) A Q Similarity
N N v@q Q:é» & &
® 2 W JaccT ™ Jacc
(a) Rank distribution of matching records (b) Similarity distribution of matching records
Fig. 4. Address dataset: Quality results
0.14 0.35
0.12 g 03
4 S
£ 01 £ 0.25
=}
£ 2
S 0.08 € 0.2
s 2
c 0.06 % 0.15
o
F=] c
8 0.04 2 01
w &
0.02 I | = 0.05 |
0 T - I\I T T T 0 T I\I e S N T T
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Similarity Similarity
W JaccT ™ Jacc W JaccT ™ Jacc

(a) Similarity distribution of matching records (b) Similarity distribution of non-matching records

Fig. 5. Cora dataset: Quality results

V. EXPERIMENTS this set of rules a). The second type of transformation rules

The goal of our empirical study is to investigate (1) th@® edit-distance based: They are programmatically gextera
impact of transformation rules on record matching qualitg a @nd are of the fornoken1— token2 wheretokenlandtoken2
(2) the execution efficiency of our algorithms. are tokens from the input ftable_s that are V_nthln a given edit

distance thresholé (e.g.,califarnia — california is generated
A. Datasets and Transformation Rules when the threshold is 1). We can vary the edit distance

We use two datasets for our study. One is a representafi}geshold to control the number of input rules and thus study
dataset based on US addresses that we refer to as the addl@¥sthe performance of our algorithms varies as a function
dataset. It consists of two tables: (1) A reference taiges Of the number of rules. We generate edit rules corresponding
of clean US addresses obtained from United States Podfafdit similarity thresholds .8 and0.85, which we denote
Service [3]. (2) A tabledr gAddr ess containing proprietary E(0-8) andE(0.85), respectively. (Edit similarity of two strings,
organization addresses. Each table contains two columnss1@ndsz, is defined as.0—ed(s1, s2)/ min(|s1], | s2|), where
column containing address strings, and an integer identit§(s1,s2) denotes the edit distance between the strings, and
column. An address string encodes information such as thel and|so| denote the length of; and s, respectively.)
street number, street name, city, state, and zip code UERS The second dataset is ti@@r a citation dataset from the
table has 5 million records while tHar gAddr ess table has RIDDLE repository [27]. This consists of a single relation
2 million. with about 1300 unsegmented citation strings which we use

We use two types of transformation rules for the addreés record matching against itself (self-join). We use this
dataset. The rules of the first type are obtained using USB&a set only for quality experiments. For this dataset, we
published domain knowledge as described in Section IlI-@se transformation rules derived from DBLP as described in
There are about 176,000 such transformation rules. WeteefeiSection IlI-C.

B. Quality Transformation sef Expansion| No. of Rules

We now present our quality experiments to demonstrate U+ E(0.8) 228.7 220,000
the value of transformation rules. We consider four previ- U + E(0.85) 15.7 186,000
ously proposed similarity functions—jaccard similariga¢a,
a weighted variant of jaccard similarity where tokens are U 6.89 176,000
assignedidf weights {VJacg, Generalized Edit Distance [28] Fig. 6. Expansion for different transformation sets
(GED) that has been shown to be more effective than the
classic edit distance, and BM25 measure that is based dhf tf-i
cosine similarity. These four similarity functions arerfairep- similarity join computation is greater for higher valuestbé
resentative of similarity functions used in data cleanigg][similarity threshold.

F;)_r both of t_he datasfets ch_osen labove,r:/ve stu;jy t?cerg"pé%tra data: The golden truth for the Cora dataset specifies
of incorporating transformation rules on the quality o for each pair of records if it represents a valid match or not.

matching for each of these similarity functions. We denbte t Figure 5(a) shows the similarity distribution for matchipairs

