
Software Integrity Checking Expressions (ICEs)
for Robust Tamper Detection

Mariusz Jakubowski1, Prasad Naldurg2, Vijay Patankar2, and Ramarathnam
Venkatesan3 ?

1 Microsoft Research Redmond
2 Microsoft Research India

3 Microsoft Research Redmond and Microsoft Research India

Abstract. We introduce software integrity checking expressions (Soft-
ICEs), which are program predicates that can be used in software tamper
detection. We present two candidates, probabilistic verification condi-
tions (PVCs) and Fourier-learning approximations (FLAs), which can
be computed for certain classes of programs,. We show that these pred-
icates hold for any valid execution of the program, and fail with some
probability for any invalid execution (e.g., when the output value of one
of the variables is tampered). PVCs work with straight-line integer pro-
grams that have operations { ∗, +,− }. We also sketch how we can extend
this class to include branches and loops. FLAs can work over programs
with arbitrary operations, but have some limitations in terms of effi-
ciency, code size, and ability to handle various classes of functions. We
describe a few applications of this technique, such as program integrity
checking, program or client identification, and tamper detection. As a
generalization of oblivious hashing (OH), our approach resolves several
troublesome issues that complicate practical application of OH towards
tamper-resistance.

1 Introduction

We describe a general framework for generating and validating useful verifica-
tion conditions of programs to protect against integrity attacks. We present two
methods, one to generate probabilistic verification conditions (PVCs) and the
other to compute Fourier-learning approximations (FLAs), which can both be
viewed as instances of a general class of software integrity checking expressions
(SoftICEs). These can be applied to a variety of problems, including software-
client identification and tamper detection.

Our PVC technique relies on the transformation of straight line program
fragments (without control-branching or loops) into a set of polynomial equa-
tions. With each set of equations, we compute a reduced basis that eliminates
redundant variables and equations that do not contribute to the output. This

? {mariuszj,prasadn,vij,venkie}@microsoft.com

basis depends on program code, and is consistent with the input-output seman-
tics of a given program fragment. We show how we can use this basis as an
integrity checking expression (ICE) with provable security properties.

Similary, in our FLA method, we view a code fragment as a function operating
on variables read inside the fragment; the output is all variables potentially
overwritten within the fragment. This scheme treats such a function as a series
of component functions that map the input variables onto single bits. A Fourier-
based machine-learning technique converts such functions into tables of Fourier
coefficients, and an inverse transform can use this table to approximate the
original function. Together with the coefficients, the inverse transform serves as
an ICE to verify each individual bit of the target function.

Traditionally, verification conditions (VC s) are used formally (or axiomati-
cally) to validate properties of programs without actually executing all possible
paths in the program. In particular, these conditions characterize a computable
semantic interpretation, which is a mathematical or logical description of the
possible behaviors of a given program [1]. In this context, for example in [2, 3],
one typically has a specification of the property of interest, and the generation
of VCs is driven by this property. These techniques typically work on a formal
model that is an over-approximation or abstraction of program behavior. One
of the challenges in abstraction is this loss of precision, and leads to false-errors.
On the other hand, we are interested in capturing verification conditions that
are precise, and characterize input-output behavior accurately.

In addition to this, we differ from traditional VC generation in many aspects:
We are agnostic to particular property specifications and therefore completely
automatic. Recently, a technique called random interpretation has been pro-
posed [6], which combines abstract interpretation with random testing to assert
probabilistic property-driven conditions for linear programs. Our framework de-
scribes how to generate generic semantic fingerprints of programs, independent
of property specifications or particular verification frameworks (e.g., abstract in-
terpretation). Furthermore, most existing techniques for generating verification
conditions work only for linear constraints. Our methods are more general and
work with nonlinear integer programs as well.

Our work on PVCs is also related to previous work on fast probabilistic
verification of polynomial identities [4], but our polynomials are derived from
actual programs.

We envision the application of these conditions in two scenarios: (a) In a
setting when the program is oblivious to the checks being performed, and (b) in
a non-oblivious setting, where an adversary can try to learn the checks, which
reduces to finding the random primes that are chosen for these reductions and
creation of VCs. Our analysis is universal in the sense that we do not assume
anything about the inputs.

The techniques proposed in this paper have a number of interesting applica-
tions:

– One application of our technique is program identification and individual-
ization. Consider a web portal W that distributes client software that is

individualized with respect to some client identity information. Now, imag-
ine some other portal W ′ that wants to use the database and services of W
to re-package and sell the same software to its clients. If W wants to keep
track of its original code, it can embed our ICEs in it.

