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Introduction
Why signal enhancement is important: 

Reducing the ambient noise from the captured audio signal 
is  crucial for providing good sound in modern computing 
systems, critical for the needs of real time communication 
and speech recognition. 

Tutorial goal:
To present the key theoretical aspects and share our 
practical experience in the area of noise suppression and 
reduction for application in sound capture and processing 
systems.

Target audience:
Engineers and researchers working in the area of audio 
signal processing planning or building audio systems for 
sound capturing. 
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Introduction (2)

Noise suppression as science and as art:
It is a science, because uses mathematical models 
and hypotheses, it is repeatable, i.e. we get the 
same results with the same input data
It is an art, because it is about human perception 
of the sound and requires evaluation from a 
human

For speech signals the process is part of more 
general term speech enhancement
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Defeating ambient noise: 
tutorial agenda

Basics
Noise suppression
Directional microphones
Microphone arrays
Advanced techniques
Free joke and conclusions
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Basics

Noise: definition and properties
Signal: definition and properties
Noise suppression and reduction, 
speech enhancement
Audio processing in frequency domain: 
weighting, transformation, synthesis
Bandpass filtering
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Basics: 
noise properties

Statistical model: 
Zero mean Gaussian random process
Right: airplane noise PDF vs. Gaussian PDF

In frequency domain: 
White noise spectrum
Pink noise: 6 dB/oct decrease
Colored noise – with given spectrum 
Hoth noise: typical room noise model

Temporal characteristics: 
Pseudo stationary compared to speech
Specific noises may be different: wind noise

Spatial characteristics: 
Ambient, isotropic: evenly distributed 
Point noise sources - jammers
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Basics: 
signal properties

In most of the cases the signal is speech
Statistical model (in long term): 

Zero mean random Gaussian (Laplace, 
Gamma) process

Frequency domain (in short term):
Voiced – e.g. vowels 
(harmonic structure) 
Unvoiced – e.g. fricatives 
(noise type)

Temporal: 
Speech and nonspeech segments

Spatial: 
Point sound source (mouth or loudspeaker)
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Basics: 
classification

Noise suppression: removing the noise based on 
statistical models of the noise and signal, spectral 
subtraction
Noise reduction or cancellation: removing the noise 
based on knowledge or estimation of the corrupting 
signal
Signal (speech) enhancement: more general term for 
any type of processing aiming improving some 
property of the signal
Active noise cancellation: decreasing the noise level 
in certain area by sending opposite phase sound with 
loudspeakers – not discussed in this tutorial
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Basics: 
processing flow

Processing in frequency domain
Audio frames: 

80-1024 samples, 5-25 ms

Frequency domain transformations:
Fourier (FFT): symmetric spectra, zero Fs/2 bin, 
process the first half
MCLT (Malvar, 1992): shifts bins ½ frequency bin
Other: Hartley, wavelet, cepstra; no re-synthesis
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Basics: 
processing flow (2)

Overall process (typical):
Extract the frame

Weighting 
Transform
Process
Inverse transform
Synthesis (overlap-add) 
using ½ of the previous 
frame

Move one half frame 
forward, repeat

+ +
. . .
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Basics: 
processing flow (3)

Weighting function:
Keeps the spectral peaks less smeared
Commonly used: 

Bartlett (triangle)
Hann or Hanning (cos-shaped)
Modified Hann – sqrt(cos)-shaped, to 
be applied twice

If re-synthesis is not required
Natural, Bartlett, Parsen: sinc, sinc2

and sinc4 in frequency domain
Max-Fauque-Bertier (sinc): rectangular 
in frequency domain
Blackman and further generalization as 
Taylor sequence
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Basics: 
bandpass filtering

Bandpass filtering:
Do not process frequency bins below and above certain 
frequencies – zero them
Typical low limit: 100-300 Hz for speech
Typical high limit: 0.45Fs, reduces aliasing
Dynamic bandpass filtering

Measure SNR per bin
Adjust the low and high slopes
Apply the filter

No kidding!
Increases speech intelligibility
Saves artifacts and distortions
Saves efforts and some CPU time
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Basics: 
summary

