Clock-SI: Snapshot Isolation for Partitioned Data
Stores Using Loosely Synchronized Clocks

Jiaging Du
EPFL
Lausanne, Switzerland

Abstract—Clock-SI is a fully distributed protocol that im-
plements snapshot isolation (SI) for partitioned data stores. It
derives snapshot and commit timestamps from loosely synchro-
nized clocks, rather than from a centralized timestamp authority
as used in current systems. A transaction obtains its snapshot
timestamp by reading the clock at its originating partition and
Clock-SI provides the corresponding consistent snapshot across
all the partitions. In contrast to using a centralized timestamp
authority, Clock-SI has availability and performance benefits:
It avoids a single point of failure and a potential performance
bottleneck, and improves transaction latency and throughput.

We develop an analytical model to study the trade-offs in-
troduced by Clock-SI among snapshot age, delay probabilities
of transactions, and abort rates of update transactions. We
verify the model predictions using a system implementation.
Furthermore, we demonstrate the performance benefits of Clock-
SI experimentally using a micro-benchmark and an application-
level benchmark on a partitioned key-value store. For short read-
only transactions, Clock-SI improves latency and throughput by
50% by avoiding communications with a centralized timestamp
authority. With a geographically partitioned data store, Clock-
SI reduces transaction latency by more than 100 milliseconds.
Moreover, the performance benefits of Clock-SI come with higher
availability.

Keywords-snapshot isolation, distributed transactions, parti-
tioned data, loosely synchronized clocks

I. INTRODUCTION

Snapshot isolation (SI) [1] is one of the most widely used
concurrency control schemes. While allowing some anomalies
not possible with serializability [2], SI has significant per-
formance advantages. In particular, SI never aborts read-only
transactions, and read-only transactions do not block update
transactions. SI is supported in several commercial systems,
such as Microsoft SQL Server, Oracle RDBMS, and Google
Percolator [3], as well as in many research prototypes [4], [5],
(61, [71, [8].

Intuitively, under SI, a transaction takes a snapshot of
the database when it starts. A snapshot is equivalent to a
logical copy of the database including all committed updates.
When an update transaction commits, its updates are applied
atomically and a new snapshot is created. Snapshots are totally
ordered according to their creation order using monotonically
increasing timestamps. Snapshots are identified by timestamps:
The snapshot taken by a transaction is identified by the
transaction’s snapshot timestamp. A new snapshot created by a
committed update transaction is identified by the transaction’s
commit timestamp.
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Managing timestamps in a centralized system is straightfor-
ward. Most SI implementations maintain a global variable, the
database version, to assign snapshot and commit timestamps
to transactions.

When a transaction starts, its snapshot timestamp is set
to the current value of the database version. All its reads
are satisfied from the corresponding snapshot. To support
snapshots, multiple versions of each data item are kept, each
tagged with a version number equal to the commit timestamp
of the transaction that creates the version. The transaction
reads the version with the largest version number smaller
than its snapshot timestamp. If the transaction is read-only,
it always commits without further checks. If the transaction
has updates, its writes are buffered in a workspace. When the
update transaction requests to commit, a certification check
verifies that the transaction writeset does not intersect with
the writesets of concurrent committed transactions. If the
certification succeeds, the database version is incremented, and
the transaction commit timestamp is set to this value. The
transaction’s updates are made durable and visible, creating a
new version of each updated data item with a version number
equal to the commit timestamp.

Efficiently maintaining and accessing timestamps in a dis-
tributed system is challenging. We focus here on partitioning,
which is the primary technique employed to manage large data
sets. Besides allowing for larger data sizes, partitioned systems
improve latency and throughput by allowing concurrent access
to data in different partitions. With current large main memory
sizes, partitioning also makes it possible to keep all data in
memory, further improving performance.

Existing implementations of SI for a partitioned data store
[3], [5], [9], [4] use a centralized authority to manage
timestamps. When a transaction starts, it requests a snapshot
timestamp from the centralized authority. Similarly, when a
successfully certified update transaction commits, it requests
a commit timestamp from the centralized authority. Each
partition does its own certification for update transactions,
and a two-phase commit (2PC) protocol is used to commit
transactions that update data items at multiple partitions. The
centralized timestamp authority is a single point of failure
and a potential performance bottleneck. It negatively impacts
system availability, and increases transaction latency and mes-
saging overhead. We refer to the implementations of SI using
a centralized timestamp authority as conventional SI.



This paper introduces Clock-SI, a fully distributed imple-
mentation of SI for partitioned data stores. Clock-SI uses
loosely synchronized clocks to assign snapshot and commit
timestamps to transactions, avoiding the centralized timestamp
authority in conventional SI. Similar to conventional SI, par-
titions do their own certification, and a 2PC protocol is used
to commit transactions that update multiple partitions.

Compared with conventional SI, Clock-SI improves system
availability and performance. Clock-SI does not have a single
point of failure and a potential performance bottleneck. It saves
one round-trip message for a ready-only transaction (to obtain
the snapshot timestamp), and two round-trip messages for an
update transaction (to obtain the snapshot timestamp and the
commit timestamp). These benefits are significant when the
workload consists of short transactions as in key-value stores,
and even more prominent when the data set is partitioned
geographically across data centers.

We build on earlier work [10], [11], [12] to totally order
events using physical clocks in distributed systems. The nov-
elty of Clock-SI is to efficiently create consistent snapshots
using loosely synchronized clocks. In particular, a transaction’s
snapshot timestamp is the value of the local clock at the
partition where it starts. Similarly, the commit timestamp of a
local update transaction is obtained by reading the local clock.

The implementation of Clock-SI poses several challenges
because of using loosely synchronized clocks. The core of
these challenges is that, due to a clock skew or pending
commit, a transaction may receive a snapshot timestamp for
which the corresponding snapshot is not yet fully available. We
delay operations that access the unavailable part of a snapshot
until it becomes available. As an optimization, we can assign to
a transaction a snapshot timestamp that is slightly smaller than
the clock value to reduce the possibility of delayed operations.

We build an analytical model to study the properties of
Clock-SI and analyze the trade-offs of using old snapshots.
We also verify the model using a system implementation.