– Another application is software protection. We believe that our probabilis-
tic conditions can be used as primitives to build provably secure software
protection mechanisms. Desirable properties of software protection include
obfuscation and tamper-resistance. Security is determined by the minimum
effort required to bypass such measures, and provable security means that
we can accurately estimate this effort, even if it is mere hours or days.

The problem of tamper detection in an oblivious setting has been explored
in [10]. This work proposes a technique called oblivious hashing (OH), which
computes hash values based on assignments and branches executed by a program.
OH requires program inputs that exercise all code paths of interest; hashes may
then be pre-computed by executing the program on these inputs. Alternately,
OH may rely on code replicas to compute and compare redundant hashes. In
contrast, we require no specific inputs, hash pre-computation, or code replicas,
thus resolving a number of issues that have created roadblocks against practical
adoption of OH.

A number of recent results [7–9] have explored the nature and scope of pro-
gram obfuscation. These results have identified different classes of programs that
can (or cannot) be obfuscated, for a general definition of obfuscation as being
equivalent to black-box access to a program. So far these results have only shown
very small classes of programs that can be provably obfuscated. The properties
defined here are not quantitative and we believe we can extend the scope of these
results to apply to a broader class of problems with probabilistic guarantees.

In a non-oblivious setting, the notion of proof-carrying code was developed
in [5], where an untrusted program carries a proof for a property defined by the
verifier. The verifier generates VCs automatically, using the same algorithm as
the program developer, and checks the proof. If the proof cannot be verified,
the program is considered unauthentic. In contrast, our probabilistic predicates
assert invariants about input-output behavior, and we believe that they can be
used to detect tampering and aid in obfuscation.

The rest of the paper is organized as follows: We present our program model
in Section 2. Section 3 presents the main theorem, about the precision of these
predicates, as well as their failure-independence when we trade precision for
efficiency. Section 4 presents examples, including extensions to include branches
and loops, and comparisons with traditional VC-generation techniques. Section
5 concludes with a discussion on future work.

2 Program Model and Basics

In this section, we describe our program model, along with our assumptions,
and present mathematical preliminaries, including definitions and notations, that

are needed to explain our PVC technique. We explain our FLA technique, and
its associated model in Section 5.

We study this problem in the context of integer programs. Here we allow only
integer values to variables in all (possibly infinite) reachable program-states, con-
sistent with our program semantics. In particular, we restrict our variables to
take values in the ring of rational integers (denoted by Z). Here, we would like
to point out that our method can be easily adapted to deal with programs with
rational number inputs, i.e. inputs from Q. This is achieved by considering a
rational number input as a quotient of two integers. Thus, each variable (with
rational number input) in an assignment is replaced by two distinct variables
(quotient of two variables) that accept integer inputs. One can then homogenise
the resulting assignment and produce an assignement with integer inputs. Re-
peated application of this process will covert a given program with rational
number inputs into an equivalent program with integer inputs. Thus, without
loss of generality, we may restrict our study to programs with integer inputs.

In our PVC technique we exploit the fundamental correspondence between
ideals of polynomial rings and subsets of affine spaces, called affine varieties, to
generate our probabilistic conditions.

Our goal is to capture a precise algebraic description of the relationship
between input and output variables for a generic program. To this end, with
each program P we associate an ideal or equivalently a system of polynomial
equations fi(x1, · · · , xn) = 0. We then compute a basis of such an ideal by
eliminating variables and redundant equations. This basis has the same set of
zeros as the original program. In Section 3, we show how we can construct
a probabilistic predicate from this basis and describe a testing framework to
detect tampering.

2.1 Background and Notation

To make this paper self-contained, we present definitions of rings, polynomial
rings, ideals and their bases. Our domain of program variables will be Z, the ring
of rational integers.

A ring R is a set equipped with two operations, that of multiplication and
addition {+, .}, together with respective identity elements denoted by 1 and 0. A
ring is commutative if the operation of multiplication is commutative. Henceforth
we will only deal with commutative rings.

An ideal of a ring R is an additive subgroup of R. In other words, an ideal I
of a commutative ring R is a nonempty subset R such that (I,+) is a subgroup
of (R,+) and that for all r ∈ R and x ∈ I, r · x ∈ I. An ideal generated by a
given subset S of R is by definition the smallest ideal of R containing S. This
ideal is denoted by 〈S〉 and called as the ideal of R generated by S.