similarity under transforr’rjatlloqs by adding the sufﬁ.xThus for jaccard similarity function with and without transfoation
JaccTdenotes Jaccard similarity under transformations. rules. We observe a behavior similar to tAddr ess data,
Address dataFor both datasets, we manually construct thghowing the impact of incorporating transformations orordc
“golden truth”. For the address dataset, the golden truthatching quality. The average similarity of matching pairs
specifies, for each record in thér gAddr ess table, the increases from 0.65 to 0.72 when we add transformations. The
correct matching “clean” record in tHdSPS table. We obtain results are similar for other similarity functions as well.
a subset of 100 “dirty” records by choosing the 100 recordsWe further observe that incorporating transformationsisea
with the least similarity (as measured by GED similarity) tto a sharper separation between the similarities of magchin
the matchingUSPS record. Therefore, these 100 records dand non-matching pairs. Figure 5(b) shows the similarity
not contain easy matches, such as those that can be foundlisyribution for non-matching pairs. The average simiari
string equality. of all matched pairs is 0.72 whereas the average similarity
We measure record matching quality in two ways: Firstpr non-matched pairs is 0.14 in the presence of transforma-
for each record inOr gAddr ess, we measure the rank oftions, whereas without transformations, these number8.&e
the correct matchindJSPS record in terms of similarity. and 0.12 respectively. Note that the match-similarity éases
Ideally, the rank of the correct USPS record should lpe by about 0.1 whereas the increase in non-match similarity is
i.e., the correct record should have a higher similaritynthanegligible.
any other record in the USPS table. Second, we measure
the similarity score of the correct USPS record. Again, it is- Performance
desirable that this score be high; a higher similarity ti@es The goal of this section is to (1) show that our algorithms
to greater efficiency, since similarity joins and lookupséa described in Section IV significantly outperform the naive
better performance for higher similarity thresholds than fevaluation of similarity joins, and (2) study the relativene
lower thresholds. tributions of the various techniques proposed earlier for i
Figure 4(a) shows the distribution of ranks of the corre@roving the execution efficiency. We compare the perforranc
matching USPS records. For all similarity functions thatf the following algorithms: (1)Basel i ne which exploits
we consider, the ranks are generally lower (better) witheither signature compression nor token clustering G()p
transformation rules than without them. In particular, &k which leverages signature compression but not token clus-
similarity functions, the number of matching records wilnk tering, and (3)Conp + C which leverages both signature
greater thanl0 is around20 without transformation rules; compression and token clustering. All our implementatioses
with transformation rules, this number drops to arouhd the bipartite-matching algorithm for post-processing. ek
for all functions. We also observe that in the presence sfibsets of th€ gAddr ess andUSPS consisting of 100,000
transformations, the gap between a simple similarity fiomct records each for these experiments.
such as jaccard and a more sophisticated one such as BM28ur implementation is based on jaccard similarity and
drops—in fact, JaccT has more correct matches with ratikus all techniques discussed in Section IV are applicable.
within 10 than BM25T. We use locality sensitive hashing (LSH) as our signature
Figure 4(b) shows the distribution of similarity of thescheme [30]. We pick the optimal parameters (performance-
matching USPS records for jaccard similarity function,hwitwise) of LSH such that the accuracy is 0.95 for threshold 0.8
and without transformation rules. We can see that the siityila (that is, every record pair with similarity greater than quel
of the matching records sharply increases when we inclutte0.8 is returned with probability 0.95). Our implementati
transformation rules (the trend is the same for the othei- sinpushes most computation into a DBMS and is based on the
larity functions as well). Not only does this indicate a hégh architecture discussed in [23].
confidence in the matches produced, as mentioned earlier]) Expansion from TransformationsFigure 6 shows the
it also has performance implications since the efficiency atumber of rules in the different transformation sets and the

256407 6.0E+06 |
9.8E+06

1.8E+08 5.0E+06

208407 |

4.0E+06 |~

156407 3.0E406

2.0E+06

106407 = !1 | =

10e+06 1 W1
& PR 5.0E406 . 0.0E+00 s
¥ S) R T N R
& @@"go 00EH00 £ e = x&c'b\ &‘”\Q &‘%?’\ 0@@' S °
S S U+£(0.8) U+£(0.85) u N S
| SigGen CPairs m PostProc H Comp+Cl = Comp m Baseline M Join Size ™ Num Cpairs
(a) Execution Time (sec) (b) No. of Signatures (c) Join Size & No. of Candidate Pairs