We demonstrate the performance benefits of Clock-SI on a
partitioned key-value store using a micro-benchmark (YCSB
[13]) and application-level benchmark (Twitter feed-following
[14]). We show that Clock-SI has significant performance
advantages. In particular, for short read-only transactions,
Clock-SI improves latency and throughput by up to 50% over
conventional SI. This performance improvement comes with
higher availability as well.

In this paper, we make the following contributions:

e We present Clock-SI, a fully distributed protocol that
implements SI for partitioned data stores using loosely
synchronized clocks (Section III).

« We develop an analytical model to study the performance
properties and trade-offs of Clock-SI (Section IV).

o We build a partitioned key-value store and experimentally
evaluate Clock-SI to demonstrate its performance benefits
(Section V).

II. BACKGROUND AND OVERVIEW

In this section, we define the system model and SI, and
describe the challenges of using loosely synchronized physical
clocks to implement SI.

A. System Model

We consider a multiversion key-value store, in which the
dataset is partitioned and each partition resides on a single
server. A server has a standard hardware clock. Clocks are
synchronized by a clock synchronization protocol, such as
Network Time Protocol (NTP) [15]. We assume that clocks
always move forward, perhaps at different speeds as provided
by common clock synchronization protocols [15], [16]. The
absolute value of the difference between clocks on different
servers is bounded by the clock synchronization skew.

The key-value store supports three basic operations: get,
put, and delete. A transaction consists of a sequence of
basic operations. A client connects to a partition, selected by a
load balancing scheme, and issues transactions to the partition.
We call this partition the originating partition of transactions
from the connected client. The originating partition executes
the operations of a transaction sequentially. If the originating
partition does not store a data item needed by an operation, it
executes the operation at the remote partition that stores the
item.

The originating partition assigns the snapshot timestamp
to a transaction by reading its local clock. When an update
transaction starts to commit, if it updates data items at a single
partition, the commit timestamp is assigned by reading the
local clock at that partition. We use a more complex protocol
to commit a transaction that updates multiple partitions (see
Section III-B).

B. Snapshot Isolation

Formally, SI is a multiversion concurrency control scheme
with three main properties [1], [17], [18] that must be satisfied
by the underlying implementation: (1) Each transaction reads
from a consistent snapshot, taken at the start of the transac-
tion and identified by a snapshot timestamp. A snapshot is
consistent if it includes all writes of transactions committed
before the snapshot timestamp, and if it does not include any
writes of aborted transactions or transactions committed after
the snapshot timestamp. (2) Update transactions commit in a
total order. Every commit produces a new database snapshot,
identified by the commit timestamp. (3) An update transaction
aborts if it introduces a write-write conflict with a concurrent
committed transaction. Transaction 77 is concurrent with com-
mitted update transaction 75, if T3 took its snapshot before 75
committed and 77 tries to commit after 75 committed.

C. Challenges

From the SI definition, a consistent snapshot with snapshot
timestamp ¢ includes, for each data item, the version written
by the transaction with the greatest commit timestamp smaller
than ¢. This property holds independent of where a transaction
starts and gets its snapshot timestamp, where an update



transaction gets its commit timestamp, and where the accessed
data items reside. Ensuring this property is challenging when
assigning snapshot and commit timestamps using clocks as we
illustrate here. While these situations happen relatively rarely,
they must be handled for correctness. We show in detail how
Clock-SI addresses these challenges in Section III.
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Fig. 1. Snapshot unavailability due to clock skew.

Example 1: First, we show that clock skew may cause
a snapshot to be unavailable. Figure 1 shows a transaction
accessing two partitions. Transaction 7 starts at partition P,
the originating partition. P; assigns 77’s snapshot timestamp
to the value ¢. The clock at P, is behind by some amount 6,
and thus at time ¢ on P;, P»’s clock value is ¢t — 6. Later on, T
issues a read for data item x stored at partition P,. The read
arrives at time ¢’ on Py’s clock, before P»’s clock has reached
the value ¢, and thus ¢’ < t. The snapshot with timestamp ¢
at P, is therefore not yet available. Another transaction on
P, could commit at time ¢”, between ¢ and ¢, and change
the value of x. This new value should be included in 7;’s
snapshot.
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Fig. 2. Snapshot unavailability due to the pending commit of an update
transaction.

Example 2: Second, we show that the pending commit of
an update transaction can cause a snapshot to be unavailable.
Figure 2 depicts two transactions running in a single partition.
T5’s snapshot is unavailable due to the commit in progress
of transaction 77, which is assigned the value of the local
clock, say ¢, as its commit timestamp. 7) updates item x
and commits. The commit operation involves a write to stable
storage and completes at time ¢’. Transaction T5 starts between
t and ¢/, and gets assigned a snapshot timestamp t”, t < "/ <
t'. If T, issues a read for item x, we cannot return the value
written by 77, because we do not yet know if the commit will
succeed, but we can also not return the earlier value, because,
if T1’s commit succeeds, this older value will not be part of
a consistent snapshot at ¢”.

Both examples are instances of a situation where the snap-
shot specified by the snapshot timestamp of a transaction is not
yet available. These situations arise because of using physical
clocks at each partition to assign snapshot and commit times-
tamps in a distributed fashion. We deal with these situations by
delaying the operation until the snapshot becomes available.

As an optimization, the originating partition can assign to a
transaction a snapshot timestamp that is slightly smaller than
its clock value, with the goal of reducing the probability and
duration that an operation needs to be delayed, albeit at the
cost of reading slightly stale data. Returning to Example 1, if
we assign a snapshot timestamp by subtracting the expected
clock skew from the local clock, then the probability of the
snapshot not being available because of clock skew decreases
substantially.

III. CLock-SI

In this section, we describe how Clock-SI works. We first
present the read protocol, which provides transactions con-
sistent snapshots across partitions, and the commit protocol.
Next, we discuss correctness and other properties of Clock-SI.

Algorithm 1 Clock-SI read protocol.