Noise and signal properties: statistical, frequency, 
temporal, and spatial
Suppression vs. reduction vs. enhancement vs. 
cancellation
Processing in frequency domain

Break in 50% overlapping frames – most common
Weighting function is important, sqrt(cos)-shaped most 
common
Overlap-add processing

Bandpass filtering: increases intelligibility, reduces 
artifacts and saves efforts
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Noise suppression
Gain based noise suppression
a priori and a posteriori SNR
Suppression rules
ML and Decision Directed approach for a priori SNR 
estimation
Uncertain presence of signal
Voice activity detectors
Accounting for the temporal characteristics
Overall architecture
Demos
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Noise suppression: 
gain based processing

Given signal xn(t) and noise dn(t) mixed in yn(t)
Observed in frequency domain, n-th frame, 
k-th frequency bin: Yk = Xk + Dk
Noise suppression:

Gk – time varying, non-negative, real value gain (or 
suppression rule)
The estimator keeps the same phase as Yk: under Gaussian 
assumptions the best phase estimator is observed phase 

The goal of noise suppression is for each frame to 
estimate Gk vector optimal in certain way

( ) .k
k k k k k
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Noise suppression: 
a priori and a posteriori SNR

Signal and noise: statistically independent 
Gaussian processes
Signals variances 
a priori and a posteriori SNRs

The suppression rule is now function of two 
parameters: 
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Noise suppression:
suppression rules

Wiener (1945): 

MMSE spectral amplitude estimator

Derivation
Goal 
Solution

Problems:
Musical noises in the pauses
Distortion in the speech segments

2

2

( ) ( ) ( )( ) 1 ( )
1 ( )( )

DY k k kG k k
kY k

λ ξγ
ξ

−
= = − =

+

{ }2ˆ
k kX Xε ⎡ ⎤−⎣ ⎦

2

2 2

( ) ( )( ) ( ) ( ) ( )( ) 1 1 ( )
( ) ( ) ( ) ( )

DXY YY DD D

YY YY

Y k kP k P k P k kG k k
P k P k Y k Y k

λ λ γ
−−= = = = − = −

Musical noises
and distortions

May 14th, 2006 ICASSP 2006, Toulouse, France 18

Noise suppression:
suppression rules

McAulay/Malpass (1980):

ML spectral amplitude estimator

Ephraim/Malah (1984):

Introduce a priori SNR

MMSE short term spectral amplitude estimator

Where:
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Noise suppression:
suppression rules (2)
Ephraim/Malah (1985):

MMSE short term log spectral amplitude estimator

Computational complexity of Ephraim and Malah
suppression rules
Efficient alternatives, P. Wolfe/S. Godsill (2001):

Joint Maximum A Posteriori Spectral Amplitude Estimator
Maximum A Posteriori Spectral Amplitude Estimator

MMSE Spectral Power Estimator:

Gaussian noise and Gamma speech distributions,
Martin (2002)
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Noise suppression:
a priori SNR estimation

a priori SNR estimation:

ML approximation:

Decision-directed (Ephraim/Malah, 1984):  

Noise variation estimation
Requires signal/noise classification of the audio frames/bins
In non-signal frames/bins update the noise model:
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Noise suppression:
uncertain presence of signal

McAulay/Malpass (1980)
Observation Yk = Xk + Dk holds only if we 
have signal presented
Real case:

Modified MMSE suppression rule:
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Noise suppression:
voice activity detectors

Energy based, binary decision

Track minimal energy

For classification apply threshold (2.5-7 Emin)
Can be done per frame or per bin

Probabilistic based (Sohn et. all., 1999)
Compute likelihood ratio:
Apply hang-over scheme 
Result: signal presence probability vector (per bin)

See Martin (2001) as well 
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Noise suppression:
using temporal properties

Suppression rule estimators use only 
the current frame: artifacts, distortions
Temporal gain smoothing

Direct smoothing:

HMM based:

Practical interpolation:  
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Noise suppression:
overall architecture

Non-observable

signal x(t)

noise d(t)

Observable

SFFT

VAD
Update
noise
model

Compute
suppression

rule

Final 
estimator

phase

magnitude

Corrupted
signal y(t)

iSFFT

noise model

presence probability vector

suppression rule

x(t) estimation
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Noise suppression:
practical tips and tricks

