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Abstract 
In this paper we present an algorithm for image compression 

which involves adaptively segmenting a block of residuals result- 
ing from pirediction, while encoding them using hierarchical table 
lookup vector quantization. An optimum decomposition of the 
block allows an image to be adaptively quantized depending on 
the statistics of the residual block being encoded. This is useful 
since most images are nonstationary and have some regions with 
high detail and some with little. With an optimum decomposition, 
we can adaptively allocate bits by varying the block size to be 
quantized. Predictive vector quantization (PVQ) allows us to take 
advantage of the correlation between adjacent blocks of pixels 
being encoded by providing memory. The quadtree structure is 
used to represent the segmentation information and is sent as side 
information. To reduce encoding complexity, we use hierarchical 
table lookups so no arithmetic computations have to be performed 
to find the minimum distortion codeword. To further improve per- 
formance, we use a variable rate code to decrease the rate. Also, to 
improve the subjective quality of the image, we use subjective 
distortion measures. 

1. Introduction 
One of the main problems with full search vector quantiza- 

tion (VQ) 1[1] is that the encoder and codebook design complexity 
grows linearly with the number of codewords in the VQ code- 
book, which grows exponentially with the bit rate and vector 
dimension However, the decoder is simply a table-lookup. So VQ 
is often used only in places where a simple decoder is required, 
but a complex encoder can be used. 

Structured vector quantizers have been implemented to 
reduce the encoder complexity [l]. One such method, hierarchical 
vector quantization (HVQ) [2],[3], uses a set of hierarchical table 
lookups to perform the encoding. Since the tables can be built in 
advance, the actual encoder doesn't have to perform any arith- 
metic computations to find the minimum distortion codeword. 
Hierarchical table lookups are used so that larger vector dimen- 
sions can be used with a reasonable amount of memory. Also, 
since the tables can be built in advance, it is easy to incorporate 
subjecbve distortion measures. They can be precomputed when 
the table is built. Recently, there has been a lot of work in combin- 
ing HVQ with other techniques such as wavelet (subband) coding 
[4], VQ with memory [5],[6] and applying it to low complexity 
software-only-encoding of video and images [4],[7]. Also, there 
has been work on combing HVQ with block transforms with per- 
ceptually weighted distortion measures [3]. 

Since the VQ encoder complexity grows rapidly with vector 
dimension, VQ can only be used to encode images with either 
small block sizes or large block sizes with relatively small code- 
books. However, small codebooks with large block sizes often 
result in too much compression and too much distortion. To over- 
come the affects of small block sizes, vector quantization with 
block memory such as predictive vector quantization (PVQ) [8] 
and finite state vector quantization (FSVQ) [9] can be used. These 
algorithms use the correlation between adjacent blocks of pixels 
to achieve the performance of VQ with a large codebook while 
using a much smaller codebook. Prediction allows one to use a 

smaller codebook since the residuals resulting from prediction 
have a much smaller variance than the actual pixel values. Also 
because the correlation between adjacent blocks is used for pre- 
diction, grayscale continuities across blocks are better preserved, 
thus reducing blockiness. 

Another problem with VQ is the inability of the codebook to 
adapt to nonstationarities in the image. AI1 blocks are quantized 
using the same codebook. A method that can be used to improve 
performance is to adaptively allocate bits to different spatial 
regions of the image [lo],[ 121. Segmentation can be done to iden- 
tify regions of the image which have low detail and can thus be 
highly compressed, and regions of high detail, such as edges, 
which cannot be highly compressed. Recently, there has been 
work on how to do this segmentation optimally [ll]. An algo- 
rithm presented by Baker and Sullivan [I13 shows how a quadtree 
decomposition can be used to optimally decompose a block based 
upon its statistics. Basically, this algorithm divides blocks which 
have too much distortion when being encoded into four subblocks 
and encodes these subblocks. In this fashion, regions of high 
detail get extra bits. 

We propose to use a quadtree decomposition to optimally 
segment a block of residuals resulting from prediction. Since the 
error residuals resulting from prediction have varying statistics 
across the image, adaptively allocating bits by using different 
quantizers on different regions of the image can result in 
improved performance over using a single quantizer to encode the 
residuals. The residuals often have large regions of constant inten- 
sity and small regions of fine detail which make them ideal for' 
adaptively selecting a quantizer. The segmentation is used to 
adaptively select the size of a block to be encoded. All encodings 
are done using table lookups, so no arithmetic computations are 
performed for the encoder. Although the segmentation informa- 
tion is added side information, the reduction in rate resulting from 
adaptively segmenting the residual blocks more than makes up for 
this. 