1: StartTransaction(transaction T)
2: T.SnapshotTime < GetClockTime() — A
3: T.State < active

4: ReadDataltem(transaction T, data item oid)

5 if oid € T.WriteSet return T.WriteSet[oid]

6: // check if delay needed due to pending commit
7:  if oid is updated by T' A

8: T'.State = committing A

9: T.SnapshotTime > T’.CommitTime

10: then wait until T’.State = committed

11:  if oid is updated by T’ A

12: T’.State = prepared A

13: T.SnapshotTime > T'.PrepareTime A

14: // Here T can obtain commit timestamp of T'

15: // from its originating partition by a RPC.

16: T.SnapshotTime > T'.CommitTime

17:  then wait until T'.State = committed

18: return latest version of oid created before T.SnapshotTime

19: upon transaction T arriving from a remote partition
20: // check if delay needed due to clock skew

21: if T.SnapshotTime > GetClockTime()

22: then wait until T.SnapshotTime < GetClockTime()

A. Read Protocol

The read protocol of Clock-SI provides transactions consis-
tent snapshots across multiple partitions. It has two important
aspects: (1) the assignment of snapshot timestamps, and (2)
delaying reads under certain conditions to guarantee that
transactions access consistent snapshots identified by their
snapshot timestamps. Algorithm 1 presents the pseudocode of
the read protocol.

Timestamp assignment. When transaction 7' is initialized
at its originating partition (lines 1-3), it receives the snapshot
timestamp by reading the local physical clock, and possibly
subtracting a parameter, A, to access an older snapshot as we
explain in Section III-C. The assigned timestamp determines
the snapshot of the transaction.

Consistent Snapshot Reads. A transaction reads a data
item by its identifier denoted by oid (lines 4-18). To guarantee
that a transaction reads from a consistent snapshot, Clock-SI



delays a read operation until the required snapshot becomes
available in two cases.

Case 1: Snapshot unavailability due to pending commit.
Transaction 7T’ tries to access an item that is updated by another
transaction 77 which has a commit timestamp smaller than 7”s
snapshot timestamp but has not yet completed the commit. For
example, T" is being committed locally but has not completely
committed (lines 6-10) or 7" is prepared in 2PC (lines 11-
17). ! We delay T"s access to ensure that a snapshot includes
only committed updates and all the updates committed before
the snapshot timestamp. The delay is bounded by the time of
synchronously writing the update transaction’s commit record
to stable storage, plus one round-trip network latency in the
case that a transaction updates multiple partitions.

Case 2: Snapshot unavailability due to clock skew.
When a transaction tries to access a data item on a remote
partition and its snapshot timestamp is greater than the clock
time at the remote partition, Clock-SI delays the transaction
until the clock at the remote partition catches up (lines 19-
22). The transaction, therefore, does not miss any committed
changes included in its snapshot. The delay is bounded by the
maximum clock skew allowed by the clock synchronization
protocol minus one-way network latency.

In both cases, delaying a read operation does not introduce
deadlocks: An operation waits only for a finite time, until a
commit operation completes, or a clock catches up.

Notice that Clock-SI also delays an update request from a
remote partition, under the same condition that it delays a read
request, so that the commit timestamp of an update transaction
is always greater than the snapshot timestamp (line 19).

B. Commit Protocol

With Clock-SI, a read-only transaction reads from its snap-
shot and commits without further checks, even if the trans-
action reads from multiple partitions. An update transaction
modifies items in its workspace. If the update transaction
modifies a single partition, it commits locally at that partition.
Otherwise, we use a coordinator to either commit or abort the
update transaction at the updated partitions. One important
aspect is how to assign a commit timestamp to update trans-
actions. Algorithm 2 presents the pseudocode of the commit
protocol.

Committing a single-partition update transaction. If a
transaction updates only one partition, it commits locally at
the updated partition (lines 5-10). Clock-SI first certifies the
transaction by checking its writeset with concurrent committed
transactions [18]. Before assigning the commit timestamp,
the transaction state changes from active to committing. The
updated partition reads its clock to determine the commit
timestamp, and writes the commit record to stable storage.

I'The question arises how T knows that it is reading a data item that has
been written by a transaction in the process of committing, since in SI a write
is not visible outside a transaction until it is committed. The problem is easily
solved by creating, after assignment of a prepare or a commit timestamp, a
version of the data item with that timestamp as its version number, but by
prohibiting any transaction from reading that version until the transaction is
fully committed.

Algorithm 2 Clock-SI commit protocol.
1: CommitTransaction(transaction T)

2: if T updates a single partition

3: then LocalCommit(T)

4: else DistributedCommit(T)

5: LocalCommit(transaction T)

6: if CertificationCheck(T) is successful
7: T.State <— committing

8: T.CommitTime < GetClockTime()
9: log T.CommitTime and T.Writeset
10: T.State <— committed

11: // two-phase commit
12: DistributedCommit(transaction T)
13: for p in T.UpdatedPartitions

14: send prepare T top

15: wait until receiving T prepared from participants
16: T.State <— committing

17: // choose transaction commit time

18: T.CommitTime <— max(all prepare timestamps)

19: log T.CommitTime and commit decision

20: T.State <— committed
21: for p in T.UpdatedPartitions
22: send commit T to p

23: upon receiving message prepare T
24: if CertificationCheck(T) is successful

25: log T.WriteSet and T’s coordinator ID
26: T.State < prepared

27: T.PrepareTime <— GetClockTime()

28: send T prepared to T’s coordinator

29: upon receiving message commit T
30: log T.CommitTime
31: T.State <— committed

Then, the transaction state changes from committing to com-
mitted, and its effects are visible in snapshots taken after the
commit timestamp.

Committing a distributed update transaction. A multi-
partition transaction, which updates two or more partitions,
commits using an augmented 2PC protocol (lines 11-31) [2].

The transaction coordinator runs at the originating partition.
Certification is performed locally at each partition that exe-
cuted updates for the transaction (line 24). Each participant
writes its prepare record to stable storage, changes its state
from active to prepared, obtains the prepare timestamp from
its local clock, sends the prepare message with the prepare
timestamp to the coordinator, and waits for the response (line
25-28). The 2PC coordinator computes the commit timestamp
as the maximum prepare timestamp of all participants (line
18).