Let {x1, x2, · · · , xn} be n indeterminate algebraically independent variables
over a commutative ring R, where n is a positive integer. Let R[x1, x2, · · · , xn] be
the ring of polynomials over R. We will denote this for short by R[x̄]. Note that,
as said earlier, it is a ring under the operations of multiplication and addition
of polynomials. We say that a commutative ring R is a field if every non-zero

element is invertible or has an inverse. A field will be usually denoted by K or
k. Thus, let k be a field, and let k[x̄] denote the polynomial ring over k. If an
ideal I of R is such that there exists a finite subset X ⊆ R(necessarily a subset
of I) generating it, then the ideal I is said to be finitely generated. It is a basic
theorem that every ideal of Z[x1, x2, · · · , xn], the polynomial ring of integers, is
finitely generated.

We now focus on Gröbner bases, a particular type of generating subset of an
ideal in a polynomial ring. It is defined with respect to a particular monomial
ordering, say �. By a monomial orderning, we mean a way of comparing two
different monomials in n variables over R. It is a theorem that every ideal poss-
eses a unique Gröbner basis depending only on the monomial ordering �. Thus
for a fixed monomial ordering �, we will denote the Gröbner basis of an ideal
I by G. Thus, we can write G := {g1, · · · , gm}, for some polynomials gi, and
< G >= I.

Gröbner bases possess a number of useful properties. The original ideal and
its Gröbner basis have the same zeros. The computation of a Gröbner basis may
require time (in the worst case) that is exponential or even doubly-exponential
(for different orderings) in the number of solutions of the underlying polynomial
system (or ideals). However, we have observed that they are efficiently com-
putable in practice, in a few seconds, for typical code fragments of interest, and
most computer algebra packages such as Mathematica and MAGMA provide
this support. We propose to validate their usefulness for checking program frag-
ments related to license-checking and digital rights protection. Computation of
our ICEs is off-line, in the sense that it can be viewed as a precomputation and
this stage does not affect the runtime performance of our original applications.

Reduced Gröbner bases can be shown to be unique for any given ideal and
monomial ordering. Thus, one can determine if two ideals are equal by looking
at their reduced Gröbner bases.

Next, we show how one may use these properties to generate behavioral
fingerprints of program executions.

2.2 Computing Bases

We explain our technique for straight-line programs in this subsection. We
focus on program fragments that form a part of what is called a basic-block, with-
out any additional control flow instructions. Subsquently, we present some engi-
neering techniques with weaker guarantees that can handle control flow branch-
ing and looping. However, this section is of independent value as we can apply
our general technique to only program fragments that are sensitive, trading cov-
erage for performance.

Let P be a straight-line integer program fragment. Let x1, · · · , xr be all
the input variables, and let xr+1, · · · , xn be all the output variables of P . We
define the set of program states V (P), as the set (possibly infinite) of all possible
valuations to the variables x1, · · · , xn of P , consistent with the update semantics
of variables in the program.

We assume that the operations of P are defined over the the integers Z
and are restricted to addition, subtraction, and multiplication by integers and
combinations of quantities obtained by these.

As mentioned earlier, with homogenisation and other algebraic simplifica-
tions, our method can be easily adapted for programs that include the divi-
sion operation. We can convert a given assignment that contains quotients of
polynomials into new assigment (or assignments) without quotients (or division
operation), by introducing auxiliary variables when necessary.

Therefore, we view a straight-line program (without any branches and con-
ditions) as a set of polynomial equations in some finite variables with integer
coefficients. In order to view assignments as equations, we use a standard trans-
formation technique called Static Single Assignment (SSA), which converts an
ordered sequence of program statements into a set of polynomials by introduc-
ing temporary variables. In SSA, if a program variable x is updated, each new
assignment of x is replaced with a new variable in all expressions between the
current assignment and the next. One thus gets a set of polynomial equations
associated with a given program. Let I(P) be the ideal generated by these poly-
nomials. This ideal will be called as the Program Ideal of the given program
P . Now, if we fix a monomial ordering of the variables that are involved in the
definitions of I(P), we can construct a Gröbner basis for I(P). Let us denote
it by G(P). This gives us the following: The set of states that evaluate to zero
for a Gröbner basis is identical to the set of states that evaluate to zero for the
original polynomials. In this sense, as a VC, the Gröbner basis as an abstraction
of the program behavior is precise.