Fig. 7. Performance of our algorithms

expansiorthat results from these sets, measured as the averaggance, for the transformation séHE(0. 8), invoking
number of strings generated by a single string from eithtoken clustering brings down the execution time by a factor
input relation. In the presence of the transformations W#&(of about 3 times.
an input string on average generates 228.7 strings. Ever8) Intermediate Result SizeWe also study the benefits
when the edit threshold is 0.85, the expansion is 15.7. Thilded by signature compression and token clustering by
example shows that the baseline algorithm can be protehytiv measuring the intermediate result sizes during the siityilar
expensive, motivating the need for the optimizations psego join. For a signature-based algorithm such as ours, there ar
in this paper. three measures of the intermediate result size: (1) the aumb
2) Execution Times:We measure the overall executiorPf signatures computed, summed over both the input relstion
time of the above algorithms for computing a similarity joif2) the size of the equi-join on the signatures, and (3) the
with various subsets of transformations. As noted abowe, tRumber of distinct candidate pairs (this is different frone t
basel i ne algorithm is significantly more expensive than théize of the equi-join since the same pair of strings can have
other algorithms above and we do not report its executiBiore than one signature in common). These are plotted in
time here. Thus, only the execution times féonp and Figure 7(b) and (c) (on the Y-axis). We observe that the
Conp+C are reported. Recall that the similarity join proceeddumber of signatures generated decreases by an order of
by first generating signatures for each input relation,ijgin Magnitude by using signature compression and another order
the two on equality of signatures and for each distinct padf magnitude when we also use token clustering. This again
of records returned, checking whether the similarity pratti Shows the benefit of our techniques.
holds (which we call post-processing). In the presence ofFinally, in Figure 7(c), we also plot the size of the signatur
transformations, we also have two additional componerigin and the number of candidate pairs generated for post-
to our execution: rule-matching and token clustering. TH#tering (Y-axis) for various combinations of transforrizat
total time taken by rule-matching and token clustering evéHle-sets and algorithms used (X-axis). The main obsemwati
with the complete set of 200,000 transformations is le§®m this plot is that the benefits of token clustering in
than 5 seconds. We thus focus on the total execution timergflucing the number of signatures generated does not come
signature-generation, signature-equi-join and postgssing. at the expense of an increase in the size of the signature-joi
Figure 7(a) shows these execution times (in seconds) on faéer all, we could trivially reduce the number of signatsir
Y-axis for different rule-sets, divided up into the time éakfor by clustering all tokens into a single cluster).
each of the above components. (Note that some of the values
in Figure 7 are too high to show pictorially; we explicitly VI. SUMMARY

specify the value for such cases.) In this paper, we proposed a transformation-based frame-
First, we observe that thbasel i ne evaluation of the work to capture string variations such as synonyms and
similarity join would proceed with the expanded relationgbbreviations. Unlike previously proposed approachesate h
which are a couple of orders of magnitude larger than thge these variations, (1) transformations are providedras a
input relations (Figure 6) implying a proportional increasexplicit input, and (2) the framework is expressive enough t
in the execution time in the presence of transformationsapture not only equivalences but also more general forms
However, using our techniques we observe that the executigh transformations. The semantics we proposed based on
time under transformations is within a factor of 3-6 times déxpanding the input relations are consistent with any ehofc
not having any transformations (indicated Msneon the X- g similarity function. While this framework is powerful ergtu
axis). Thus, our techniques yield up to two orders of magieituto capture rich variations between strings, it also exposes
improvement in performance. significant computational challenges which we addressed fo
Figure 7(a) also shows that token clustering yields sig:large class of similarity functions that can be impleménte
nificant benefits over and above signature compression. kming signature-based algorithms. Our experiments owdr re

data showed that incorporating transformations signiflgan[25] N. Bansal, A. Blum, and S. Chawla, “Correlation clusterf Mach.
enhances record matching quality and that the performan[ce Leamn, vol. 56, no. 1-3, pp. 89-113, 2002.
of computing a similarity join is improved by orders of

magnitude through our techniques.

28
We thank Misha Bilenko for discussions on learnable strin[g

VIlI. ACKNOWLEDGMENTS

similarity measures.

(1]

(7]
(8]
(9]
[10]
[11]
[12]

(23]

[14]

(18]

[16]

[17]

(18]
[19]
[20]

[21]

[22]

[23]

[24]

REFERENCES

N. Koudas, S. Sarawagi, and D. Srivastava, “Record lijgkasimilarity
measures and algorithms,” iRroc. of the 2006 ACM SIGMOD Intl.
Conf. on Management of Datdune 2006, pp. 802—-803.

A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Digste
record detection: A surveylEEE Trans. on Knowledge and Data Engg.
vol. 19, no. 1, pp. 1-16, 2007.

United States Postal Service, http://www.usps.com.

