
Predictive Hierarchical Table-Lookup Vector Quantization with Quadtree Encoding
Sanjeev Mehrotra, Navin Chaddha and R. M. Gray

Information Systems Laboratory,
Stanford University, Stanford, CA 94305

Abstract
In this paper we present an algorithm for image compression

which involves adaptively segmenting a block of residuals result-
ing from pirediction, while encoding them using hierarchical table
lookup vector quantization. An optimum decomposition of the
block allows an image to be adaptively quantized depending on
the statistics of the residual block being encoded. This is useful
since most images are nonstationary and have some regions with
high detail and some with little. With an optimum decomposition,
we can adaptively allocate bits by varying the block size to be
quantized. Predictive vector quantization (PVQ) allows us to take
advantage of the correlation between adjacent blocks of pixels
being encoded by providing memory. The quadtree structure is
used to represent the segmentation information and is sent as side
information. To reduce encoding complexity, we use hierarchical
table lookups so no arithmetic computations have to be performed
to find the minimum distortion codeword. To further improve per-
formance, we use a variable rate code to decrease the rate. Also, to
improve the subjective quality of the image, we use subjective
distortion measures.

1. Introduction
One of the main problems with full search vector quantiza-

tion (VQ) 1[1] is that the encoder and codebook design complexity
grows linearly with the number of codewords in the VQ code-
book, which grows exponentially with the bit rate and vector
dimension However, the decoder is simply a table-lookup. So VQ
is often used only in places where a simple decoder is required,
but a complex encoder can be used.

Structured vector quantizers have been implemented to
reduce the encoder complexity [l]. One such method, hierarchical
vector quantization (HVQ) [2],[3], uses a set of hierarchical table
lookups to perform the encoding. Since the tables can be built in
advance, the actual encoder doesn't have to perform any arith-
metic computations to find the minimum distortion codeword.
Hierarchical table lookups are used so that larger vector dimen-
sions can be used with a reasonable amount of memory. Also,
since the tables can be built in advance, it is easy to incorporate
subjecbve distortion measures. They can be precomputed when
the table is built. Recently, there has been a lot of work in combin-
ing HVQ with other techniques such as wavelet (subband) coding
[4], VQ with memory [5],[6] and applying it to low complexity
software-only-encoding of video and images [4],[7]. Also, there
has been work on combing HVQ with block transforms with per-
ceptually weighted distortion measures [3].

Since the VQ encoder complexity grows rapidly with vector
dimension, VQ can only be used to encode images with either
small block sizes or large block sizes with relatively small code-
books. However, small codebooks with large block sizes often
result in too much compression and too much distortion. To over-
come the affects of small block sizes, vector quantization with
block memory such as predictive vector quantization (PVQ) [8]
and finite state vector quantization (FSVQ) [9] can be used. These
algorithms use the correlation between adjacent blocks of pixels
to achieve the performance of VQ with a large codebook while
using a much smaller codebook. Prediction allows one to use a

smaller codebook since the residuals resulting from prediction
have a much smaller variance than the actual pixel values. Also
because the correlation between adjacent blocks is used for pre-
diction, grayscale continuities across blocks are better preserved,
thus reducing blockiness.

Another problem with VQ is the inability of the codebook to
adapt to nonstationarities in the image. AI1 blocks are quantized
using the same codebook. A method that can be used to improve
performance is to adaptively allocate bits to different spatial
regions of the image [lo],[121. Segmentation can be done to iden-
tify regions of the image which have low detail and can thus be
highly compressed, and regions of high detail, such as edges,
which cannot be highly compressed. Recently, there has been
work on how to do this segmentation optimally [ll]. An algo-
rithm presented by Baker and Sullivan [I13 shows how a quadtree
decomposition can be used to optimally decompose a block based
upon its statistics. Basically, this algorithm divides blocks which
have too much distortion when being encoded into four subblocks
and encodes these subblocks. In this fashion, regions of high
detail get extra bits.