The residuals can be encoded in two ways. One way is use a 
single block size to find the residuals and then encode them using 
an optimal quadtree segmentation. However, this has the problem 
that the inner subblocks after segmentation will not be predicted 
well and thus the correlation between adjacent subblocks would 
not be exploited. To alleviate this problem, one can recursively 
predict the subblocks from the surrounding subblocks rather than 
using a single block size for the prediction. 

Section 2 of the paper explains table lookup vector quantiza- 
tion. In section 3, we explain how the predictive hierarchical table 
lookup vector quantization with optimal segmentation algorithm 
works. In section 4, we present simulation results, and in section 
5,  the conclusion. 

2. Hierarchical Table-Lookup VQ 
Hierarchical table-lookup vector quantization (HVQ) [2], [3] 

is a method of encoding vectors using only table lookups. It was 
used for speech coding in [2] and extended to image coding in [3], 

By performing the table lookups in a hierarchy, larger vec- 
tors can be accommodated in a practical way, as shown in Figure 

~41. 
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1. In the figure, a K = 8 dimensional vector at onginal precision r, 
= 8 bits per symbol is encoded into r, = 8 bits per vector (i.e., at 
rate R = rM/K = 1 bit per symbol for a compression ratio of 8: 1) 
using M = 3 stages of table lookups. In the first stage, the K input 
symbols are partitioned into blocks of size k, = 2, and each of 
these blocks is used to directly address a lookup table with koro = 
16 address bits to produce rl = 8 output bits. Likewise, in each 
successive stage m from 1 to M, the rm.l-bit outputs from the pre- 
vious stage are combined into blocks of length k, to directly 
address a lookup table with k,r,., address bits to produce r, out- 
put bits per block. The r,  bits output from the final stage M may 
be sent directly through the channel to the decoder, if the quan- 
tizer is a fixed-rate quantizer, or the bits may be used to index a 
table of variable-length codes, for example, if the quantizer 1s a 
vanable-rate quantizer. 

Clearly many possible values fork, and r, are possible, but 
k, = 2 and r, = 8 are usually most convenient for the purposes of 
implementation. For simplicity of notation, we shall assume these 
values in the remainder of the paper. The sizes of the tables at dif- 
ferent stages of the HVQ can be changed to provide a trade-off [5] 
between memory size and PSNR performance. 

The table at stage m may be regarded as a mapping from two 

inputindices C Y - '  and t 7 - I  ,eachin {0,1, ..., 255}, toanout- 

put index also in (0,1, ....., 255). That is, lm = 

( I : - '  , I? - '  ). With respect to a distortion measure 

d,(X, 1) between vectors of dimension K, = 2", design a fixed- 

rate VQ codebook p,(t) , i = 0,1, ..., 255 with dimension K, = 

2'" and rate r,lK,= 8/2* bits per symbol, trained on the original 
data using any convenient VQ design algorithm [ 11. Then set 

ar8mln,dm( ( Pm - - 7 1  P (q - '1) 9 P m ( 4  1 m -  1) = 
m -  1 '2 

to be the index of the 2"'-dimensionaI codeword p,(~) closest 

to the 2"'-dimensional vector constructed by concatenating the 2"'- 
-dimensional codewords p, - '(17 - ') and p, - '(1; - ') . 

The intuition behind this construction is that if pm - *(I: - ') is 

a good representative of the first half of the 2,-dimensional input 
vector, and p, - ' ( 1 ;  - ') is a good representative of the sec- 

ond half, then p,(~") , with zm defined above, will be a good rep- 

resentative of both halves, in the codebook p,(~) , 

i=0,1,.. .,255. 
VQ with Quadtree C 

Predictive table-lookup hierarchical vector quantization [5] 
(PHVQ) with quadtree encoding is a form of vector quantizer 
with memory and has the ability to adaptively select how to opti- 
mally segment a block of residuals to be encoded. However, the 
full search encoder in the algorithm is replaced with a table- 
lookup HVQ encoder. Also the optimum segmentation and pre- 
diction can be done with table lookups. 

It consists of a predictor which uses the side pixels of quan- 
tized adjacent blocks to predict the current block to be encoded. 