This can be utilised as follows: Suppose xi = λi for i = 1 to n is a specific
executable-instance of a program P . Then, gj(λ̄) = 0 for j = 1 to m, here
λ̄ := (λ1, · · · , λn). Thus, if we take up all the polynomials of G, and evaluate λ̄
at these, then we can verify authenticity of program P with respect to its input-
output behaviour by checking whether an execution-instance of P is satisfied by
all the polynomials of G. However, this would constitute a lot of checking.

Rather than check for authenticity, it is easier to check for tampering. If a
program is modified or tampered and its input-output behavior has changed,
the bases produced by the original program and the modified program will be
different. For a given set of inputs, if the program is not tampered, the Gröbner
bases associated with this will evaluate to zero. However, if they evaluate to non-
zero, then the two programs are not the same. If we can find an input-output for
which the Gröbner Basis is non-zero for a tampered program, we can assert (by
black-box testing) that the program has been tampered. Finding this particular
input instance that will cause the basis to evaluate to non-zero is also difficult.
However, with the reduction presented in the next section, we show how we can
rely on a number-theoretic argument to quantify the security of our scheme for
a general adversary without having to rely on particular input instances.

In the next section, we present our main theorem regarding probabilistic
generation and validation of predicates using our basic idea.

3 Probabilistic Verification Conditions

In this section, we derive a probabilistic validation property that is indepen-
dent of specific program inputs and outputs. We use a simple number-theoretic
method of reduction modulo primes.

We now study how the Gröbner Basis polynomials behave when we apply
reduction modulo primes. This is useful for a variety of reasons. If we can quantify
how often the reduced polynomials produce the same set of zeros in comparison
with the original polynomials, we can devise a probabilistic testing framework
that complicates the task of a tampering adversary.

We employ the Schwartz-Zippel lemma [4] used in standard testing of polyno-
mial identities to obtain this quantification, which is typically used to determine
if a given multivariate polynomial is equal to zero.

Theorem 1 (Schwartz-Zippel). Let P ∈ F [x1, x2, · · · , xn] be a (non-zero)
polynomial of total-degree d > 0 over a field F . Let S be a finite subset of F . Let
r1, r2, r3, · · · , rn be selected randomly from S. Then

Pr[P (r1, r2, · · · , rn) = 0] ≤ d

|S|
.

This is basically a generalised version of the fact that a one variable polynomial
of degree d has at most d roots over a field F .

We will use a variation of the above lemma, which we state below. This
variation follows from the earlier lemma by noting that a random choice of
r ∈ Z amounts to a random choice of r mod p in Z/pZ for a randomly chosen
prime p and that |S| = |Z/pZ| = p.

Theorem 2 (Schwartz-Zippel-Variant). Let P ∈ Z[x1, x2, · · · , xn] be a (non-
zero) polynomial of total-degree d > 0 defined over the integers Z. Let P be the
set of all primes numbers. Let r1, r2, r3, · · · , rn be selected randomly from Z.
Then

Pr[P (r1, r2, · · · , rn) = 0 mod p] ≤ d

p
.

Thus, the Schwartz-Zippel lemma bounds the probability that a non-zero
polynomial will have roots at randomly selected test points. If we choose a prime
p > d, given a polynomial from a Gröbner basis that is computed for a straight-
line program as described earlier, the probability that this polynomial will be
zero when evaluated at a random input-output (of the given program) is bounded
above d

p .
This quantification provides us a basis for defining a probabilistic testing

methodology as follows:
If we are given black-box access to tampered code, the probability of the code

producing a zero (an input-output instance at which the polynomial evaluates
to zero) will be bounded by d

p . But p is chosen at random and can be arbitrarily
large. Thus, in order to pass tampered code as authentic, an adversary will have

to guess a random prime from a possibly infinite set of choices, and this is a
well-known hard problem.

Furthermore, granted that the adversary knows the prime, the adversary also
needs to maximize the probability that a non-authentic input-output instance is
passed on as authentic. Equivalently, the adversary needs to make sure that a
random and tampered input-output instance be a zero of all the polynomials (of
a Gröbner bases) modulo p. Given p and a finite set of polynomial equations, this
can be achieved with some work, provided the polynomial equations are simple.
Instead if randomized techniques are employed, and if the prime p is much larger
than the total-degree of all the polynomial equations, then the difficulty of finding
a zero has already been quantified by the Schwartz-Zippel lemma.