We propose to use a quadtree decomposition to optimally
segment a block of residuals resulting from prediction. Since the
error residuals resulting from prediction have varying statistics
across the image, adaptively allocating bits by using different
quantizers on different regions of the image can result in
improved performance over using a single quantizer to encode the
residuals. The residuals often have large regions of constant inten-
sity and small regions of fine detail which make them ideal for'
adaptively selecting a quantizer. The segmentation is used to
adaptively select the size of a block to be encoded. All encodings
are done using table lookups, so no arithmetic computations are
performed for the encoder. Although the segmentation informa-
tion is added side information, the reduction in rate resulting from
adaptively segmenting the residual blocks more than makes up for
this.

The residuals can be encoded in two ways. One way is use a
single block size to find the residuals and then encode them using
an optimal quadtree segmentation. However, this has the problem
that the inner subblocks after segmentation will not be predicted
well and thus the correlation between adjacent subblocks would
not be exploited. To alleviate this problem, one can recursively
predict the subblocks from the surrounding subblocks rather than
using a single block size for the prediction.

Section 2 of the paper explains table lookup vector quantiza-
tion. In section 3, we explain how the predictive hierarchical table
lookup vector quantization with optimal segmentation algorithm
works. In section 4, we present simulation results, and in section
5, the conclusion.

2. Hierarchical Table-Lookup VQ
Hierarchical table-lookup vector quantization (HVQ) [2], [3]

is a method of encoding vectors using only table lookups. It was
used for speech coding in [2] and extended to image coding in [3],

By performing the table lookups in a hierarchy, larger vec-
tors can be accommodated in a practical way, as shown in Figure

~41.

0-7803-3258-X/96/$5.00 0 1996 IEEE 407

Authorized licensed use limited to: MICROSOFT. Downloaded on March 26,2010 at 15:25:03 EDT from IEEE Xplore. Restrictions apply.

1. In the figure, a K = 8 dimensional vector at onginal precision r,
= 8 bits per symbol is encoded into r, = 8 bits per vector (i.e., at
rate R = rM/K = 1 bit per symbol for a compression ratio of 8: 1)
using M = 3 stages of table lookups. In the first stage, the K input
symbols are partitioned into blocks of size k, = 2, and each of
these blocks is used to directly address a lookup table with koro =
16 address bits to produce rl = 8 output bits. Likewise, in each
successive stage m from 1 to M, the rm.l-bit outputs from the pre-
vious stage are combined into blocks of length k, to directly
address a lookup table with k,r,., address bits to produce r, out-
put bits per block. The r, bits output from the final stage M may
be sent directly through the channel to the decoder, if the quan-
tizer is a fixed-rate quantizer, or the bits may be used to index a
table of variable-length codes, for example, if the quantizer 1s a
vanable-rate quantizer.

Clearly many possible values fork, and r, are possible, but
k, = 2 and r, = 8 are usually most convenient for the purposes of
implementation. For simplicity of notation, we shall assume these
values in the remainder of the paper. The sizes of the tables at dif-
ferent stages of the HVQ can be changed to provide a trade-off [5]
between memory size and PSNR performance.

The table at stage m may be regarded as a mapping from two

inputindices C Y - ' and t 7 - I ,eachin {0,1, ..., 255}, toanout-

put index also in (0,1,, 255). That is, lm =

(I : - ' , I? - '). With respect to a distortion measure

d,(X, 1) between vectors of dimension K, = 2", design a fixed-

rate VQ codebook p,(t) , i = 0,1, ..., 255 with dimension K, =

2'" and rate r,lK,= 8/2* bits per symbol, trained on the original
data using any convenient VQ design algorithm [11. Then set

ar8mln,dm((Pm - - 7 1 P (q - '1) 9 P m (4 1 m - 1) =
m - 1 '2

to be the index of the 2"'-dimensionaI codeword p,(~) closest

to the 2"'-dimensional vector constructed by concatenating the 2"'-
-dimensional codewords p, - '(17 - ') and p, - '(1; - ') .