Choosing the maximum of all prepare timestamps as the
commit timestamp for a distributed update transaction is
important for correctness. Remember from the read protocol
that, on a participant, reads from transactions with a snapshot
timestamp greater than the prepare timestamp of the commit-
ting transaction are delayed. If the coordinator were to return a
commit timestamp smaller than the prepare timestamp on any
of the participants, then a read of a transaction with a snapshot
timestamp smaller than the prepare timestamp but greater than
that commit timestamp would not have been delayed and



would have read an incorrect version (i.e., a version other than
the one created by the committing transaction). Correctness is
still maintained if a participant receives a commit timestamp
greater than its current clock value. The effects of the update
transaction will be visible only to transactions with snapshot
timestamps greater than its commit timestamp.

C. Choosing Older Snapshots

In Clock-SI, the snapshot timestamp of a transaction is not
restricted to the current value of the physical clock. We can
choose the snapshot timestamp to be smaller than the clock
value by A, as shown on line 2 of Algorithm 1. We can choose
A to be any non-negative value and make this choice on a per-
transaction basis. If we want a transaction to read fresh data,
we set A to 0. If we want to reduce the delay probability
of transactions close to zero, we choose an older snapshot by
setting A to the maximum of (1) the time required to commit a
transaction to stable storage synchronously plus one round-trip
network latency, and (2) the maximum clock skew minus one-
way network latency between two partitions. These two values
can be measured and distributed to all partitions periodically.
Since networks and storage devices are asynchronous, such
a choice of the snapshot age does not completely prevent
the delay of transactions, but it significantly reduces the
probability.

While substantially reducing the delay probability of trans-
actions, taking a slightly older snapshot comes at a cost: The
transaction observes slightly stale data, and the transaction
abort rate increases by a small fraction. We study this trade-off
using an analytical model in Section IV and experiments on a
prototype system in Section V.

D. Correctness

We show that Clock-SI implements SI by satisfying the
three properties that define SI [18]. Furthermore, we show
that safety is always maintained, regardless of clock synchro-
nization precision.

(1) Transactions commit in a total order. Clock-SI assigns
commit timestamps to update transactions by reading values
from physical clocks. Ties are resolved based on partition
ids. The commit timestamp order produces a total order on
transaction commits.

(2) Transactions read consistent snapshots. The snapshot in
Clock-SI is consistent with respect to the total commit order of
update transactions. The snapshot timestamp specifies a snap-
shot from the totally ordered commit history. A transaction
reads all committed changes of transactions with a smaller
commit timestamp. By delaying transaction operations in the
read protocol, a transaction never misses the version of a data
item it is supposed to read. A transaction does not read values
from an aborted transaction or from a transaction that commits
with a greater commit timestamp.

(3) Committed concurrent transactions do not have write-
write conflicts. Clock-SI identifies concurrent transactions by
checking whether their execution time overlaps using the
snapshot and commit timestamps. Clock skews do not affect

the identification of concurrent transactions according to their
snapshot and commit timestamps. Clock-SI aborts one of the
two concurrent transactions with write-write conflicts.

We also point out an important property of Clock-SI: The
precision of the clock synchronization protocol does not affect
the correctness of Clock-SI but only the performance. Large
clock skews increase a transaction’s delay probability and
duration; safety is, however, always maintained, satisfying the
three properties of SI.

Although it does not affect Clock-SI's correctness, the
transaction commit order in Clock-SI may be different from
the real time commit order (according to global time) because
of clock skews. This only happens to independent transactions
at different partitions whose commit timestamp difference is
less than the clock synchronization precision. Notice that this
phenomenon also happens with conventional SI: A transaction
commits on a partition after it obtains the commit timestamp
from the timestamp authority. The asynchronous messages
signaling the commit may arrive at the partitions in a different
order from the order specified by the timestamps. Clock-
SI preserves the commit order of dependent transactions
when this dependency is expressed through the database as
performed in a centralized system [2].

E. Discussion

Clock-SI is a fully distributed protocol. Compared with
conventional SI, Clock-SI provides better availability and
scalability. In addition, it also reduces transaction latency and
messaging overhead.

Availability. Conventional SI maintains timestamps using a
centralized service, which is a single point of failure. Although
the timestamp service can be replicated to tolerate certain
number of replica failures, replication comes with performance
costs. In contrast, Clock-SI does not include such a single point
of failure in the system. The failure of a data partition only
affects transactions accessing that partition. Other partitions
are still available.

Communication cost. With conventional SI, a transaction
needs one round of messages to obtain the snapshot timestamp.
An update transaction needs another round of messages to
obtain the commit timestamp. In contrast, under Clock-SI, a
transaction obtains the snapshot and commit timestamps by
reading local physical clocks. As a result, Clock-SI reduces
the latency of read-only transactions by one round trip and
the latency of update transactions by two round trips. By
sending and receiving fewer messages to start and commit
a transaction, Clock-SI also reduces the cost of transaction
execution.

Scalability. Since Clock-SI is a fully distributed protocol,
the throughput of single-partition transactions increases as
more partitions are added. In contrast, conventional SI uses
a centralized timestamp authority, which can limit system
throughput as it is on the critical path of transaction execution.

Session consistency. Session consistency [19], [20] guar-
antees that, in a workflow of transactions in a client session,
each transaction sees (1) the updates of earlier committed



transactions in the same session, and (2) non-decreasing
snapshots of the data. Session consistency can be supported
under Clock-SI using the following standard approach. When a
client finishes a read-only transaction, its snapshot timestamp
is returned. When a client successfully commits an update
transaction, its commit timestamp is returned. LatestTime
maintained by a client is updated to the value returned by
the last transaction completed. When a client starts a new
transaction, it sends LatestT'ime to the originating partition
for that transaction. If LatestTime is greater than the current
clock value at that partition, it is blocked until the clock
proceeds past LatestTvme. Otherwise, it starts immediately.