On the other hand, the verifier can test the program for random input-
outputs, and modulo a randomly chosen large prime p. If the program is not
tampered, all the input-outputs will be the zeros for the polynomials modulo any
prime p. The more tests the verifier does, the lesser the error probability. But,
by the arguments above, the probability that a tampered input-output instance
passes as a zero of a polynomial modulo a random large prime p is bounded above
by d

p . The probability of passing a specific non-authentic instance as authentic
can be minimized by choosing many randomly chosen primes pi and repeating
the verification on the same given specific instance as needed.

4 Examples of PVCs

In this section, we present five examples to demonstrate how our technique
can be used in practice. The first example shows how we can generate condi-
tions for linear programs. We also show how our probabilistic conditions com-
pare with traditional verification conditions. The second example has non-linear
constraints. The third example presents is more exploratory and presents some
preliminary ideas on branches and loops. In the fourth example, we show how
we can compute these bases for small, overlapping, randomly selected code frag-
ments to scale our solution to large programs. Finally we show how we can reduce
the complexity of checking by using our results from our previous section.

4.1 Linear Programs

In the following example, the input and output variables in this progr are
{x, y, z}.

x = x+ y + z;
y = y + 5;
z = x+ 1;
x = x+ 1;

In order to treat these assignment as equations, we transform the program using
SSA into the following:

x1 = x0 + y0;
x2 = x1 + z0;
y1 = y0 + 5;
z1 = x2 + 1;
x3 = x2 + 1;

In the example above:
I = 〈x1 − x0 − y0, x2 − x1 − z0,

y1 − y0 − 5, z1 − x2 − 1, x3 − x2 − 1

The Gröbner basis of this ideal with respect to a fixed monomial order {x0 <
x1 < x2 < x3 < y0 < y1 < z1} is given by:

G = {5 + y0 − y1, x3 − z1, 1 + x2 − z1,
1 + x1 + z0 − z1,−4 + x0 + y1 + z0 − z1}

When the order is changed we get a different basis. For the ordering z0 < y0 <
y1 < x0 < x1, x2 < x3 the basis is {x3−z1, 1+x2−z1,−5+x0−x1+y1, x0−x1+
y0, 1+x1+z0−z1} For both these cases, the basis polynomials evaluate to zero for
any valuations to input variable x0, y0, and z0. However if the program output is
changed (simulated by changing some intermediate outputs, these polynomials
do not evaluate to zero.

Comparison with Traditional VC Generation For comparison, we com-
pute invariants using a standard strongest-precondition algorithm. Suppose we
start with an assumption x > 0, y > 0, z > 0. The VC obtained in this case is
z1 ≥ 4 ∧ x3 ≥ 4 ∧ y1 ≥ 6. Note that if we use these assertions in a black-box or
oblivious setting, we can argue trivially that they are less resilient to program
modification than the ones generated by our technique.

If we start with true as the initial assertion, i.e., >, we get:

V C = 〈(z1 = x0 + y0 + z0 + 1) ∧
(x3 = x0 + y0 + z0 + 1) ∧
(y1 = y0 + 5)〉

While the strongest-postcondition algorithm now produces an equivalent set
of conditions (and depended on what we gave to it initially), our technique can
produce probabilistic conditions, and can be applied to nonlinear programs as
well.

4.2 An Automated Nonlinear Example

Below we give an example of Gröbner-basis computation on typical code in
an automated fashion. For this, we have implemented an SSA-remapping tool
that converts C++ code into polynomials suitable for our basis computation.
Consider the following code snippet:

x = b2 + 2a− 17c;
y = x+ 3ab;
z = 19b− 18yx2;
y = x+ 2y − z;

After processing the above input code, our tool generates the following polyno-
mials:

t154 - (b0 * b0), y0 - t161,
t155 - (2 * a0), t162 - (19 * b0),
t156 - (t154 + t155), t163 - (18 * y0),
t157 - (17 * c0), t164 - (t163 * x0),
t158 - (t156 - t157), t165 - (t164 * x0),
x0 - t158, t166 - (t162 - t165),
t159 - (3 * a0), z0 - t166,
t160 - (t159 * b0), t167 - (2 * y0),
t161 - (x0 + t160), t168 - (x0 + t167),
t169 - (t168 - z0), y1 - t169

In the above, variables with names prefixed by ’t’ (e.g., t154) are new tempo-
raries introduced by our SSA-remapping tool. Original variables (e.g., y) are
extended with numerical suffixes to create SSA-remapped versions (e.g., y0,y1).
Only the variable y requires more than one version, since only y is assigned more
than once.