The intuition behind this construction is that if pm - *(I: - ') is

a good representative of the first half of the 2,-dimensional input
vector, and p, - ' (1 ; - ') is a good representative of the sec-

ond half, then p,(~") , with zm defined above, will be a good rep-

resentative of both halves, in the codebook p,(~) ,

i=0,1,.. .,255.
VQ with Quadtree C

Predictive table-lookup hierarchical vector quantization [5]
(PHVQ) with quadtree encoding is a form of vector quantizer
with memory and has the ability to adaptively select how to opti-
mally segment a block of residuals to be encoded. However, the
full search encoder in the algorithm is replaced with a table-
lookup HVQ encoder. Also the optimum segmentation and pre-
diction can be done with table lookups.

It consists of a predictor which uses the side pixels of quan-
tized adjacent blocks to predict the current block to be encoded.

The quantized blocks are used to predict since this is what the
decoder will have. It then encodes the residual using the quadtree
segmentation algorithm to optimally select the block sizes.
3.1. Problem Formulation

The image to be encoded is divided into m x m blocks, each
with k pixels, and is scanned left to right and top to bottom. The
blocks are scanned in the same order as the pixels. Let x, be the
vector to be quantized at time n, and let y , be the corresponding
transmitted channel symbol.
3.2. Predictive VQ

A predictive vector quantizer [8] (PVQ) is one which
encodes the residual between the actual block and the predicted
block instead of the actual block itself. Our PVQ uses the side
pixels of the quantized adjacent blocks to predict the current block
to be encoded.

Let s, represent a 2m dimensional vector of the side pixels of
previously quantized blocks adjacent to the block x, as shown in
Figure 2. Then the residual of the k-dimensional block is: e, = x, -
As,, where A is a k x 2m matrix of the optimum linear prediction
coefficients obtained by solving the Weiner-Hopf equation. Then
y,, is chosen to be the index of the codeword in the codebook
which minimizes the distortion for the vector e,.

The decoder receives y , which can be used to reproduce a
quantized version of the residual. It also has the quantized ver-
sions of the adjacent blocks, so it is able to predict the current
block. To the predicted block, it simply adds the quantized version
of the residual.
3.3. Optimal Quadtree Segmentation

We use the quadtree data structure (Figure 3) to represent the
optimal segmentation of a particular block [ll]. The quadtree
consists of a tree whose root corresponds to the largest block size
that can be encoded. Each node in the tree either has four children,
meaning that the block is further subdivided into four subblocks,
or no children, which means that the block is encoded [ll]. The
four subblocks are simply obtained by splitting an m x m block
into four m/2 x m/2 blocks. We use the algorithm by Sullivan and
Baker to determine the optimal quadtree structure for each block.

be the minimum possible block size that can

be encoded, and let 2 X 2 be the maximum block size which
can be encoded. Then, the optimal quantization of the image is the

L L optimum quantization of each of the 2 X 2 blocks. To obtain
1 1 the optimum quantization of a 2 X 2 block, we encode the

1 1 2 x 2 block using a quantizer designed for that block size.
Then, we compare the performance of this quantization with the
performance of the optimum quantization of each of the four

2'- ' X 2'- ' blocks. Let D , and R, be the rate and distortion

1 1 of encoding the 2 X 2 block using a quantizer designed for that
block size and let D, - be the sum of the rates and
distortions of the optimum encodings of the four subblocks. Then,
if D, + hR, 5 D, - + LR, - thq optimal encoding of the

1 1 1 1 2 X 2 block 1s the encoding using the 2 X 2 block quantizer,
else it is the optimum encoding of the four subblocks, where h is

1 1
Let 2 X 2

L L

and R, -

408

Authorized licensed use limited to: MICROSOFT. Downloaded on March 26,2010 at 15:25:03 EDT from IEEE Xplore. Restrictions apply.

the Lagrange multiplier. The optimum encoding of a 2“ X 2“
block is the actual encoding of the block since there are no quan-
tizers for smaller block sizes available. The entire process of find-
ing the optimum quantization is repeated for all /, + 1 5: l5: L .
The larger the value of h is, the more emphasis is placed on rate
over distortion and subsequently more of the blocks are encoded
using larger block sizes. The rate used to calculate whether to
merge or not includes one bit of segmentation information
required at each node of the quadtree. This one bit tells whether to
split that particular block into four subblocks or whether to
encode the actual block. All levels of the quadtree require this side
information except for the minimum block size which cannot be
split any further.
3.4. PHVQ with Quadtree segmentation