Limit: 
Suppression gains: keep above -60 dB
Probabilities: [1e-4,0.9999]

Smooth (in time and/or frequency):
Noise models
Gains

Simplify:
Do not use more complex models than necessary
Simpler model with more precise or faster 
parameters estimation usually works better
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Noise suppression:
demonstrations

Input file Wiener MMSE SPEMcAulay/Malpass Ephraim/Malah

10.722.5-44.8-22.2MMSE SPE

13.225.0-47.0-22.0Ephraim-Malah

2.614.4-36.0-21.6McAulay-Malpass

18.230.2-52.3-22.1Wiener filtered

11.8-33.3-21.5Not processed

ImprovementSNRNoiseSignalAlgorithm

Note: All measurement units are dB
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Noise suppression:
summary

Noise suppression as time varying, real value, 
non-negative gain (or suppression rule) 
based operation
a priori and a posteriori SNRs estimation is 
essential – the decision-directed approach
Signal may or may not be present – voice 
activity detectors are critical
Estimation of precise noise model is with high 
importance
Smoothing in time improves listening results
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Directional microphones

Microphone types
Pressure gradient microphone
Parameters for directional microphones
First order directional microphones
Classification and parameters
Bottom line
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Directional microphones:
microphone types

Microphone is a device that converts 
the air pressure to a electric signal
Microphone types:

Carbon – in first phones
Crystal – piezoelectric effect based
Dynamic – inverted loudspeaker
Condenser – measurement grade mics
Electret – the most common today
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Directional microphones:
pressure gradient microphone

Pressure microphone
Converts pressure to electric signal
Can be designed as diaphragm in 
closed capsule
Acoustical monopole

Pressure gradient microphone
Converts the pressure difference into 
electric signal
Can be designed as diaphragm in a 
open capsule
Acoustical dipole

acoustical monopole,
omnidirectional

acoustical dipole,
directional

closed
capsule

diaphragm

open
capsule diaphragm
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Directional microphones:
pressure gradient microphone (2)

Directivity pattern of pressure 
gradient microphone

Has figure-8 directivity pattern
Frequency response: 6 dB/oct
slope towards low frequencies
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Directional microphones:
first order microphones

First order microphone as combination 
of delayed τ and subtracted two signals 
from two microphones at distance d
Directivity pattern

cos( )( , ) 1 exp 2

( , ) (1 )cos( )Norm

dU f j f

U f

θθ π τ
ν

θ α α θ

⎛ ⎞⎛ ⎞= − − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
≈ + −

Omnidirectional and directional
microphones
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Directional microphones:
classification

Zero at 90 deg, acoustic dipole4.80.00figure 8

Highest DI, zeros at ± 109 deg6.00.25hypercardioid

Highest front-to-back ratio, zeros at ±125 deg5.7~0.35supercardioid

Zero at 180 deg4.80.50cardioid

No directivity0.01.00omnidirectional
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Directional microphones:
parameters

Directivity pattern
Directivity index 
Sensitivity, -45 dBV/Pa typical
SNR, 60 dB typical
Frequency response: 
front/back
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Directional microphones:
summary

In the Noise suppression section we learned that 
6 dB noise suppression is a good achievement
An cardioid microphone gives 4.8 dB noise 
reduction without distortions and artifacts
In real systems design using directional 
microphones is important
The microphone directivity pattern is further 
denoted as U(f,c), f – frequency, c – look-up 
direction { , , }c θ ϕ ρ=
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Microphone arrays

Definition and types
Delay-and-sum beamformer
Terminology
Time-invariant beamformers, demo
Sound source localization
Adaptive beamformers
Spatial filtering, demo
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Microphone arrays:
definition and types

Set of synchronously 
sampled microphones
Types: 

linear, planar, 3D
compact and large
uniform, nonuniform and 
random spacing
near field and far field

Advantage: allow spatial 
filtering, reducing the 
noises and reverberation
Disadvantage: require 
more microphones and 
more processing time
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Microphone arrays:
delay-and-sum beamformer

The most intuitive 
approach
Shift the signals to 
align them and sum
Advantages:

Simple and efficient
Problems:

Variable directivity
Big sidelobes
Low efficiency



Defeating Ambient Noise - practical 
approaches

May 14th, 2006

ICASSP 2006, Toulouse, France 20

May 14th, 2006 ICASSP 2006, Toulouse, France 39

Microphone arrays:
terminology

Beamforming: making the microphone array 
to listen to given look-up direction
Beamsteering: electronically change the look-
up direction the microphone array listens to
Nullsteering: suppressing the sounds coming 
from given direction
Sound source localization: techniques to 
detect, localize and track one or multiple 
sound sources using microphone array
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Microphone arrays:
general parameters

Generalized form:
M – number of microphones
Xi(f) – spectrum of i-th channel
W(f,i) – weight coefficients matrix
Y(f) – output signal

Parameters:
Directivity pattern B:

Main Response Axis – direction        towards max 
sensitivity, look-up direction
Beamwidth: area -3 dB around MRA

1

0
( ) ( , ) ( )

M

i
i

Y f W f i X f
−

=

= ∑

2

( , ) ( ) ( , ),

( , ) ( , )

m

H

c p
j f

m

B f W f D f

eD f U f c
c p

π
ν

θ θ

θ

−
−

= ⋅

=
−

maxθ



Defeating Ambient Noise - practical 
approaches

May 14th, 2006

ICASSP 2006, Toulouse, France 21

May 14th, 2006 ICASSP 2006, Toulouse, France 41

Microphone arrays:
general parameters (2)

Ambient noise gain: isotropic noise reduction

Non-correlated (sensor) noise gain

Total noise gain: combination of the two above

The beamformer design is to find weight matrix 
to satisfy certain criteria & constrains

2 2
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Microphone arrays:
time invariant beamformer
Design criteria:

Max noise suppression: highly non-linear
Replaced with directivity pattern matching – reducing the 
optimization dimensions
Isotropic noise assumption

Constrains:
Unit gain and zero phase shift towards MRA
Frequently: in the beamwidth area

Two controversial trends: decreasing the ambient 
noise gain increases the non-correlated noise gain. 
Optimum? – Minimize the total gain



Defeating Ambient Noise - practical 
approaches

May 14th, 2006

ICASSP 2006, Toulouse, France 22

May 14th, 2006 ICASSP 2006, Toulouse, France 43

Microphone arrays:
time invariant beamformer (2)

Superidirective beamformer (Cox, 1986)

is the power spectral density matrix of 
the input signals assuming isotropic noise
Constrained LMS algorithm, antenna array
Achieves maximum directivity
Chu, 1997; Elko, 2000

min( ) 1H H
XXW

W W subject to W DΦ =

XXΦ
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Microphone arrays:
time invariant beamformer (3)
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Comparison:
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Microphone arrays:
time invariant beamformer (4)

Design example (Tashev/Malvar, 2005)
Four element linear array
Beamwidth vs. Frequency vs. Total Noise Gain
Directivity pattern vs. Frequency
Directivity pattern in 3D for 1000 Hz

Demonstrations:
a) Parallel recording
b) Real-time SSL
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Microphone arrays:
time invariant beamformer (5)
Advantages: 

No VAD required 
Stable, reliable, predictable, measurable
Guaranteed parameters
Fast switching to different speaker
Low CPU requirement

Real-world problems: 
Requires Sound Source Localizer to find and track the desired 
sound source
Sensor’s & equipment’s noises limit the performance 
Microphones manufacturing tolerances: 

Calibration during manufacturing
Auto calibration during use (Tashev, 2004)
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Microphone arrays:
source localization

Time delay estimates based
Cross-correlation function
Weighting: ML, PHAT (Knap/Carter, 1976)
Combining the pairs

Brandstein et. all., 1996
Burchfield et. all., 2001 – uses optimization, works in 2D
Rui/Florencio, 2003 – sum or cross-correlation functions 
towards hypothesis

Beamsteering based
Compute the output energy of set of beams
Find the maximum
Do interpolation for increased precision
Variant: two dimensional search
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Microphone arrays:
source localization (2)