With variables t154 through t169 eliminated, a Gröbner basis for the above
polynomials is the following:

x0 + 2y0 − y1 − z0,
2a0 + b0

2 − 17c0 + 2y0 − y1 − z0,
3a0b0 − 3y0 + y1 + z0,

6a0
2 − 51a0c0 + 6a0y0 + 3b0y0 − 3a0y1 −

b0y1 − 3a0z0 − b0z0,
−19b0 + 72y03 − 72y02y1 + 18y0y12 + z0 −
72y02z0 + 36y0y1z0 + 18y0z02

The above basis polynomials evaluate to zero on any set of proper assign-
ments to the variables a0, b0, c0, x0, y0, z0, and y1. For example, if a0 = 3 and
b0 = 14 and c0 = 15, we have x0 = −53, y0 = 73, z0 = −3690760, y1 = 3690853,

and each basis polynomial evaluates to zero on these assignments. If an attack
or a program error tampers with these values, this will most likely no longer
hold. For example, if the the value of y0 is changed from 73 to 72, the five basis
polynomials evaluate to {−2,−2, 3,−60,−320130}.

Note that the variable y0 corresponds to the value of y prior to its second
assignment in the original C++ snippet; y1 is the final value of y computed by
the C++ code.

4.3 Conditionals and Loops

To generate VCs for conditional statements, we compute VC sets indepen-
dently for each branch path; we then perform a cross product of these VC sets.
Since all polynomials in at least one VC set must evaluate to zero, each polyno-
mial in the cross product must also vanish. As an example, consider the following
C++ snippet:

if (...) else
{ {
x = b*b - 17*a*b; x = b*b - 2*a + 17*c;
x = x - 3*x*c; y = x + 2*a*b;

} }

Polynomials corresponding to the two branch paths are as follows:

x0 − b2 + 17ab,
x1 − x0 + 3x0c

x0 − b2 + 2a− 17c,
y − x0 − 2ab

The respective Gröbner bases are:

−x0 + 3cx0 + x1,

17ab− b2 + x0

−2a+ b2 + 17c− x0,

2ab+ x0 − y,
4a2 − 34ac+ 2ax0 + bx0 − by

The cross product of these bases consists of 6 polynomials, each of which
must evaluate to zero on any proper variable assignment:

(−x0 + 3cx0 + x1)(−2a+ b2 + 17c− x0),
(−x0 + 3cx0 + x1)(2ab+ x0 − y),
(−x0 + 3cx0 + x1)(4a2 − 34ac+ 2ax0 + bx0 − by),
(17ab− b2 + x0)(−2a+ b2 + 17c− x0),
(17ab− b2 + x0)(2ab+ x0 − y),
(17ab− b2 + x0)(4a2 − 34ac+ 2ax0 + bx0 − by)

Note that this method produces VCs that ascertain the proper execution of
each branch path; however, these VCs do not verify that the proper path was
chosen according to the condition evaluated at runtime. To fix this, the condition
itself may be treated as a polynomial for VC generation. Future work will include
details of how this may be accomplished.

To handle a loop, we may compute a Gröbner basis for just the loop body.
While this will not yield VCs that verify the actual loop iteration, we may
additionally include loop variables and conditions in the set of input polynomials.
Alternately, we may unroll loops, producing new instances of loop variables for
each iteration. A more detailed description of these methods will appear in future
work.

4.4 Overlapping

For larger code sections, computing Gröbner bases may be expensive. Even
with modular reduction, the results may contain an unwieldy number of com-
plex polynomials. Moreover, depending on the order of monomial elimination,
the time and resources to compute a basis for large code sections may vary
dramatically. In practice, well optimized software implementations are able to
compute Gröbner bases for up to a few tens of variables.

To address this problem, we compute Gröbner bases for small, randomly
overlapping fragments of input code; we then use a combination of the resulting
VCs. This reduces the number and complexity of basis polynomials while re-
taining soundness and security. In addition, the overlapping creates links among
the small code fragments, resulting in VCs that provide a probabilistic degree
of precision.