There are two ways to combine PHVQ with quadtree seg-
mentation. One way is to simply use prediction to first generate an
m x m predicted block. Then the residual block between the actual
block and predicted block can be encoded using a quadtree
decomposition. However this doesn’t take full advantage of the
correlation between adjacent subblocks which are encoded. A bet-
ter method is to use adjacent subblocks in the quadtree decompo-
sition to find the residuals to encode. So, in this algorithm we first
predict all the blocks using the smallest block size predictor. The
residuals are encoded using HVQ. Then we use another predictor
to generate residuals for the next block size. By using different
predictors for each of the block sizes and using the adjacent pixels
of the actual subblock being encoded, we take full advantage of
the correlation between adjacent subblocks. If the decoder recur-
sively decodes each of the four subblocks of a block which is
split, then it is able to calculate the predicted blocks using the side
pixels of the adjacent subblocks.

In our algorithm, all the full search encoders used in the
quadtree decomposition are simply replaced with hierarchical
table lookups. Therefore, no arithmetic computations are required
to perform these encodings. Also, since hierarchical table lookups
result in intermediate indices corresponding to a particular com-
pression ratio, individual encoders do not need to be actually used
for the various block sizes if one simply uses a quadtree decompo-
sition on a block of residuals. The segmentation simply tells at
which stage to stop the hierarchical table lookups. Even if one
does the encoding using recursive predictions and encodings, the
number of table lookups simply grows linearly with the number of
levels in the quadtree. The prediction can also be done through the
table lookups [5]. Also, the segmentation can easily be done by
table lookups by storing the average distortions for each of the
possible encodings at each stage of the table.
3.5. Variable Rate Coding

In order to further reduce the rate without increasing distor-
tion, we use entropy constrained vector quantization [13] (ECVQ)
to design the codebooks. This gives us a variable rate code since
the transmitted symbols have a length matched to their probabili-
ties. The variable rate indices can be built in to the last stage HVQ
table.

4. Simulation Results
We give PSNR results here for the 8-bit per pixel mono-

chrome image Lena (512x512). For the first method where a sin-
gle predictor is used to get a block of residuals, we first generated
a set of training vectors by obtaining residuals for a particular
block size, The side pixels were used for generating the residuals.

The residuals were recursively blocked to generate codebooks
with various vector dimensions. To obtain quantizers with differ-
ent bit rates, we generated codebooks with the same number of
codewords but for different block sizes. For the recursive predic-
tor and encoder, we generated residuals corresponding to each of
the block sizes used in the quadtree decomposition and generated
the codebooks for various vector dimensions. All the codebooks
were generated using ECVQ algorithm and had 256 codewords.

Once the codebooks were generated, various values of h
were used to vary the compression in the encoding. For large val-
ues of h, with a maximum block size in the quadtree decomposi-
tion being 8x8, most of the blocks were encoded as 8x8 blocks
and thus a compression of 64:l would have resulted if a fixed rate
code were used (excluding the one bit of side information
required for each block). For small values of h, we would have a
compression ratio of approximately 2: 1 with a fixed rate code. In
figure 4, we show PSNR curves for VQ, PVQ, VQ with quadtree,
PVQ with quadtree on a block of residuals, and PVQ with
quadtree with recursive prediction and encoding. For most rates,
PVQ with quadtree on a block of residuals is approximately 1 dB
better than PVQ and 1 dB better than VQ with quadtree alone.
With PVQ with quadtree and recursive prediction and encoding,
we gain about 2 dB more. With PHVQ with quadtree, we lose
approximately 0.7 dB over PVQ with quadtree. The PHVQ with
quadtree with recursive predicting and encoding is approximately
4-5 dB better than fixed rate HVQ. The compressed image using
JPEG is shown in figure 5 and the recursive PVQ compressed
image at the same bit rate (0.33 bpp) is shown in figure 6. As one
can see, the JPEG image is much blockier and less perceptually
pleasing. In figure 7, we show the segmentation map for the image
in figure 6. This shows how the bits are adaptively allocated and
how the background regions get less bits.