Problems: noise and 
reverberation 
Post-processing the raw SSL 
results

Particle filtering
Kalman filtering
Real-time clustering

Camera-assisted approach
Face detection software
Fusion SSL and video data

•Real SSL results: raw, post-processed, 
snapped to 10 degrees beams.
•Two persons talking at 6 and -38 degrees, 
distance 12 feet, conference room.
•Four element linear array.
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Microphone arrays:
adaptive algorithms

Frost algorithm (Frost, 1972)

is the power spectral density matrix of 
the input signals
Gradient descent optimization, i.e. 
constrained LMS algorithm
Designed for antenna array

min( ) 1H H
XXW

W W subject to W DΦ =

XXΦ

May 14th, 2006 ICASSP 2006, Toulouse, France 50

Microphone arrays:
adaptive algorithms (2)

Generalized Side Lobe Canceller (Griffiths/Jim, 1982)
Time-invariant beamformer
Nulls are sharper than beams
Blocking matrix – place null towards the sound source
Adaptive filters to minimize residual in the beamformer output
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Microphone arrays:
adaptive algorithms (3)

Advantages
Use fully the geometry under the specific noise
Very good with point noise sources 
No calibration required

Real-world problems
Higher requirement for CPU, memory
More complex for implementation
Slower adaptation and switching to next sound source
Non-predictable and non-guaranteed parameters
Similar to fixed beamformers performance with 
ambient type of noise
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Microphone arrays:
non-linear spatial filtering

Implemented as non-linear 
post-processor
Based on Instantaneous 
Direction Of Arrival (IDOA) 
estimation per bin

where 
Compute the probability and 
apply in the same way as in 
noise suppression under 
uncertain presence of signal

[ ]1 2 1( ) ( ), ( ), , ( )Mf f f fδ δ δ −∆ …

1 1( ) arg( ( )) arg( ( ))j jf X f X fδ − = −
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Microphone arrays:
non-linear spatial filtering (2)

Generalized suppression with spatial information 
and known look-up direction
Demo:

Recording conditions:
Human speaker at 0 degrees, 1.5 m
Radio at -45 degrees, 2 m
Office: normal noise and reverberation
Four element linear microphone array 

Same audio recording, two sequences:
video: direction-frequency-power; audio: one microphone
video: direction-power for SSL; audio: array output
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Microphone arrays:
non-linear spatial filtering (3)

Advantages
Better directivity than time-
invariant beamformer
Good source separation
Low CPU overhead

Real-world problems
Requires channel 
matching, i.e. calibration
Non-linear processing 
(artifacts, musical noises) direction-time-power
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Advanced techniques

Adaptive noise reduction
Psychoacoustic based noise suppressor
Noise suppressor optimized for speech 
recognition
Noise suppression with speech model
Spatial noise suppression
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Advanced techniques:
adaptive noise reduction

Add a microphone to capture 
the noise signal (HDD in a 
laptop, engine in a car)
Two inputs system: 

voice + noise: y(t)=x(t)+h(t)*z(t)
noise only: z(t)

Use LMS, RLS or NLMS 
adaptive filter
Double talk detector 
necessary if leakage of 
x(t) in z(t)



Defeating Ambient Noise - practical 
approaches

May 14th, 2006

ICASSP 2006, Toulouse, France 29

May 14th, 2006 ICASSP 2006, Toulouse, France 57

Advanced techniques:
adaptive noise reduction (2)

Advantages:
Linear! No musical noises or distortions
Works with non-stationary noises
Low CPU requirement

Real-world issues
Needs a second microphone
Limited applicability: when we can capture the 
noise only signal
Has some audible residuals and artifacts
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Advanced techniques:
psychoacoustic noise suppressor

Concept:
More energy removed -> more musical noises 
and distortions
Masking effects in frequency and time domains 
in human perception of sound
Why remove noises we can’t hear?