The quantized blocks are used to predict since this is what the 
decoder will have. It then encodes the residual using the quadtree 
segmentation algorithm to optimally select the block sizes. 
3.1. Problem Formulation 

The image to be encoded is divided into m x m blocks, each 
with k pixels, and is scanned left to right and top to bottom. The 
blocks are scanned in the same order as the pixels. Let x, be the 
vector to be quantized at time n, and let y ,  be the corresponding 
transmitted channel symbol. 
3.2. Predictive VQ 

A predictive vector quantizer [8] (PVQ) is one which 
encodes the residual between the actual block and the predicted 
block instead of the actual block itself. Our PVQ uses the side 
pixels of the quantized adjacent blocks to predict the current block 
to be encoded. 

Let s, represent a 2m dimensional vector of the side pixels of 
previously quantized blocks adjacent to the block x, as shown in 
Figure 2. Then the residual of the k-dimensional block is: e,  = x, - 
As,, where A is a k x 2m matrix of the optimum linear prediction 
coefficients obtained by solving the Weiner-Hopf equation. Then 
y,, is chosen to be the index of the codeword in the codebook 
which minimizes the distortion for the vector e,. 

The decoder receives y ,  which can be used to reproduce a 
quantized version of the residual. It also has the quantized ver- 
sions of the adjacent blocks, so it is able to predict the current 
block. To the predicted block, it simply adds the quantized version 
of the residual. 
3.3. Optimal Quadtree Segmentation 

We use the quadtree data structure (Figure 3) to represent the 
optimal segmentation of a particular block [ll]. The quadtree 
consists of a tree whose root corresponds to the largest block size 
that can be encoded. Each node in the tree either has four children, 
meaning that the block is further subdivided into four subblocks, 
or no children, which means that the block is encoded [ll]. The 
four subblocks are simply obtained by splitting an m x m block 
into four m/2 x m/2 blocks. We use the algorithm by Sullivan and 
Baker to determine the optimal quadtree structure for each block. 

be the minimum possible block size that can 

be encoded, and let 2 X 2 be the maximum block size which 
can be encoded. Then, the optimal quantization of the image is the 

L L  optimum quantization of each of the 2 X 2 blocks. To obtain 
1 1  the optimum quantization of a 2 X 2 block, we encode the 

1 1  2 x 2 block using a quantizer designed for that block size. 
Then, we compare the performance of this quantization with the 
performance of the optimum quantization of each of the four 

2'- ' X 2'- ' blocks. Let D ,  and R,  be the rate and distortion 

1 1  of encoding the 2 X 2 block using a quantizer designed for that 
block size and let D, - be the sum of the rates and 
distortions of the optimum encodings of the four subblocks. Then, 
if D, + hR,  5 D,  - + LR, - thq optimal encoding of the 

1 1  1 1  2 X 2 block 1s the encoding using the 2 X 2 block quantizer, 
else it is the optimum encoding of the four subblocks, where h is 

1 1  
Let 2 X 2 

L L  

and R,  - 
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the Lagrange multiplier. The optimum encoding of a 2“ X 2“ 
block is the actual encoding of the block since there are no quan- 
tizers for smaller block sizes available. The entire process of find- 
ing the optimum quantization is repeated for all /, + 1 5: l5: L .  
The larger the value of h is, the more emphasis is placed on rate 
over distortion and subsequently more of the blocks are encoded 
using larger block sizes. The rate used to calculate whether to 
merge or not includes one bit of segmentation information 
required at each node of the quadtree. This one bit tells whether to 
split that particular block into four subblocks or whether to 
encode the actual block. All levels of the quadtree require this side 
information except for the minimum block size which cannot be 
split any further. 
3.4. PHVQ with Quadtree segmentation 

There are two ways to combine PHVQ with quadtree seg- 
mentation. One way is to simply use prediction to first generate an 
m x m predicted block. Then the residual block between the actual 
block and predicted block can be encoded using a quadtree 
decomposition. However this doesn’t take full advantage of the 
correlation between adjacent subblocks which are encoded. A bet- 
ter method is to use adjacent subblocks in the quadtree decompo- 
sition to find the residuals to encode. So, in this algorithm we first 
predict all the blocks using the smallest block size predictor. The 
residuals are encoded using HVQ. Then we use another predictor 
to generate residuals for the next block size. By using different 
predictors for each of the block sizes and using the adjacent pixels 
of the actual subblock being encoded, we take full advantage of 
the correlation between adjacent subblocks. If the decoder recur- 
sively decodes each of the four subblocks of a block which is 
split, then it is able to calculate the predicted blocks using the side 
pixels of the adjacent subblocks. 