Recovery. We employ traditional recovery techniques to re-
cover a partition in Clock-SI. Each partition maintains a write-
ahead log (WAL) containing the transaction update records
(as redo records), commit records, as well as 2PC prepare
records containing the identity of the coordinator. In addition,
the partition uses checkpointing to reduce the recovery time.
Taking a checkpoint is the same as reading a full snapshot
of the partition state. If a partition crashes, it recovers from
the latest complete checkpoint, replays the log, and determines
the outcome of prepared but not terminated transactions from
their coordinators.

IV. ANALYTICAL MODEL

In this section, we assess the performance properties of
Clock-SI analytically. Our objective is to reason about how
various factors impact the performance of Clock-SI. We show
the following: (1) With normal database configurations, the
delay probability of a transaction is small and the delay
duration is short. (2) Taking an older snapshot reduces the
delay probability and duration, but slightly increases the abort
rate of update transactions.

We derive formulas for transaction delay probability, delay
duration, and abort rate. We verify the model predictions
in Section V-E using a distributed key-value store. Readers
who are not interested in the mathematical derivations of the
analytical model may skip this section.

A. Model Parameters

Our model is based on prior work that predicts the proba-
bility of conflicts in centralized [21] and replicated databases
[22], [18]. We consider a partitioned data store that runs Clock-
SI. The data store has a fixed set of items. The total number
of items is DBSize. We assume all partitions have the same
number of items. There are two types of transactions: read
transactions and update transactions. Each read transaction
reads R items and takes L, time units to finish. Each update
transaction updates W items and takes L, time units to finish.
The data store processes 1'P.S, update transactions per unit
time.

The committing window of update transaction 7;, denoted as
CW;, is the time interval during which 7; is in the committing
state. On average, an update transaction takes CW time
units to persist its writeset to stable storage synchronously.
We denote RRD as the message request-reply delay, which

includes one round-trip network delay, data transfer time,
and message processing time. We denote S as the time to
synchronously commit an update transaction to stable storage.
A, the snapshot age, is a non-negative value subtracted from
the snapshot timestamp read from the physical clock to obtain
an older snapshot, as shown in Algorithm 1.

B. Delay due to Pending Commit

A transaction might be delayed when it reads an item
updated by another transaction being committed to stable
storage.

For a read transaction Tj;, it takes its snapshot at time
ST;. Assume another update transaction 7 obtains its commit
timestamp at time C'T};. With Clock-SI, at time C'Tj, T} still
needs CW time to synchronously persist its writeset to stable
storage. Assume 7T obtains its commit timestamp before T;
takes its snapshot, ie., CT; < ST;. If ST; — CT; < CW,
when T; reads an item updated by T3, it is delayed until
T; completes the commit to stable storage. Other update
transactions T}, ST; — CTy > CW, do not delay T;, because
at the time 7; reads items updated by T}, T} must have
completed. Taking a A old snapshot is equivalent to shortening
the committing window of update transactions to CW — A.
In this case, T} is delayed by T} if ST; — CT; < CW — A.
If A >CW, CW — A effectively becomes zero.

During CW — A, (CW — A) « TPS,, transactions update
(CW — A)«TPS, * W data items. The probability that T;
reads any particular item in the database is R/DBSize. If
CW — A > L,, then the probability that T; is delayed is
(CW — A)«TPS, « W * (R/DBSize). If CW — A < L,,
then only reading the first R * (CW — A)/L, items possibly
delays T;. The probability becomes (CW — A)« T PS,, « W x
(R+ (CW — A)/L,./DBSize).

For a transaction that only updates one partition, its com-
mitting window is CW = S and its commit timestamp is
available at the updated partition. For a transaction that updates
multiple partitions, its commit timestamp is only available
at its originating partition before 2PC completely finishes.
Hence a delayed transaction may take one extra round-trip
network latency to obtain a commit timestamp from the update
transaction’s originating partition. We use CW = S + RRD
as an estimation of the committing window of a distributed
update transaction.

We assume all update transactions update items at multiple
partitions. Combining the above analysis, the delay probability
of short read transactions, i.e., CW — A > L,., is

(S4+ RRD — A)«TPS, + W x R/DBSize

The delay probability of long read transactions, i.e., CW —
A<L,,is

(S4+ RRD — A)? « TPS, + W R/(DBSize x L,)
The expected delay duration of read transactions is

0.5% (S + RRD — A)



The above results show that the delay duration is bounded
and normally short. Although the delay probability depends
on various factors, we show that, with normal database con-
figurations and workloads, it is low by a numerical example
in Section IV-E and experiments in Section V-E. By assigning
an older snapshot to a transaction, we can reduce its delay
probability and shorten its delay duration.

C. Delay due to Clock Skew

Imperfect time synchronization causes clock skew. A trans-
action is delayed when it accesses a remote partition and the
remote clock time is smaller than its snapshot timestamp.
As we show in Section V, common clock synchronization
protocols, such as NTP, work well in practice and the clock
skew is very small. Hence, this type of delay rarely happens.

We assume the clock skew S K between each pair of clocks
follows normal distribution [23] with mean p and standard
deviation §. The delay probability when a transaction accesses
a remote partition is

P(SK > 05+« RRD+A) = 1— &((0.5%« RRD + A — 1) /5)

The expected delay duration is

oo —e-)?/(25%) g

p xe €z
OiszD+A — —(0.5% RRD + A)
T s €T W)

The results show that if the clock skew is greater than one-
way network latency, it becomes possible that a transaction
is delayed when accessing a remote partition, because the
requested snapshot is not yet available when the transaction
arrives. By assigning an older snapshot to a transaction, we
can reduce its delay probability and shorten its delay duration.

Suppose the maximum clock skew is SK,,,,; time units.
Taking an older snapshot with A = max(CW, SK 4. — 0.5 %
RRD) eliminates almost all the delays due to either pending
commits or clock skews.

D. Update Transaction Abort Probability

Assigning old snapshots to transactions reduces their delay
probability and duration. However, this increases the abort
rate of update transactions because the execution time of an
update transaction is extended and more update transactions
run concurrently with it.