As an example, consider the following C++ code segment:

x = b*b + 2*a - 17*c;
y = x + 3*a*b;
z = 19*b - 18*y*x*x;
y = x + 2*y - z;

We may split this into the overlapping fragments below, computing separate
Gröbner bases for each:

x = b*b + 2*a - 17*c;
y = x + 3*a*b;
z = 19*b - 18*y*x*x;

y = x + 3*a*b;
z = 19*b - 18*y*x*x;
y = x + 2*y - z;

In general, the combined Gröbner bases from all fragments should be less com-
plex and more usable than the single basis computed from the entire code seg-
ment. In future work, we will analyze the benefits and limitations of overlapping
for purposes such as program analysis and tamper-resistance.

4.5 Reducing Complexity

We show a crucial number-theoretic trick with known bounds to reduce com-
plexity and simplify analysis. We also emphasize the probabilistic nature of our
conditions and highlight that we can analyze program behavior without making
any assumptions on input-output models.

Consider a transformed program consisting of the following polynomials:

Q = {x1 − 2a+ b+ c,

x2 − 17a+ b− 7c− 10,
x3 − 5b+ a+ 2,
x4 + 18a− 7b+ c− 14}

The Gröbner Basis with {a, b, c} eliminated is −3154+497x1 +92x2−88x3 +
147x4. This evaluates to zero for any assignments to input variables. We now
study how the polynomials reduce modulo a prime.

p = 2 : {x1 + x4}
p = 3 : {2 + 2x1 + 2x2 + 2x3}
p = 7 : {3 + x2 + 3x3}
p = 11 : {3 + 2x1 + 4x2 + 4x4}
p = 17 : {8 + 4x1 + 7x2 + 14x3 + 11x4}
p = 23 : {20 + 14x1 + 4x3 + 9x4}
p = 101 : {78 + 93x1 + 92x2 + 13x3 + 46x4}

When we modify the outputs slightly, the bases now only evaluate to zero
every (1/p) times on an average, as expected. For example, with p = 2:

{0}{1}{0}{1}{0}{1}{0}{1}{0}{1}
{0}{1}{0}{1}{0}{1}{0}{1}{0}{1}
{0}{1}{0}{1}{0} · · ·

With p = 11:

{0}{2}{4}{6}{8}{10}{1}{3}{5}{7}
{9}{0}{2}{4}{6}{8}{10}{1}{3}{5}
{7}{9}{0}{2}{4} · · ·

With p = 101:

{13}{40}{67}{94}{20}{47}{74}{0}{27}
{54}{81}{7}{34}{61}{88}{14}{41}{68}
{95}{21}{48}{75}{1}{28}{55} · · ·

Subsequently, we hope to relax our restriction that the operations in our program
be algebraic.

5 ICEs via Fourier Learning

In this section, we show how to use a technique from machine learning to
generate ICEs for arbitrary code, including mathematical operations and control-
flow constructs. Our main idea is to treat a program fragment F as a function
f : {0, 1}n → {0, 1}m, and learn each such function via a standard training
algorithm, as described shortly. The input to f is all variables read in F ; the
output of f is all variables potentially overwritten by F . For simplicity, assume
that F modifies only a single bit and rewrite f as f : {0, 1}n → {+1,−1}. For
program fragments that change m bits, our scheme may consider m separate
functions, one for each bit.

A Fourier-based learning procedure [13] essentially performs an approximate
Fourier transform of a Boolean function f : {0, 1}n → {+1,−1}. A basis for such
functions is the family of functions χα : {0, 1}n → {+1,−1} defined as

χα(x) = (−1)
∑n

i=1 xiαi , (1)

where α is an n-bit parameter, while xi and αi represent individual bits of x
and α, respectively, for i = 1..n. Informally, each basis function χα(x) computes
the parity of a subset of x’s bits, with the subset specified by the bit vector
α. It can be shown that this function family is an orthonormal basis, so that
a standard Fourier transform can map f onto 2n Fourier coefficients cα. These
coefficients can be used to compute f :

f(x) =
∑

α∈{0,1}n

cαχα(x) (2)

With this basis, a full Fourier transform requires exponential time to compute
an exponential number of coefficients. However, a typical function f can often
be approximated by a small subset thereof. Efficient learning algorithms exist
for functions that can be well approximated by a small number of coefficients

or by a selection of “low-frequency” coefficients cα, where α has low Hamming
weight. These algorithms use sets of “training” inputs and outputs to estimate
values of coefficients, essentially approximating a Fourier transform.

Within this framework, an ICE for a program fragment F is a table of learned
Fourier coefficients cα for an associated bit function f , along with the expression
specified by eq. 2. The coefficients and eq. 2 can be used to approximate f(x)
on any input x. As with any ICE, this result should match the actual value of
f(x) computed at runtime; otherwise F has been tampered.