5. Conclusions
We have presented an algorithm for adaptively selecting a

quantizer to encode a block of residuals resulting from prediction.
Since prediction is used, memory can take advantage of the corre-
lation between adjacent blocks of pixels to allow us to use a
smaller codebook than would be required with memoryless VQ.
Since an optimal segmentation of the block of residuals is per-
formed in the encoding, we are able to change our compression
depending on the statistics of the block being encoded. This is
beneficial since the residuals resulting from prediction are nonsta-
tionary. Also, since we use HVQ to encode, we are able to gain
the advantages of perceptual weighting, VQ with memory and
adaptive quantization while maintaining the computational sim-
plicity of table lookups.

Acknowledgments

References

Sanjeev Mehrotra was supported under a National Science
Foundation Graduate Research Fellowship.

[11

[2]

A. Gersho and R.M. Gray, Vector Quantization and Signal
Compression, Boston, MA: Kluwer Academic Pub., 1992.
P.-C. Chang, J. May and R.M. Gray, “Hierarchical Vector
Quantization with Table-Lookup Encoders,” Proc. Int.
Con$ on Communications, Chicago, IL, June 1985, pp.

N. Chaddha, M. Vishwanath and P. Chou, “Hierarchical
Vector Quantization of Perceptually Weighted Block
Transforms,” Proc. Data Compression Conference, March
1995.

1452-55.
[3]

409

Authorized licensed use limited to: MICROSOFT. Downloaded on March 26,2010 at 15:25:03 EDT from IEEE Xplore. Restrictions apply.

[4] M. Vishwanath and PA. Chou, “An efticient algorithm for
hierarchical compression of video,” Proc. Intl. ConJ
Image Processing, Austin, TX, Nov. 1994, Vol. 3, pp. 275-
279.
N. Chaddha, P. Chou and R.M. Gray, “Constrained and
Recursive Hierarchical Table-Lookup Vector
Quantization,” Proc. Data Compression Conference,
March 1996.
N. Chaddha, S. Mehrotra and R.M. Gray, “Finite State
Table-Lookup Hierarchical Vector Quantization for
Images,’’ Proc. ICASSP’96.
N. Chaddha and M. Vishwanath, “A Low Power Video
Encoder with Power, Memory, Bandwidth and Quality
Scalability,” VLSI-Design’96 Conference, Jan. 1996.

[SI H.-M. Hang and J.W. Woods, “Predictive vector
quantization of images,” IEEE Trans. Comm., COM-33,

[SI

[6]

[7]

pp. 108--1219, NOV. 1985.

J. Foster, R. M. Gray and M. 0. Dunham, “Finite state
vector quantization for waveform coding,” IEEE Tran.
Info. Theory, vol. IT-31, pp. 348-355, May 1985.
Y. Shoham and A. Gersho, “Efficient bit allocation for an
arbitrary set of quantizers,” IEEE Trans. Acoust. Speech
Signal Processing, vol. 36, pp.1445-1453, Sept. 1988.
G.J. Sullivan and R.L. Baker, “Efficient Quadtree Coding
of Images and Video,” IEEE Trans. Image Pmc., vol. 3,
pp. 327-331, May 1994.
J. Vaisey and A. Gersho, “Image Compression with
variable block size segmentation,” IEEE Trans. Signal
Processing, vol. 40, pp. 2040-2060, Aug. 1992.
P. Chou, T. Lookabaugh and R. M. Gray, “Entropy
Constrained Vector Quantization,” IEEE Tran. ASSF!, vol.
37, pp. 31-42, Jan. 1989

‘.-”. r

r, =
Stage 2

*2= 8 8
Stage 3 I Table 3

r3= 84
Figure I . A 3-stage HVQ encoder (k =2, r =8)

m m

Figure 3. A three level quadtree with
all nodes having 4 children

Top Block
rllll

Current

used for

block

predicting block

40, , , , I , , , , . ,

Figure 5. k n a compmsed with JPEG
at 0.33 bpp; PSNR = 32.6 dB.

410

Authorized licensed use limited to: MICROSOFT. Downloaded on March 26,2010 at 15:25:03 EDT from IEEE Xplore. Restrictions apply.