We first compute the probability that a transaction 7; has
to abort without adjusting the snapshot timestamp [18]. On
average, the number of transactions that commit in L,, the
life time of T;, is TPS, * L,. The number of data items
updated by the these transactions is W x T PS,, % L,. The
probability that one particular item in the database is updated
during L,, is W+T PS, x L, /DBSize. As T; updates W items
in total, the probability that T; has conflicts with its concurrent
transactions and has to abort is W2+T PS,* L, /DBSize. The
abort probability is directly proportional to L,, the duration
of update transaction execution.

Clock-SI assigns to each transaction a snapshot that is A
older than the latest snapshot. The transaction abort probability

becomes
W2 % TPS, * (L, + A)/DBSize

This is the upper bound of the abort rate because assigning an
older snapshot to a transaction does not extend its execution
time physically. The actual transaction execution time remains
unchanged. It only becomes longer logically.

With other parameters fixed, the longer a transaction exe-
cutes, the more concurrent transactions run with it, increasing
the likelihood of write-write conflicts with other transactions.
Assigning an older snapshot to a transaction increases its abort
probability.

E. Example

We provide a numerical example using the equations
to calculate the transaction delay probability and duration
due to pending commits of update transactions. We assume
DBSize = 10,000,000, R = 10, W = 10, TPS,, = 10,000,
RRD = 02ms, A = 0, CW = 8ms and L, = 32ms. If
we use mechanical hard disks to persist transaction updates,
it takes a few milliseconds (e.g., 8ms) to commit an update
transaction. The delay probability is 0.08% and the expected
delay time is 4.1ms. On average, each transaction is delayed
for 3.2us. If a transaction takes a snapshot that is 8.2ms earlier
than the clock time, i.e., A = 8.2ms, both delay probability
and time are zero, and the transaction abort probability in-
creases by 25% (from 0.0032 to 0.004). Therefore we can
almost eliminate transaction delays at the cost of a slight
increase in the abort rate.

V. EXPERIMENTAL EVALUATION

We evaluate the performance benefits of Clock-SI using
a micro-benchmark and an application-level benchmark with
a partitioned key-value store in both LAN and WAN envi-
ronments, and show the following: (1) Compared with con-
ventional SI, Clock-SI reduces transaction response time and
increases throughput. (2) Selecting a slightly older snapshot
reduces the delay probability and duration of transactions.
Furthermore, we verify the predictions of our analytical model
using experimental measurements. Notice that we focus only
on assessing the performance benefits of Clock-SI, rather than
the improvement in availability stemming from avoiding a
single point of failure.

A. Implementation and Setup

We build a partitioned multiversion key-value store in C++.
It supports Clock-SI as well as conventional SI as implemented
in other systems [3]. With conventional SI, a transaction
communicates with a centralized timestamp authority running
on a separate server to retrieve timestamps. A transaction
needs one round of messages to obtain the snapshot timestamp.
An update transaction needs another round of messages to
obtain the commit timestamp.

The data set is partitioned among a group of servers.
Servers have standard hardware clocks synchronized using
NTP running in peer mode [15]. A key is assigned to a



partition based on its hash. The default size of a key and
its value are 8 and 64 bytes, respectively. We keep all key-
value pairs in a group of hash tables in main memory. A key
points to a linked list that contains all the versions of the
corresponding value. The transaction commit log resides on
the hard disk. The system performs group commit to write
multiple transaction commit records in one stable disk write.

We conduct experiments in both LAN and WAN envi-
ronments. For LAN experiments, we deploy our key-value
store in a local cluster. Servers in our local cluster run Linux
3.2.0. Each server has two Intel Xeon processors with 4GB
DDR2 memory. The transaction log resides on a 7200rpm
160GB SATA disk. We disable the disk cache so that syn-
chronous writes reach the disk media. The average time of
a synchronous disk write is 6.7ms. The system has eight
partitions. Each partition runs in one server and manages one
million keys in main memory. All machines are connected to a
single Gigabit Ethernet switch. The average round-trip network
latency is 0.14 milliseconds. For WAN experiments, we deploy
our system on Amazon EC2 using medium instances (size M1)
at multiple data centers.

B. Micro-benchmarks

We implement a benchmark tool based on the Yahoo!
Cloud Serving Benchmark (YCSB) [13], which is designed
to benchmark key-value stores. We extend YCSB to support
transactions since the original YCSB does not support trans-
actions.

Latency. Clock-SI takes shorter time to run a transaction
because it does not communicate with a timestamp authority
for transaction snapshot and commit timestamps. Figure 3
shows the latency of read-only transactions in our local cluster.
Both the clients and servers are connected to the same switch.
Each transaction reads eight items at each partition, with keys
chosen uniformly randomly. We vary the number of partitions
accessed by a transaction from one to three. Compared with
conventional SI, Clock-SI saves approximately one round-
trip latency. For a single-partition read-only transaction this
amounts to about 50% latency savings. We also see consistent
savings of one round-trip latency for the other two cases.

We run the same experiment in a WAN environment on
Amazon EC2 and measure transaction latency. We place three
data partitions at three data centers in different geographical
locations: US West, US East and Europe. The timestamp server
is co-located with the partition in US West. A client always
chooses the nearest partition as the originating partition of its
transaction.

First, we run clients at our local cluster in Europe and the
number of partitions accessed by a transaction varies from
one to three. Figure 4 shows the measured latency. Compared
with conventional SI, Clock-SI reduces the latency of each
transaction by about 160 milliseconds since it does not contact
the remote timestamp server. Next, for transactions issued by
the clients near US West and served by the partition co-located
with the timestamp server, the saved latency by Clock-SI
becomes sub-milliseconds and the latencies are similar to those
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Fig. 4. Latency distribution of read-only transactions in a WAN. Partitions
are in data centers in Europe, US West and US East. Clients are in our local
cluster in Europe.

in Figure 3. Last, for the clients near US East, Clock-SI still
reduces their transaction latency by one round-trip between
two data centers, which is about 170 milliseconds.

For update transactions, the latency is reduced similarly by
two network round trips in both LAN and WAN environments.

Throughput. Next we compare the throughput of Clock-
SI with conventional SI. We run a large number of clients
to saturate the servers that host the key-value data partitions.
Figure 5 shows the throughput of read-only and update-only
single-partition transactions. The number of partitions serving
client requests varies from one to eight. Each transaction reads
or updates eight items randomly chosen at each partition.