Real-life issues
Needs MOS tests for evaluation
Duplicates codec functionality – the new audio 
codecs use the same effect



Defeating Ambient Noise - practical 
approaches

May 14th, 2006

ICASSP 2006, Toulouse, France 30

May 14th, 2006 ICASSP 2006, Toulouse, France 59

Advanced techniques:
noise suppressor for ASR

General idea: optimize parameterized suppression 
rule for best recognition rate (Tashev/Droppo/Acero, 
2006)

More training data improves average recognition, harms clean 
speech recognition
Rprop optimization algorithm: enhanced version of gradient 
descent 
Objective function: Maximum Mutual Information (MMI) from ASR, 
closely related to the recognition accuracy
Optimization parameters: the suppression rule
Starting point: MMSE Spectral Power Estimator rule

Baseline: 99.5% clean, 52.5% average
Starting point: 96.9% clean, 74.9% average
Achieved optimal point: 99.0% clean, 77.7% average
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Advanced techniques:
noise suppressor for ASR (4)

MMSE SPE After 20 Iterations

-40
-20

0
20

40

-40
-20

0
20

40
-40

-30

-20

-10

0

10

ζ , dB

Suppression Rule - start point

γ, dB

S
up

pr
es

si
on

 G
ai

n,
 d

B

-40
-20

0
20

40

-40
-20

0
20

40
-40

-30

-20

-10

0

ζ , dB

Suppression Rule - result point

γ, dB

S
up

pr
es

si
on

 G
ai

n,
 d

B



Defeating Ambient Noise - practical 
approaches

May 14th, 2006

ICASSP 2006, Toulouse, France 31

May 14th, 2006 ICASSP 2006, Toulouse, France 61

Advanced techniques:
using speech model

General idea:
Detect and parse the speech signal: fricatives, 
vowels, glides, nasals, stops
Measure the parameters
Synthesize clean speech signal

Real-world issues:
If we can do reliably the parsing – we solved the 
noise robust ASR problems ☺
Even text-to-speech systems do not have very 
good pronunciation, doing this without language 
model is more difficult 
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Advanced techniques:
using speech model (2)

Drucker (1968):
Detect and parse the speech signal: fricatives, vowels, 
glides, nasals, stops
Use separate enhancing filters for each category
Hard decision for presence and class

McAulay/Malpass (1980) introduced soft decision 
rules and using several filters in parallel
Some techniques:

Use the harmonic structure of vowels, time warping to make 
them flat, clean, un-warp
Use vocal tract model for generating fricatives and other 
consonants
Using language model (too specific)



Defeating Ambient Noise - practical 
approaches

May 14th, 2006

ICASSP 2006, Toulouse, France 32

May 14th, 2006 ICASSP 2006, Toulouse, France 63

Advanced techniques:
spatial noise suppression

Microphone array for headset 
(Tashev/Seltzer/Acero, 2005)

3-element microphone array
Bone sensor for reliable VAD
Working in IDOA space

Multidimensional generalization of 
classic noise suppression

Building position-dependent noise 
models
Apply suppression rule

[ ]1 2 1( ) ( ), ( ), , ( )Mf f f fδ δ δ −∆ …
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Advanced techniques:
spatial noise suppression (2)
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Advanced techniques:
spatial noise suppression (3)

Signal and noise variances

a priory and a posteriori SNR

Suppression rule
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Advanced techniques:
spatial noise suppression (4)

SNR improvement, all units in dB 

BM – best microphone,
BF – beamformer
NS – noise suppressor
SR – spatial noise suppressor

Demo: parallel recording with BT headset

16.411.16.43.2Car, 90 dB
22.817.512.37.2Café, 75 dB 
34.729.422.525.2Office, 55 dB 
SRNSBFBM
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Advanced techniques:
summary

Improving further the noise suppression and 
reduction increases complexity, requires more 
information.
The algorithms become more specialized: for car, for 
speech, for ASR, for specific noises.
Use good judgment when use or design them: 

Do I need this? 
How specific is the application?

Remember: more complex model with more 
parameters means slower computation and 
adaptation. Use with caution.
Still very exciting new algorithms, solving problems 
unsolved so far.
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Defeating ambient noise: 
final remarks

The art of noise suppression is to know when 
to stop.
None of the methods is universal, use 
cascading and make sure not to destroy 
important properties.
Build processing blocks, think the whole 
system: well balanced suppression across the 
processing chain.
Noise suppression is about human 
perception: use your ears and MOS tests.
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Finally

Thank you for choosing this tutorial!
Thank you for the attention!

Questions?

Contact info: ivantash@microsoft.com
http://research.microsoft.com/users/ivantash