In our algorithm, all the full search encoders used in the 
quadtree decomposition are simply replaced with hierarchical 
table lookups. Therefore, no arithmetic computations are required 
to perform these encodings. Also, since hierarchical table lookups 
result in intermediate indices corresponding to a particular com- 
pression ratio, individual encoders do not need to be actually used 
for the various block sizes if one simply uses a quadtree decompo- 
sition on a block of residuals. The segmentation simply tells at 
which stage to stop the hierarchical table lookups. Even if one 
does the encoding using recursive predictions and encodings, the 
number of table lookups simply grows linearly with the number of 
levels in the quadtree. The prediction can also be done through the 
table lookups [5]. Also, the segmentation can easily be done by 
table lookups by storing the average distortions for each of the 
possible encodings at each stage of the table. 
3.5. Variable Rate Coding 

In order to further reduce the rate without increasing distor- 
tion, we use entropy constrained vector quantization [13] (ECVQ) 
to design the codebooks. This gives us a variable rate code since 
the transmitted symbols have a length matched to their probabili- 
ties. The variable rate indices can be built in to the last stage HVQ 
table. 

4. Simulation Results 
We give PSNR results here for the 8-bit per pixel mono- 

chrome image Lena (512x512). For the first method where a sin- 
gle predictor is used to get a block of residuals, we first generated 
a set of training vectors by obtaining residuals for a particular 
block size, The side pixels were used for generating the residuals. 

The residuals were recursively blocked to generate codebooks 
with various vector dimensions. To obtain quantizers with differ- 
ent bit rates, we generated codebooks with the same number of 
codewords but for different block sizes. For the recursive predic- 
tor and encoder, we generated residuals corresponding to each of 
the block sizes used in the quadtree decomposition and generated 
the codebooks for various vector dimensions. All the codebooks 
were generated using ECVQ algorithm and had 256 codewords. 

Once the codebooks were generated, various values of h 
were used to vary the compression in the encoding. For large val- 
ues of h, with a maximum block size in the quadtree decomposi- 
tion being 8x8, most of the blocks were encoded as 8x8 blocks 
and thus a compression of 64:l would have resulted if a fixed rate 
code were used (excluding the one bit of side information 
required for each block). For small values of h, we would have a 
compression ratio of approximately 2: 1 with a fixed rate code. In 
figure 4, we show PSNR curves for VQ, PVQ, VQ with quadtree, 
PVQ with quadtree on a block of residuals, and PVQ with 
quadtree with recursive prediction and encoding. For most rates, 
PVQ with quadtree on a block of residuals is approximately 1 dB 
better than PVQ and 1 dB better than VQ with quadtree alone. 
With PVQ with quadtree and recursive prediction and encoding, 
we gain about 2 dB more. With PHVQ with quadtree, we lose 
approximately 0.7 dB over PVQ with quadtree. The PHVQ with 
quadtree with recursive predicting and encoding is approximately 
4-5 dB better than fixed rate HVQ. The compressed image using 
JPEG is shown in figure 5 and the recursive PVQ compressed 
image at the same bit rate (0.33 bpp) is shown in figure 6. As one 
can see, the JPEG image is much blockier and less perceptually 
pleasing. In figure 7, we show the segmentation map for the image 
in figure 6. This shows how the bits are adaptively allocated and 
how the background regions get less bits. 

5. Conclusions 
We have presented an algorithm for adaptively selecting a 

quantizer to encode a block of residuals resulting from prediction. 
Since prediction is used, memory can take advantage of the corre- 
lation between adjacent blocks of pixels to allow us to use a 
smaller codebook than would be required with memoryless VQ. 
Since an optimal segmentation of the block of residuals is per- 
formed in the encoding, we are able to change our compression 
depending on the statistics of the block being encoded. This is 
beneficial since the residuals resulting from prediction are nonsta- 
tionary. Also, since we use HVQ to encode, we are able to gain 
the advantages of perceptual weighting, VQ with memory and 
adaptive quantization while maintaining the computational sim- 
plicity of table lookups. 
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