We first analyze read-only transactions. Below five parti-
tions, the throughput of Clock-SI is about twice of conven-
tional SI. The cost of a read-only transaction stems mainly
from sending and receiving messages. As Clock-SI does not
contact the timestamp authority to obtain snapshot timestamps,
it sends and receives one message for each transaction, while
conventional SI sends and receives two messages. Beyond five
partitions, the throughput gap becomes larger: The throughput
of Clock-SI increases linearly as the number of partitions
increases. For conventional SI, the throughput levels off at
around 64k transactions/second. The timestamp authority be-
comes the bottleneck because it can only assign about 64k
timestamps/second.

Update transactions show similar results in Figure 5. The
throughput of update transactions is lower than that of read-
only transactions, because an update transaction does more
work, including creating new versions of items, updating ver-
sion metadata, and performing I/O to make updates durable on
the disk. Update transactions require two timestamps from the
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timestamp authority. Given its limit of 64k timestamps/second,
the timestamp authority sustains only 32k update transac-
tions/second. The timestamp authority again becomes the
bottleneck.

Batching timestamp requests from the data partitions to the
timestamp authority can improve the throughput of conven-
tional SI. However, message batching comes with the cost of
increased latency. In addition, in a system with large number
of data partitions, even with message batching, the centralized
timestamp authority can still become a bottleneck under heavy
workloads.

The results of our micro-benchmarks show that Clock-SI
has better performance than conventional SI in both LAN
and WAN environments as it does less work per transaction,
improving both latency and throughput. We show the results
of transactions containing both read and update operations for
an application benchmark in the next section.

C. Twitter Feed-Following Benchmark

We build a Twitter-like social networking application on
top of the distributed key-value store. The feed-following
application supports read-tweet and post-tweet transactions on
a social graph. The transactions guarantee that a user always
reads consistent data. Each user in this application has a key to
store the friend list, a key for the total number of tweets, and
one key for each tweet. There is a trade-off between pushing
tweets to the followers and pulling tweets from the followees
[24]. We choose the push model, which optimizes for the more
common read transactions.

We model 800,000 users. The followers of a user are
located at three partitions. On average, each user follows 20
other users. The users accessed by the read-tweet and post-
tweet transactions are chosen uniformly randomly. A post-
tweet transaction pushes a tweet of 140 characters to the
followers of a user at three different partitions. A read-tweet
transaction retrieves the 20 latest tweets from the followees,
which accesses one partition. The workload includes 90%
read-tweet transactions and 10% post-tweet transactions, as
used in prior work [14].

Figure 6 shows the throughput of Clock-SI and conven-
tional SI. With eight partitions Clock-SI supports more than
38k transactions/second, while conventional SI supports 33k
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Fig. 6. Throughput of Twitter Feed-Following application. 90% read-tweets
and 10% post-tweets.

transactions/second. The average transaction latency of Clock-
SI is also lower than that of conventional SI by one round-
trip latency for the read-tweet transactions and two round-trip
latency for the post-tweet transactions (figure not shown).

Since the transactions access a reasonably large data set
uniformly randomly and clocks are well synchronized by NTP,
transaction delays rarely occur and do not affect the overall
performance. We discuss transaction delays with carefully
designed workloads further below.

D. Effects of Taking Older Snapshots

In previous experiments, the delay probabilities are very
small because there are few “conflicts” between reads and
pending commits. Here we change the workload to create more
conflicts using a small data set. We show how choosing a
proper value for A, the snapshot age, in Clock-SI reduces the
delay probability and duration. We run a group of clients and
each client issues update transactions that modify ten items.
Another group of clients issue transactions that read ten of the
items being updated with varying probability. We vary A and
measure transaction throughput and latency.

Figure 7 shows the throughput of read-only transactions
with different A values against the probability of reading
hot-spot items. Figure 8 shows the corresponding latency. As
A becomes larger, the throughput increases and the latency
decreases. With A greater than the duration of a commit, reads
are not delayed by updates at all (for curves with A = 14ms
and A = 21ms). With smaller A values, the probability
that reads are delayed increases when the probability that a
transaction reads the hot-spot items increases. As a result, the
transaction latency increases and the throughput drops. There-
fore, choosing a proper snapshot age in Clock-SI effectively
reduces the probability of transaction delays.

E. Model Verification

We run experiments to verify our analytical model and
the effects of using different A values in Clock-SI. Each
transaction both reads and writes a fixed number of data items
at one partition. We check whether the delay probability and
duration change as the model in Section IV predicts when we
change the data set size and snapshot age.
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Figure 9 shows that the delay probability decreases with the
size of the data set. The numbers produced by the analytical
model follow the same pattern as the experimental results.
As each transaction accesses items uniformly randomly, the
larger the data set, the less likely that a transaction reads an
item updated by another committing transaction.

Next we show that taking older snapshots reduces both the
transaction delay probability and duration. We choose a small
data set with 50,000 items to make the delays happen more
often. Figure 10 and 11 demonstrate the effects of choosing
different snapshot ages. The older a snapshot, the lower the
delay probability and the shorter the delay duration. Figure 12
shows how the transaction abort rate changes. As the analytical
model predicts, the transaction abort rate increases as the age
of the snapshot increases.

F. NTP Precision

With Clock-SI, a transaction might be delayed when access-
ing a remote partition if the remote clock time is smaller than
the snapshot timestamp of the transaction. The occurrence of
this type of delay indicates that the clock skew is greater than
one-way network latency. In all the experiments, we observe
that most of the transaction delays are due to the pending
commit of update transactions. Only very few delays are due
to clock skew.