As an example, we applied a “low-frequency” learning algorithm [13] to the
following C fragment, which accepts the 12-bit integer variable x as input and
returns a single-bit output:

uint y;
if ((x & 1) == 0) if ((x & 4) == 0)
y = x >> 3; y = y * 11 + 1;

else else
y = x >> ((int)x & 7); y = 3 * y - 45;

if ((x & 2) == 0) return (0 == (y & 4)) ? 1 : -1;
y = 19 * y + x;

else
y = y - 3 * x;

To illustrate some specific figures, our learning procedure used 55690 random
input-output pairs to approximate 1585 low-frequency Fourier coefficients cα
(with α having Hamming weight of 5 or less). This was sufficient to learn the
above function well; e.g., for several random inputs x, the following lists the
correct and approximated outputs:

x=372: y=-1 y_approx=-1.54975758664033
x=648: y=1 y_approx=0.855773029269167
x=3321: y=1 y_approx=1.09868917220327
x=1880: y=-1 y_approx=-0.807793140599749

This approach also provides other benefits for software protection, mainly
due to obfuscation via homogenization. Programs turn into tables of Fourier
coefficients, while execution becomes evaluation of inverse Fourier transforms
(eq. 2). Thus, both representation and operation of transformed programs are
highly uniform, which complicates analysis and reverse engineering. This is sim-
ilar to representing functions as lookup tables, but Fourier-based learning works
even when the size of such tables would be impractical. An adversary may be
forced to treat Fourier-converted programs as black-box functions, since it is
unclear how to recover original code from corresponding tables of coefficients.
Future work will analyze the exact difficulty of this problem.

6 Future Work

This work should be considered as a preliminary investigation in our quest for
robust, automatic, provably secure semantic fingerprints of programs. In future
work, we will address computation of VCs for loops (with algebraic loop-variable
updates) and conditionals. Moving beyond algebraic restrictions to accommodate
bitwise and other operations, we may encode these computations as boolean
formulas and arithmetize them suitably to treat them as algebraic polynomials
(e.g., [11]). While this may increase the number of variables dramatically, we will
use overlapping and other engineering techniques to manage this complexity for
target applications.

References

1. Patrick Cousot and Radhia Cousot, Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix points, In
4th Annual ACM Symposium on Principles of Programming Lan- guages, pages
234252, 1977.

2. Thomas Ball and Rupak Majumdar and Todd Millstein and Sriram K. Rajamani,
Automatic Predicate Abstraction of C Programs, PLDI 2001, SIGPLAN Notices
36(5), pp. 203-213.

3. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre, Soft-
ware Verification with Blast, Proceedings of the 10th SPIN Workshop on Model
Checking Software (SPIN), LNCS 2648, Springer-Verlag, pages 235-239, 2003.

4. J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities,
JACM, 27(4):701717, October 1980.

5. George C. Necula, Proof Carrying Code, In 24th Annual ACM Symposium on Prin-
ciples of Programming Languages, January 1997

6. Sumit Gulwani and George C. Necula,Discovering affine equalities using random
interpretation, In 30th Annual ACM Symposium on Principles of Programming
Languages, pages 7484, January 2003.

7. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.
Yang, On the (Im)possibility of Obfuscating Programs. 21st Annual International
Cryptology Conference, Santa Barbara, California, USA. Springer Verlag LNCS
Volume 2139, 2001.

8. Yael Tauman Kalai and Shafi Goldwasser, On the Impossibility of Obfuscation with
Auxiliary Inputs, In Proc. 46th IEEE Symposium on Foundations of Computer
Science (FOCS 2005), 2005.

9. B. Lynn, M. Prabhakaran, and A. Sahai, Positive Results and Techniques for Ob-
fuscation In Proceedings of Eurocrypt, 2004.

10. Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. Jakubowski, Oblivious
hashing: a stealthy software integrity verification primitive, In Proceedings of the
5th International Workshop on Information Hiding, pages 400–414, 2002.

11. Adi Shamir, IP = PSPACE, Journal of the ACM, volume 39, issue 4, p. 869-877,
October 1992.

12. Nathan Jacobson, Basic Algebra I, W H Freeman and Co., February 1985.
13. Y. Mansour. Learning boolean functions via the Fourier transform. In Vwani

Roychowdhury, Kai-Yeung Siu, and Alon Orlitsky, editors, Theoretical Advances in
Neural Computation and Learning. Kluwer, 1994.