“Wikipedia,” http://en.wikipedia.org/.

“DBLP,” http://www.informatik.uni-trier.detley/db/index.html.

M. A. Jaro, “Advances in record linkage methodology as lagpto
matching the 1985 census of tampéAfherican Statistical Association
1984.

W. E. Winkler, “The state of record linkage and currensearch
problems.”US Bureau of Censu4999.

Trillium Software, www.trilliumsoft.com/trilliumsofnsf.

S. B. Needleman and C. D. Wunsch, “A general method apgkct®h
the search for similarities in the amino acid sequences of twtems,”
Journal of Molecular Biologyvol. 48, pp. 443—-453, 1970.

G. Salton and C. Buckley, “Term-weighting approachesairiomatic
text retrieval,”Information Processing and Managemeh988.

D. R. H. Miller, T. Leek, and R. M. Schwartz, “A hidden maskmodel
information retrieval system,” ifProc. of the 22nd ACM SIGIR Conf.
on Research and Development in Information Retriefalg. 1999, pp.
214-221.

M. Bilenko and R. Mooney, “Adaptive duplicate detectiasing learn-
able string similarity measures,” iaroc. of the 9th ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data MinjrizpD03, pp. 39-48.

S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik, “Bxde-driven
design of efficient record matching queries,”Bmoc. of the 33rd Intl.
Conf. on Very Large Data BaseSept. 2007, pp. 23-27.

S. Tejada, C. Knoblock, and S. Minton, “Learning domaidependent
string transformation weights for high accuracy object td@ation,” in
Proc. of the 8th ACM SIGKDD Intl. Conf. on Knowledge Discgvand
Data Mining July 2002, pp. 350-359.

S. Sarawagi and A. Bhamidipaty, “Interactive deduplma using active
learning,” in Proc. of the 8th ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data MiningJuly 2002, pp. 269-278.

R. Ananthakrishna, S. Chaudhuri, and V. Ganti, “Elinting fuzzy
duplicates in data warehouses,”fmoc. of the 28th Intl. Conf. on Very
Large Data BasesAug. 2002, pp. 586-597.

X. Dong, A. Y. Halevy, and J. Madhavan, “Reference reglation in
complex information spaces,” iRroc. of the 2005 ACM SIGMOD Intl.
Conf. on Management of Datdune 2005, pp. 85-96.

P. Singla and P. Domingos, “Multi-relational recordkage.” inMRDM,
2004.

|. Bhattacharya and L. Getoor, “Collective entity reegmn in relational
data,”IEEE Data Engineering Bulletinvol. 29, no. 2, pp. 4-12, 2006.
J. E. Hopcroft and J. D. Ullmanintroduction to Automata Theory,
Languages and Computation Addison Wesley, 1979.

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudeisal., “Approx-
imate string joins in a database (almost) for free,Proc. of the 27th
Intl. Conf. on Very Large Data BaseSept. 2001, pp. 491-500.

S. Sarawagi and A. Kirpal, “Efficient set joins on simitgrpredicates,”
in Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of Data
June 2004, pp. 743-754.

A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact s#trilarity joins,”
in Proc. of the 32nd Intl. Conf. on Very Large Data BasBept. 2006,
pp. 918-929.

S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive op&or for
similarity joins in data cleaning,” irProc. of the 22nd Intl. Conf. on
Data Engineering Apr. 2006.

[27]

[29]

26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Sthitrpduction

to Algorithms McGraw Hill, 2001.

“RIDDLE: Repository of Information on
Detection, Record Linkage, and Identity
http://www.cs.utexas.edu/users/ml/riddle.

Duplicate
Uncertainty,”

] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Radbasd

efficient fuzzy match for online data cleaning,” Proc. of the 2003
ACM SIGMOD Intl. Conf. on Management of Datdune 2003, pp.
313-324.

A. Chandel, O. Hassanzadeh, N. Koudas, M. Sadoghi, ar@tiiastava,
“Benchmarking declarative approximate selection predgaia Proc.

of the 2007 ACM SIGMOD Intl. Conf. on Management of Dakane
2007, pp. 353-364.

30] A. Gionis, P. Indyk, and R. Motwani, “Similarity search ihigh

dimensions via hashing,” iRroc. of the 25th Intl. Conf. on Very Large
Data BasesSept. 1999, pp. 518-529.