We measure the synchronization precision of NTP indirectly
on our local cluster since it is difficult to measure the time dif-
ference of two clocks located at two different servers directly.
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We record the clock time, tq, at server s; and immediately
send a short message containing ¢; to another server sy over
the network. After the message arrives at s, we record its
clock time, to. t9 — t; is the skew between the two clocks
at so and s; plus one-way network latency. If t5 —¢; > 0,
Clock-SI does not delay transactions that originate from s; and
access data items at so. Figure 13 shows the distribution of the
clock skew between two clocks plus one-way network latency
measured every 30 seconds in six weeks. A negative value on
the x axis indicates the possibility of delaying a transaction
when accessing a remote partition. As we see from the figure,
the delay probability due to clock skew is very low and the
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Fig. 11. Transaction delay time in a small data set while varying A, the
snapshot age.
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delay duration is very short.

VI. RELATED WORK

SI in distributed systems. A number of large-scale dis-
tributed data stores use SI to support distributed transactions.
They all rely on a centralized service for timestamp man-
agement. Percolator [3] adds distributed SI transactions to
Bigtable [25]. Zhang and Sterck [4] implement SI on top of
HBase in a system that stores all the transaction metadata in a
number of global tables. An implementation of write snapshot
isolation (WSI) using a centralized transaction certifier is
given in [9]. Clock-SI uses physical clocks rather than a
centralized authority for timestamp management, with the
attendant benefits shown in this paper.

Physical clocks in distributed systems. Liskov provides a
survey of the use of loosely synchronized clocks in distributed
systems [16]. Schneider uses loosely synchronized clocks to
order operations for state machine replication [10] such that all
replicas execute operations in the same serial order according
to the physical time when the operations are initialized at the
replicas. In contrast, Clock-SI uses physical clocks for a dif-
ferent purpose, providing consistent snapshots for transactions
accessing a partitioned data store.

The Thor project explores the use of loosely synchronized
clocks for distributed concurrency control [11], [12], [26].
AOCC [11] assigns to committed transactions unique commit
timestamps from physical clocks. Transactions running under

AOCC may, however, read inconsistent states of the database.
Therefore, read-only transactions need to be validated on
commit and therefore may need to abort, an undesirable
situation which does not happen in Clock-SI.

An extension to AOCC lets running transactions read lazily
consistent states [12] according to a dependency relation
providing lazy consistency (LC). LC is weaker than SI [17].
Some read histories allowed under LC are forbidden by SI
For example, assume two items xg and yo. Transaction T}
writes 1 and commits. Then transaction 7T, writes y; and
commits. Next, transaction 73 reads the two items. Under LC,
T3 is allowed to read xy and 1, which is not serializable and
also not allowed under SI. Therefore, even with AOCC+LC
read-only transactions need to be validated and may have to
abort.

Both AOCC and AOCC+LC do not provide consistent
snapshots for running transactions. In comparison, transactions
in Clock-SI always receive consistent snapshots and read-only
transactions do not abort.

Spanner [27] implements serializability in a geographically
replicated and partitioned data store. It provides external
consistency based on synchronized clocks with bounded un-
certainty, called TrueTime, requiring access to GPS and atomic
clocks. Spanner uses conventional two-phase locking for up-
date transactions to provide serializability. In addition, trans-
actions can be annotated as read-only and executed according
to SI. In comparison, Clock-SI relies solely on physical time
to implement SI. Spanner’s provision of external consistency
requires high-precision clocks, and its correctness depends
on clock synchrony. In contrast, Clock-SI uses conventional
physical clocks available on today’s commodity servers, and
its correctness does not depend on clock synchrony.

Granola [28] runs single-partition and independent multi-
partition transactions serially at each partition to remove the
cost of concurrency control. Such a transaction obtains a
timestamp before execution, and transactions execute serially
in timestamp order. Coordinated multi-partition transactions
use traditional concurrency control and commit protocols. To
increase concurrency on multicore servers, Granola partitions
the database among CPU cores. This increases the cost of
transaction execution, because transactions that access multi-
ple partitions on the same node need distributed coordination.
In contrast, Clock-SI runs all transactions concurrently and
does not require partitioning the data set among CPU cores.

Relaxing SI in distributed systems. Prior work proposes
relaxing the total order property of SI to achieve better perfor-
mance in partitioned and replicated systems. Walter [14] is a
transactional geo-replicated key-value store that uses parallel
snapshot isolation (PSI), which orders transactions only within
a site and tracks causally dependent transactions using a vector
clock at each site, leaving independent transactions unordered
among sites. Non-monotonic snapshot isolation (NMSI) [29],
[30] provides non-monotonic snapshots. NMSI does not ex-
plicitly order transactions but uses dependency vectors to
track causally dependent transactions. NMSI improves PSI by
supporting genuine partial replication. The relaxations of SI



may fail to provide application developers with the familiar
isolation levels and requires extra effort to guarantee that
transactions read consistent and monotonic snapshots as in
SI. In contrast, Clock-SI provides a complete implementation
of SI, including a total order on transaction commits and
a guarantee that transactions read consistent and monotonic
snapshots across partitions.

Relaxing freshness. Some systems relax freshness to im-
prove performance at the cost of serving stale data. Relaxed
currency models [31], [32], [33] allow each transaction to have
a freshness constraint. Continuous consistency [34] bounds
staleness using a real-time vector. These systems do not use
physical clocks to assign transaction snapshot and commit
timestamps. Clock-SI provides each transaction with either
the latest snapshot or a slightly older snapshot (tunable per
transaction) to reduce the delay probability and duration
of transactions. In both cases, all the properties of SI are
maintained.

Generalized snapshot isolation (GSI) [18] generalizes SI
to replicated databases. It uses older snapshots to avoid the
delay of waiting for committed updates to be propagated
from the certifier to the replicas. In contrast, Clock-SI targets
concurrency control for partitioned data stores using physical
time. It allows assigning older snapshots to reduce the delay
probability and duration of transactions.

VII. CONCLUSIONS

Clock-SI is a fully distributed implementation of SI for
partitioned data stores. The novelty is the provision of con-
sistent snapshots using loosely synchronized clocks. Clock-
SI uses physical clocks for assigning snapshot and commit
timestamps. It improves over existing systems that use a
centralized timestamp authority, by eliminating a single point
of failure and a potential performance bottleneck. Moreover,
Clock-SI avoids the round-trip latency between the partitions
and the timestamp authority, showing better response times for
both LAN and WAN environments.
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